Bahtat et al. EURASIP Journal on Advances in Signal Processing (2016) 2016:38

DOI 10.1186/513634-016-0336-0

EURASIP Journal on Advances
in Signal Processing

RESEARCH Open Access

Instruction scheduling heuristic for an

@ CrossMark

efficient FFT in VLIW processors with

balanced resource usage

Mounir Bahtat" @, Said Belkouch', Philippe Elleaume? and Philippe Le Gall?

Abstract

The fast Fourier transform (FFT) is perhaps today’s most ubiquitous algorithm used with digital data; hence, it
is still being studied extensively. Besides the benefit of reducing the arithmetic count in the FFT algorithm,
memory references and scheme’s projection on processor’s architecture are critical for a fast and efficient
implementation. One of the main bottlenecks is in the long latency memory accesses to butterflies’ legs and
in the redundant references to twiddle factors. In this paper, we describe a new FFT implementation on high-end very
long instruction word (VLIW) digital signal processors (DSP), which presents improved performance in terms of clock
cycles due to the resulting low-level resource balance and to the reduced memory accesses of twiddle factors. The
method introduces a tradeoff parameter between accuracy and speed. Additionally, we suggest a cache-efficient
implementation methodology for the FFT, dependently on the provided VLIW hardware resources and cache
structure. Experimental results on a TI VLIW DSP show that our method reduces the number of clock cycles by an
average of 51 % (2 times acceleration) when compared to the most assembly-optimized and vendor-tuned FFT
libraries. The FFT was generated using an instruction-level scheduling heuristic. It is a modulo-based register-sensitive
scheduling algorithm, which is able to compute an aggressively efficient sequence of VLIW instructions for the FFT,
maximizing the parallelism rate and minimizing clock cycles and register usage.
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1 Introduction

The discrete Fourier transform (DFT) is a used trans-
form for spectral analysis of finite-domain discrete-time
signals. It is widely employed in signal processing sys-
tems. For decades, studies have been done to improve
the algorithmic efficiency of this technique and this is
still an active research field. The frequency response of a
discrete signal x[n] can be computed using the DFT
formula over N samples as in (1).

XK = >l o

For k € {0,...,N — 1} where Wk = ¢7/(27/N)nk
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The DFT algorithmic complexity is O(N?). In order to
reduce this arithmetic count and therefore enhancing its
implementation efficiency, a set of methods were pro-
posed. These methods are commonly known as fast
Fourier transforms (FFTs), and they present a valuable
enhancement in complexity of O(Nlog(N)). FFT was
first discovered by Gauss in the eighteenth century and
re-proposed by Cooley and Tukey in 1965 [1]. The idea
is based on the fundamental principle of dividing the
computation of a DFT into smaller successive DFTs and
recursively repeating this process. The fixed-radix category
of FFT algorithms mainly includes radix-2 (dividing the
DFT into 2 parts), radix-4 (into 4 parts), radix-2%, and
radix-8 [2]. Mixed-radix FFTs combine several fixed-radix
algorithms for better convenience [3]. Split-radix FFTs
offer lower arithmetic count than the fixed or mixed-
radix, using a special irregular decomposition [4, 5]. Also,
a recursive FFT can be implemented as in [6], and a
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combination between the decimation-in-frequency (DIF)
and the decimation-in-time (DIT) FFT is proposed in [7].

The FFT algorithm has been implemented for either
hardware or software, on different platforms. Hardware
IP implementations on ASIC or FPGA can provide real-
time high-speed solutions but lack flexibility [8]. Equiva-
lent implementations on general purpose processors
(GPP) offer flexibility, but it is generally slower and cannot
meet high real-time constraints. Multi-core digital signal
processors (DSPs) are interesting hardware platforms
achieving the tradeoff between flexibility and perform-
ance. These are sharing with FPGAs a well-earned reputa-
tion of being difficult for developing parallel applications.
As a result, several languages (such as OpenCL) seeking
to exploit the power of multi-cores while remaining plat-
form independent has been recently explored [9, 10].
OpenCL for instance is an industry’s attempt to unify em-
bedded multi-core programming, allowing data parallel-
ism, SIMD instructions, and data locality as well [11].

Modern low-power multi-core DSP architectures
attracted many real-time applications with power re-
strictions. One of the primary examples in this field
is the C6678 multi-core DSP from Texas Instruments,
which can provide up to 16 GFLOPS/watt. In [12], a real-
time low-power motion estimation algorithm based of the
McGM gradient model has been implemented in the TI
C6678 DSP, exploiting DSP features and loop-level
very long instruction word (VLIW) parallelism. The
implementation provided significant power efficiency
gains toward high-end current architectures (multi-
core CPUs, many-core GPUs). In [13], a low-level
optimization of the 4-, 8-, and 16-point FFTs in the
C6678 DSP is presented.
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The most recent high-end DSP architectures are
VLIW, which mainly support an instruction-level paral-
lelism (ILP) feature, offering the possibility to execute
simultaneously multiple instructions and a data-level
parallelism allowing the access to multiple data during
each cycle. Therefore, these kinds of processors are
known to have greater performance compared to RISC
or CISC, even having simpler and more explicit internal
design. However, unlike superscalar processors where
parallelism opportunities are discovered by hardware at
the run time, VLIW DSPs leave this task to the software
compiler. It has been shown that constructing an optimal
compiler performing instruction mapping and scheduling
in VLIW architectures is an NP-Complete problem [14].
Toward this increasingly difficult task, compilers have
been unable to capitalize on these existing features and
often cannot produce efficient code [15].

Several compilation techniques tackled this problem. A
classical method is called the list scheduling [16] and it
schedules instructions within a single block, by building a
directed acyclic dependency graph (DAG) (as in Fig. 1).
Trace scheduling was introduced afterwards by Fisher [17],
which selects and acts on acyclic paths having the highest
probability of execution (called traces). The trace schedul-
ing was unable to properly optimize loops; then, a more
effective solution to this specific problem was proposed by
software pipelining [18]. The most successful technique of
software pipelining is known as the modulo scheduling
[19]. We have proposed an efficient enumeration-based
heuristic for modulo scheduling in [20].

One of the bottlenecks toward an efficient FFT imple-
mentation on these VLIW DSP platforms is memory
latencies. Indeed, in addition to the memory access of

a b

11 Mul rO,r1,r4
12 Mul r4,r5,r4
I3 Mul rO,r0,r0
14 Mulrl,rl,rl
I5 SubrO,rl1,r0
16 AddrO,r2,rO
17 Addr3,r4,rl

Fig. 1 Dependency graph (b) of an instruction block (a)
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butterflies’ inputs and outputs over several stages
(logr(N) stages for a radix-2 FFT, shown in Fig. 2), con-
ventional algorithms excessively and redundantly load
twiddle factors (WX). These latter are classically stored
as a N-sized complex vector, requiring O(N log(N)) ac-
cesses. In [21], a novel memory reference reduction
method is introduced by grouping butterflies using the
same twiddle factors together; therefore decreasing the
number of memory references due to twiddle factors in
DSPs by 76 %. Another FFT scheme is presented in [22],
reducing the memory access frequency and multiplica-
tion operations. Also, other results in [23] decrease the
number of twiddle accesses by an asymptotic factor of
log(N), based on G and G7 transforms. On the other
hand, the FFT performance is tightly dependent to the
processor’s architecture and its memory and cache struc-
ture. Kelefouras et al. [24] propose a methodology to
speed up the FFT algorithm depending on the memory
hierarchy of processor’s architecture. State-of-the-art
FFT libraries such as FFTW [25-27] and UHFFT [28]
maximize the performance by adapting to the hardware
at run time, usually using a planner, searching over a
large space of parameters in order to pick the best im-
plementation. The FFTS in [29] claims an efficient
cache-oblivious FFT scheme that is not requiring any
machine-specific calibration.

In the present paper, we propose an efficient modulo-
like FFT scheduling for VLIW processors. Our imple-
mented methodology allows better core-level resource
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balance, exploiting the fact that the twiddle factors can
be calculated recurrently using multipliers and entirely
generated in masked time. The resulting scheme created
a vital balance between the computation capability and
the data bandwidth that are required by the FFT algo-
rithm, taking into account the VLIW architecture. More-
over, an important amount of input buffers can be freed
since twiddle factors are no longer stored, nor refer-
enced from memory, avoiding significant memory stalls.
Since the recurrent computation of twiddle factors using
multipliers induces a processing error, a tradeoff param-
eter between accuracy and speed is introduced.

Besides, our proposed implementation methodology
takes into account the memory hierarchy, the memory
banks, the cache size, the cache associativity, and its line
size, in order to well adapt the FFT algorithm to a broad
range of embedded VLIW processors. The bit reversal
was efficiently designed to take advantage of the cache
structure, and a mixed scheme was proposed for FFT/
iFFT sizes not fitting the cache size.

VLIW assembly code of the FFT/iFFT was generated
using a scheduling heuristic. The proposed FFT-specific
modulo instruction scheduling algorithm is resource-
constrained and register-sensitive that uses controlled
backtracking. This heuristic re-orders the scheduling
array to accelerate the backtracking search for the best
schedule within the NP-complete state space. Our algo-
rithm applies a strict optimization on internally used
registers, so that generating twiddle factors of the new
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Fig. 2 8-point radix-2 DIF FFT
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FFT scheme can be done effectively masked in parallel
with other VLIW instructions.

The idea of recurrently generating twiddle factors dur-
ing the FFT calculation is also discussed in our paper in
[30]. In the present paper, we additionally propose a
VLIW-generic recurrent FFT scheme and the related
instruction scheduling generator.

In the following, a background on the FFT algorithm
of interest is given in Section 2, we then present an over-
view on the VLIW DSP processors in Section 3, the new
FFT strategy scheme is explained in Section 4, and the
modulo-like scheduling of the suggested FFT is de-
scribed in Section 5. Finally, experimental results are
given in Section 6.

2 Background on the FFT algorithm of interest
Many factors other than the pure number of arithmetic
operations must be considered for an efficient FFT
implementation on a VLIW DSP, which can be derived
from memory-induced stalls, regularity, and algo-
rithm’s projection on hardware VLIW architectures.
Yet, one of the FFT algorithms that proved enough
satisfaction on DSPs is the radix-4 FFT, mostly imple-
mented by manufactures. This is mainly due to its rela-
tively less access to memory (during logy(N) stages vs.
log,(N) stages in a radix-2 scheme), additional to its
regular, straightforward and less complex algorithm
(compared for instance to split-radix FFTs, radix-8 and
higher radix FFTs). The radix-4 FFT is usually used
and mixed with a last radix-2 stage, enabling it to treat
sizes that are power-of-2 and not only being limited to
power-of-4 sizes.

We distinguish between two basic types of radix-4 al-
gorithms: decimation-in-time (DIT) is the consequence
of decomposing the input x[x], and decimation-in-
frequency (DIF) when decomposing the output X[nu].
Both DIT and DIF present the same computational cost.
In this paper, we will be only interested in DIF versions.

Building the radix-4 algorithm can be done starting
from the DFT formula in (1) which can be rewritten in a
decomposed form and consequently obtaining the DIF
radix-4 butterfly description. An FFT computation is
transformed into four smaller FFTs through a divide-
and-conquer approach, making a radix-4 scheme with
log,(N) stages, each containing N/4 butterflies.

Through the given scheme, when the FFT input is in
its natural order, the output will be arranged in the so-
called digit-reversed order, which is defined depending
on the used radix. Worthwhile to note that radix-2 FFT
schemes present easier re-ordering process.

In 1996, He and Torkelson proposed in [31] a radix-4
variant, having the same computational complexity that
they called a radix-2* FFT. Its main provided advantage
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is retaining the same butterfly structure as the radix-2
FFT and therefore preserving a bit-reversed order at the
output. This is useful not only when re-ordering the out-
put compared to 4-based digit-reversed re-ordering but
also when mixing it with a last radix-2 stage, which in
this case can be directly done, thanks to the instinct
compatibility between radix-2 and radix-2> schemes.
The new butterfly definition is given in Fig. 3 and the
resulting algorithm’s structure in Fig. 4.

The radix-2> FFT is adopted in this work and forms
the basis of our new FFT scheme. Next, we describe the
targeted VLIW family and the related state-of-art mod-
ulo scheduling.

3 VLIW DSP processors

3.1 Architecture overview

VLIW platforms allow several heterogeneous operations
to be executed in parallel, due to multiple execution
units in their architecture, achieving high computation
capability (Fig. 5). In this case, the instruction size is
increased depending on the number of units (usually
128 or 256 bits). Variable instruction sizes can be used
as well to avoid additional NOP operations for code
optimization. Although that each operation requires a
number of cycles to execute, VLIW instructions can be
fully pipelined; consequently, new operations can start in
every cycle at every functional unit.

In VLIW processors, instructions are pipelined with
an out-of-order execution, thus, iterations are initiated
in parallel at a constant rate called the initiation interval
(I1) [19] (Fig. 6).

Among industrial VLIW platforms, we mention the
Texas Instruments TMS320C6x, Texas Instruments
66AK2Hx, FreeScale StarCore MSC8x, ADI TigerSharc,
and Infineon Carmel.

3.2 Background on the modulo scheduling

Modulo scheduling is a software pipelining technique,
exploiting ILP to schedule multiple iterations of a loop
in an overlapped form, initiating iterations at a constant
rate called the initiation interval.

Modulo instruction scheduling schemes are mainly
heuristic-based as finding an optimal solution is proven
an NP-complete problem. Basic common operations of
this technique include computing a lower bound of the
initiation interval (denoted MII) which depends on pro-
vided resources and dependencies. Next, starting from
this MII value, search for a valid schedule respecting
hardware and graph dependency constraints. If no valid
schedule could be found, increase the II value by 1 and
search for a feasible schedule again. This last process is
repeated until a solution is found. Higher performance is
achieved for lower II; increasing II will reduce the
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Fig. 3 Radix-2” butterfly

amount of used parallelism, however, this makes finding time slots searching for a better solution. Slack modulo
a valid schedule easier [32]. Main evoked techniques in  scheduling [33] minimizes needed registers by reducing
the literature for modulo scheduling include iterative lifetimes of operands, using their scheduling freedom (or
modulo scheduling (IMS) [19], which uses backtracking slack). Integrated register-sensitive iterative software
by scheduling and un-scheduling operations at different  pipelining (IRIS) [34] modifies the IMS technique to
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Fig. 5 Typical structure of a VLIW machine

minimize register requirements. Swing modulo schedul-
ing (SMS) [35, 36] does not use backtracking but orders
graph nodes guarantying effective schedules with low
register pressure. The modulo scheduling with integrated
register spilling (MIRS) in [37] suggests to integrate the
possibility of storing data temporally out to memory
(using spill code) when a schedule aims to exceed the
number of available registers in the processor.

In general, the problem statement starts from a
directed acyclic graph (DAG), with nodes representing
operations of a loop, and edges for the intra- or inter-
iteration dependencies between them. Those are valued
at instructions’ latencies. The wanted schedule must be
functionally correct regarding data dependencies and
hardware conflicts, minimizing both II and register
usage, therefore reducing the execution time. Register
pressure is a critical element to consider while searching
for a schedule; a commonly used strategy is to minimize
the lifetime of instruction’s inputs/outputs.

Accordingly, modulo scheduling focuses on arranging
instructions in a window of II slots called the kernel,
when m iterations are overlapped within it, then m-1 itera-
tions must be separately done before and after entering the
kernel; those are called prolog and epilog, respectively. In
order to reduce the code expansion issue that is naturally
required by modulo scheduling (typically for the prolog/
epilog parts), hardware facilities for software pipelining are
implemented in VLIW.

| Iterationl I

|
I

Iteration2 |

«—>| lteration 3 I

I

<—>| Iteration4 I

II

Fig. 6 Parallel initiation of iterations in VLIW cores

Next, our new FFT scheme is discussed for implemen-
tation possibilities on VLIW DSPs.

4 Our implementation methodology for the FFT
on VLIW DSPs

4.1 A motivating example

The key idea behind the FFT scheme that we are pro-
posing is to create a balance between the computation
capability and the data bandwidth that are required by
the FFT algorithm. In the following, we analyze the
conventional FFT scheme regarding needed VLIW oper-
ations in a TI C66 device, in order to evaluate the default
efficiency of resource usage.

The TI TMS320 C66 is a fixed and floating-point DSP.
It contains eight cores, each working with a clock fre-
quency of 1.0 to 1.25 GHz. A C66 CorePac core is able
to execute up to eight separate instructions in parallel,
thanks to the eight functional units in its VLIW struc-
ture as in Fig. 7. The maximum ability of one core is to
execute 8 fixed/floating 32-bit multiplications per cycle
using .M units, 8 fixed/floating 32-bit additions/subtrac-
tions per cycle using .L and .S units and loads/stores of
128-bit per cycle using .D units. The internal register
files are composed of 64 32-bit registers [A31:A0 and
B31:B0] [38].

As seen previously, the conventional radix-2* FFT al-
gorithm needs logy(N) stages (assuming N a power-of-4);
and within each stage, a number of N/4 radix-2> butter-
flies are computed. Besides, there is a need of 8 loads/
stores for each butterfly’s legs, in addition to 3 load op-
erations of twiddle factors as shown in Fig. 3; making a
total of 11 loads/stores per butterfly. Moreover, eight
complex additions/subtractions, three complex multipli-
cations, and a special (-j) multiplication are required to
complete the processing on a single butterfly.

Let us denote 7, the number of loaded/stored data in
bytes during the whole FFT algorithm, #,,, the total num-
ber of required real multiplications, 7, the total number
of required real additions/subtractions, and #; the total



Bahtat et al. EURASIP Journal on Advances in Signal Processing (2016) 2016:38

Page 7 of 21

A

A0
Al M1

A2
u
S1
.D1

A31

Fig. 7 The 8-way synoptic structure with 8 VLIW units (denoted as .M1/2, .L1/2, .51/2 and .D1/2) and register files (A31:A0 and B31:B0) of a C66 core
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number of (—j) multiplications. Then, the conventional
algorithm needs the (14 n,, n,, n;) expressed in (2) (al-
ways assuming N a power-of-4, denoting By = N'logs(N)/
4 as the total number of radix-4 butterflies). The n, for-
mula is scaled by a factor of 8 since the used samples
are single-precision floating point, hence, coded in 8
bytes for both real and imaginary parts. The n,, formula
takes into consideration that each complex multiplica-
tion is translated into 4 real multiplications, and the 7,
formula sums the additions/subtractions that are needed
in both complex additions/subtractions {16} and in com-
plex multiplications {6}.

ng = 88 By = 22 Nlog,N
ny = 12 By = 3 Nlog,N

11
n, =22 By = — Nlog,N

T2 (2)

N
nj =By = Zlog4N

A VLIW core can especially issue loads/stores, multi-
plications, additions/subtractions, and (-j) multiplica-
tions in parallel. In the C66 core case, load/store

capacity is 16 bytes per cycle using .D units (denoted
next by p,). Eight real floating-point single-precision
multiplications can be done per cycle (p,,) using .M
units and eight real floating-point single-precision ad-
ditions/subtractions are achievable per cycle (p,)
using both .L and .S units. Finally, 2 multiplications
by (-j) per cycle (p;) using .L and .S units as well,
those last are simplified into combinations of move
and sign-change operations between real and imagin-
ary parts.

According to these VLIW core capacities, the max-
imum peak performance in terms of clock cycles for the
whole conventional FFT on device is equal to:

m Tlg j 11
MAX |22 T Ba ) _ 22 Nlog, (N)
Pd Pm Pa P 8

The minimal need for each set of operations on the
given C66 VLIW core is shown in Fig. 8. The most opti-
mized conventional way for implementing this algorithm
at instruction level leads to the kernel form presented in
Fig. 9. It shows butterfly’s instructions mapping on the
eight VLIW functional units (.D1, .L1, .S1 ...). Since each

Loads/Stores

100 %

11
— Nlogy N cycles

Multiplications
28 %

59 %

-- 13

ki |

Fig. 8 Minimal need of the conventional FFT algorithm in terms of clock cycles on C66

3
I = Nlogs N cycles

I — Nlogy N cycles
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C66 core contains two side banks (A and B), we proc-
essed symmetrically one butterfly per side.

In Fig. 9, loads of the four butterfly’s legs are marked
by m0, m1l, m2, and m3. Stores are represented by the
entities sf0, sfl, sf2, and sf3. Additions and subtractions
are referred as a0, al, a2, a3, vO, vl, v2, and v3. A
multiplication by (-j) is translated into two operations
on .L/.S units: a3ii (a3il, a3i2). In addition, multiplica-
tions are marked by mfl, mf2, and mf3; and since we are
processing complex data (with real and imaginary parts),
extra additions are needed to complete the complex
multiplication operation: f1, 2, f3. Finally, the symbols
wl, w2, and w3 represent loads from memory of needed
twiddle factors (WX)).

Hence, there is indeed an unbalance between the
required computation capability and the load/store
bandwidth for this VLIW case, making excessive loads/
stores vs. lower use of computation units.

Our new method changes the structure of the algo-
rithm to fit the VLIW hardware, creating a balance in re-
source usage, and therefore minimizing the overall clock
cycles. In an attempt to reduce the load/store pressure,
we suggest not to load twiddle factors but to generate
them internally instead. This idea uses the fact that the
twiddle factors in the n-indexed butterfly that are (W37,
W, WA can be deduced from the (1 - 1)-indexed
butterfly according to these formulas: (W3 = 1AV
W= W™ 1wy, WA= WA"-DWA3). This trades loads/
stores for multiplications/additions and makes an FFT
scheme with butterflies that are dependent on each other;
therefore, we cannot start the processing of the n-indexed
butterfly if the (# — 1)-indexed butterfly did not yet com-
pute its twiddle factors.

We decide to process one butterfly per C66 core side
bank as well, grouping two butterflies within a single
larger iteration. Therefore, this makes an II large enough
to wait for the generation of needed twiddle factors by

subsequent pipeline stages (7 cycles are required on the
TI C66 device in order to complete a floating-point
complex multiplication).

This new scheme reduces the loads/stores in exchange
with arithmetic operation increase (Fig. 10). Indeed, the
number of needed cycles for loads/stores becomes N
logy4(N) as twiddle factors are no more loaded, while the
numbers of multiplications and additions/subtractions
are increased to 3Nlogy(N)/4 cycles and Nlogy(N)
cycles, respectively.

Our modulo scheduling heuristic that will be detailed
in the next sections was able to generate the aggressively
optimized schedule of Fig. 11 for the new FFT scheme.
The obtained Initiation Interval (II) is 8 cycles instead of
11, fitting a limited core register set, despite adding extra
arithmetic operations for twiddle factor generation. This
enhances the raw needed time for the FFT by 27 % (ex-
cluding memory stall gains) over the conventional im-
plementation with twiddle factors. Moreover, this
scheme requires 0 % references to twiddle factors and
0 % space for their memory storage as well.

4.2 Proposed FFT implementation methodology

Our implemented methodology allows better core-level
resource balance, exploiting the fact that the twiddle fac-
tors can be calculated recurrently using multipliers dur-
ing the execution. The resulting scheme, regarding a
VLIW architecture, created a vital balance between the
computation capability and the data bandwidth that are
required by the FFT algorithm. Besides, it takes into ac-
count the memory hierarchy, the memory banks, the
cache size, the cache associativity, and its line size, in
order to well adapt the FFT algorithm to a broad range
of embedded VLIW processors. The bit reversal was effi-
ciently designed to take advantage of the cache struc-
ture, and a mixed scheme was proposed for FFT/iFFT
sizes not fitting the cache size.
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4.2.1 A recurrent FFT scheme without memory references of
twiddle factors

The proposed FFT scheme generates twiddle factors
using multipliers instead of loading them from a pre-
computed array. Those are recurrently computed from
previously handled butterflies. Therefore, the processing
of the n-indexed butterfly is time-constrained by the
(n - 1)-indexed butterfly.

Let us denote ¢, the latency time in terms of cycles
that is needed to compute a twiddle factor from a previ-
ously calculated one; consequently, if an iteration pro-
cesses one butterfly, then the II must be greater than or
equal to ¢, waiting the required time to generate twid-
dle factors for the next iteration.

For maximum FFT performance, the initiation interval
must be minimized, expressed for our new FFT as MII =
MAX(RCPB {required cycles per butterfly} for loads/

stores, RCPB for multiplications, RCPB for adds/subs
and j multiplications, £,,).

In order to mask the effect of ¢, on II, we unroll a
number of U successive iterations into a single large
one, reducing dependencies to between groups of
merged iterations. The new MII expression becomes
MII = MAX(U x RCPB for loads/stores, U x RCPB for
multiplications, U x RCPB for adds/subs and j multipli-
cations, t,,).

In the earlier equation, 3U twiddle factors per group
are deduced from 3U previously calculated ones, which
reduces dependencies toward the constant delay £,. The
minimum value of U minimizing MII (having MII > ¢,)
will be denoted U,, next. During each n-indexed group
of U, butterflies, there is a need of 3/, twiddle factors
which are computed from those in the (z - 1)-indexed
group as in (3) (denoting twiddle factors by y,,x). On the
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other hand, treating many butterflies simultaneously per
iteration requires the usage of more VLIW core
registers.

2,2 2U
Yn,k - }/n—l,k WN
Uy,
Yn,k = Yn—l,k WN (3)
3 _,3 3U,,
yn,k - yn—l,k WN

For 0 <k<U,, and 1<n < 2= Denoting y,,, = Wi

The resulting structure of a group of U, butterflies
composing a single larger iteration is shown in Fig. 12.
The minimum II will be then expressed as follows:

MII = MAX(Umn’d/(deN), Ut s (,,Bx),
Un(Wafpa+ /) /Bx )

with (n’g, 1, 1, 1)) are the new needs in terms of
arithmetic and load/store operations expressed as in (4).

n); = 64 By = 16 Nlog,N

n,, =24 By = 6 Nlog,N

n, =28 BNN: 7 Nlog,N (4)
n =By = Zlog4N

Consequently, this new scheme reduces memory ac-
cesses by 27 %, making an implementation advantage on
a broad range of architectures as most FFT algorithms use
memory extensively. In addition to that, it gives an oppor-
tunity to use the non-exploited VLIW units for a possibly
masked generation of twiddle factors. Besides, since it is
not an obvious task to generate an efficient pipelined
schedule (having II = MII) with respect to hardware con-
straints and available core registers, we suggest in later
sections an aggressive FFT-specific scheduling heuristic.

This scheme requires 0 % references to twiddle factors
and 0 % space for their memory storage as well, making
significant gains on related memory latencies.

The key parameters of our scheme are the VLIW core
features (Pa, P Pas Pj» tw). By computing the MII; when
using an FFT scheme with loaded twiddle factors (using
Mgy My Mg, and n;, expressed in Eq. (2)), and MII, when
using an FFT scheme with recurrent computation of
twiddle factors (using n’y, 1, n,, and n’, expressed in
Eq. (4)), then if MII; < MII,, the provided VLIW core
would not be applicable for the proposed scheme; other-
wise, the minimal gain is expressed as 100(MII; — MII,)/
MIL,.

4.2.2 Setup code integration within the pipelined flow

The previous section described low-level instruction map-
ping of the most inner loop of the new FFT scheme. In
order to complete the FFT/iFFT implementation, inter-
mediate setup iterations (representing outer loops) must
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be injected into the pipelined flow of iterations. The
straightforward way is to completely drain the last itera-
tions of the inner loop, executing the setup code (con-
stants reset, pointers updates ...), and then resuming the
pipelined execution; this turns to be time-consuming due
to the time needed for the prolog/epilog parts. Indeed, if
the dynamic length (DL) denotes the number of cycles that
are needed by an inner loop iteration for its processing,
then the whole FFT will at least require BxMIL/Um +
(DL-II)(N/48 - 1/3) cycles (assuming N a power-of-4).
The integer expression (N/48 — 1/3) counts the number of
interrupts that must be done to the inner loop kernel, as-
suming that the last two FFT stages can be especially
treated and done without setup code merging. For N = 4k
on the C66 for example, we can see that the setup code
interruptions represent 7 % of the main processing.

VLIW architectures can support the merging of
setup codes into the pipelined iterations (the case of
C66), making it possible to add a customized iteration
in concurrence with others without draining the
process. Therefore, we can insert an additional II cycle
iteration, setting up changes required by outer loops
to begin the next sequence of inner loop iterations;
needing only ByMII/Um + II(N/48 - 1/3) cycles on the
whole FFT/iFFT routine. This enhances the efficiency,
representing only 2.7 % of the main processing when
N =4k on C66 cores.

4.2.3 Cache-efficient bit reversal computation

The FFT naturally returns an N-sized output with a bit-
reversed order, post re-ordering data is necessary. Bit
reversing an element at a 0-based index k consists of
replacing it into the position index m, such that m is
obtained by reversing log,(N) bits of the binary form of
k. Processors usually implement hardware bit reversal of
a 32-bit integer, hence, the wanted function can be
obtained by left-shifting an index 32-log,(N) times and
bit-reversing the whole word afterwards.

In order to increase computation efficiency, one can
integrate the re-ordering step into the last stage of the
FFT/iFFT, rather than creating a separate routine. One
encountered difficulty in bit reversal is accessing scat-
tered positions of memory, causing many memory stalls.
Indeed, commonly used architectures of L1D cache are
to divide it into several banks, such that simultaneous
accesses to distinct banks are possible, while many con-
current accesses to the same bank induce latencies. In
processors’ architectures that allow multiple data to
be accessed in a cycle, the L1D cache level is divided
into banks that are defined by lower bits of an ad-
dress (AMD’s processors, TI Cé6x DSPs, ...). In the
C66 CorePac architecture for example, there is 8 L1D
banks such that the address range [4b + 32k; 4(b + 1) + 32k
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A\

[(where k and b are integers) is linked with the bank
number b (b € [0,7]).

It turns out that store indexes related to first butter-
flies (0, N/2, N/4, ...) all usually belong to the same
memory bank (as long as N gets high values); conse-
quently, 2 parallel stores in a constructed kernel will
likely target different addresses from the same bank,

inducing stalls. Besides, it is recommended to access
consecutive addresses, to be possibly merged into larger
accesses by subsequent data paths.

The straightforward implementation provides no suc-
cessive stores, neither avoiding bank conflicts. A possible
enhancement could be achieved by trying to bit-reverse
input indexes on the last FFT stage instead of output
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ones. Resulting structure of this FFT/iFFT stage is de-
scribed below (processing four butterflies per iteration):

i=0;

loop N/16 times

br = bit_reverse(i);

load_legs(br, br+ 1, br+2, br+3);

load_legs(N/2 + br, N/2+br+1, N/2+br+2, N/2 +br+3);
load_legs(N/4 + br, N/4 +br+1, N/4 +br+2, N/4 +br + 3);
load_legs(3 N/4 +br, 3 N/4+br+1,3 N/4+br+2,3 N/4+br+3);
process_butterflies();

store_legs(i, i + N/2, i+ N/4, i + 3 N/4);

store_legs(i+ 1, i+N/2+1,i+N/4+1,i+3 N/4+1);
store_legs(i+2,i+N/2+2,i+N/4+2,i+3 N/4+2);
store_legs(i+3, i+N/2+3,i+N/4+3,i+34+3);

i=i+4

end loop

Doing so, we can always issue parallel stores targeting
different memory banks and then avoiding bank con-
flicts (for example, data (i) at a specific bank in parallel
with data (i + 1) at another bank). Furthermore, 4 con-
secutive store accesses are now possible. In this case,
butterflies are processed in an order that provides the
maximum of consecutive stores.

During the FFT, in-place computation on an input
buffer is performed until the last stage, where stored
data are put into the output buffer. Processing 2, 4,
or more butterflies per iteration increases register
pressure; we have applied the same scheduling heur-
istic that will be described later to find a feasible
implementation with advanced constraints on data
accesses. Found schedule has II=MII with all con-
straints verified ensuring consecutive stores and
avoiding bank conflicts. Obtained performance of the
FFT routine with bit reversal was similar to an FFT
without bit reversal.

For FFT sizes that are power-of-2 and not power-of-4,
an additional radix-2 stage is added; that is where the bit
reversal is merged in the same manner.

4.2.4 Adapting the FFT to the cache associativity

When the FFT size is greater than the allocated cache
size, the considered radix-2> scheme may present some
inefficiency toward the L1D cache. The L1D cache is
composed of a number of cache lines (usually of
64 bytes), used to store external data prior to their use
by the CPU. A cache miss occurs when the requested
data is not yet available into the cache; in this case, the
CPU is stalled waiting for a cache line to be updated.
Many cache structures were used in CPU architectures:
direct-mapped cache associates each address of the ex-
ternal memory with a unique position into the cache
(therefore with one cache line); as a result, two addresses
that are separated by a multiple of the cache size could
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not survive into the cache at the same time. An ad-
vanced mechanism is called the set-associative cache,
where the cache memory is divided into a number of p
ways, such that when a cache miss occurs, data is trans-
ferred to the way whose cache line is the least recently
used (LRU); consequently, there are p unique locations
into the cache for every address. The main advantage for
increasing the associativity is to let non-contiguous data
survive into cache lines without overwriting each other
(without cache thrashes).

A radix-2> butterfly loads their legs from the in-
dexes: 0, N/4, N/2, and 3 N/4. All this data should
exist in the cache at the same time. If the L1D cache
is 2-way set-associative and denoting L1D_S the allo-
cated cache size in bytes, no cache thrash would hap-
pen if N is less than or equal to L1D_S/8. Otherwise,
cache lines for indexes (0 and N/2) or (N/4 and 30/
4) will overwrite each other continuously, decreasing
then the cache efficiency. A solution to this consists
of applying radix-2 FFTs for larger sizes, until the size
(L1D_S/8) where radix-2*> can be used without cache
thrashes. Indeed, while radix-2 FFTs only access ele-
ments at indexes like (0 and N/2), no cache thrash
would occur no matter how large N is; as long as the
cache is 2-way set-associative.

A radix-2 FFT without references of twiddle factors
was similarly built and generated using our scheduling
heuristic leading to a schedule of II=MII (merging 4
radix-2 butterflies in a single iteration).

Denoting the cache associativity parameter by
CACHE_A, the pseudo-code of our adapted FFT scheme
regarding cache is written below:

function fft_cache()

begin

step=N;

while (step > L1D_S/8 and CACHE_A < 4) loop
for (k= 0k < N/step)

fft_radix2_stage(input + k*step, step);//radix-2 fft
step = step/2;

end loop

for (k= 0k < N/step)

fft(input + k*step, step);/radix-2? fft
bit_reversal(input, output);

end

A bit reversal routine was designed separately in this case
and cache-optimized; the II(MII) was extended in order to
optimally (fully) treat 4 cache lines in each iteration.

Using a radix-2 FFT for first stages is making a slight
drop on the overall efficiency. In fact, a full-radix-2
scheme requires more time than a full-radix-2* scheme
(on C66 cores, it needs Nlogy(N) cycles at peak per-
formance instead of Nlogy(N)). Even so, its gain is far
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dominant for large FFTs avoiding cache thrashes. For ex-
ample, the 16k-FFT performance on C66 cores using a
full-radix-2* scheme is 367,890 cycles; it decreased to
245,206 cycles (33 % gain) using the scheme-avoiding
cache thrashing.

The inverse FFT is the same as a FFT, except the fact
that it uses conjugated twiddle factors and (1/N) extra
multiplications added to the last stage. These modifica-
tions can be performed without decreasing performance,
by exploiting the ILP feature of VLIW processors.

4.2.5 FFT scheme accuracy

A possible side effect of the proposed implementa-
tion is a slightly reduced precision. Indeed, internally
computed twiddle factors in a recurrent fashion are
less accurate than those loaded pre-computed using
trigonometric functions. We introduce in Fig. 13 a
tradeoff parameter (tradeoff factor) between accuracy
and speed. The tradeoff scheme injects more pre-
computed twiddle factors within the FFT flow instead
of using only one, which reduces error accumulation
effects. However, since the pipeline is regularly
stopped to process more pre-computed twiddle fac-
tors, the speed performance slightly drops.
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The key idea of the algorithm in Fig. 13 is to use
more than one pre-computed twiddle factor per FFT
stage in order to limit the error propagation. Indeed,
if the tradeoff factor is 0 then only 1 twiddle factor
will be used to feed the whole FFT process. Other-
wise, 2/(tradeoff factor)/2 pre-computed twiddle fac-
tors will be used per each FFT stage. We will denote
next the tradeoff_factor by T.

The calculation error of twiddle factors using the
repeated multiplication algorithm grows as O(N) as
shown in [39]. Therefore, using our tradeoff method,
the twiddle factors accuracy would be expressed as
follows:

~ 3 2 N
‘wﬁ,—wﬁ, 3(4\/?_4-\/7—) (W)M,k <N
m

where @V* is the approximated twiddle factor value and u
is the unit roundoff. For IEEE-754 single-precision floating
point, the unit roundoff is equal to z = 5.96 x 10~ %,

For increasing values of 7, the method’s accuracy in-
creases, but also the FFT time increases according to the
following formula:

begin
if (tradeoff _factor==0)
begin
fft(input, output, N, w[1]);
return;
end
ss=N/ (2™(tradeoff factor-1));
step=N; j_s=1;
while (step>4) loop
ss_cnt=step/ss;
for (k=0;k<N/step)
begin
s
if (ss_cnt>1)
begin
for (s=0;s<ss_cnt)

else

step=16;
end
end
step=step/4; j_s=j;
end loop

end

function fft tradeoff (tradeoff factor)

fft radix2p2_stage(input+tk*step+s*ss, ss, w[j++]);

fft no last_stage(input+k*step, step, w[j:loga(step)]);

last_fft stage(input, output, step);

Fig. 13 Pseudo-code for an FFT scheme with an accuracy-tradeoff parameter
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ByMIT
Uy

N 1 r1
11 <48 - 3) + 2" (DL-II)log,(N)

Where DL denotes the dynamic length of an inner
loop iteration. The 7" parameter creates then a tradeoff
factor between accuracy and speed.

5 Instruction scheduling heuristic for FFT/iFFT
implementations on VLIW

5.1 Introduction

According to the proposed FFT scheme, a group of U,
butterflies must be processed during a single iteration.
Furthermore, extra operations are added to compute the
needed twiddle factors in the masked time; these make
an iteration with largely increased operations to be
scheduled during II = MII within a limited core register
set. The data dependence graph of this inner loop FFT
iteration is shown in Fig. 14; each node of the graph
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(among 30U, nodes) can be executed in 1 functional
unit of the VLIW core.

In a TI C66 device for instance, and as we aspire
the schedule to be done for II=MII=8, the kernel
can be able then to execute up to 64 nodes (due to
the 8-way VLIW architecture). It leads to a functional
unit pressure of 60 per 64 possible slots (94 % of unit
pressure); this shows the difficulty class of the actual
scheduling problem, in the presence of a limited
register set.

The new FFT scheme merges U,, totally independent
butterflies in a single iteration, making it possible to
symmetrically divide the computation on processors
with symmetric core-bank structure (ADI TigerShark, TI
C66 [Fig. 7], ...). This will have the effect to reduce the
problem size by half (on U,,/2 butterflies), and avoid
core-bank communication which is therefore usually
limited with many other constraints.

mo0/1/2/3 (‘) : load butterfly legs
a0/1/2/3 () : add/sub operations
v0/1/2/3 (‘) : add/sub operations -
. LI . I 'l 7 =
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Fig. 14 Iteration DAG of the new FFT scheme (case of Uy, =2)
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Each node of the graph is associated with a specific as-
sembly instruction, requiring input/output operands
with precise sizes, and a list of possible functional units
for execution (an example of some TI C66 instructions
in Table 1).

At the core-register level, the FFT algorithm will
need to allocate a number of registers exclusively to
store data pointers, constants, counters, and twiddle
factors. First, 1 register is needed to store a counter
on the iteration loop; 4 registers per butterfly to con-
tain pointers on input and output butterfly legs; 1
register for the FFT stride; 3 registers per butterfly
for jump offsets; 1 register for a pointer on the final
output buffer; 1 register as a stack pointer (where
some core-registers are spilled). Besides, 3 register
pairs are exclusively needed for (Wy", Wi, Wi'm),
and 3Um twiddle factors per butterfly must be allo-
cated as well. Left registers must be used for operand
allocation of the entire FFT/iFFT DAG. Our schedul-
ing algorithm must take into account this limiting
register constraint.

One of the most efficient scheduling heuristic is SMS as
evaluated in [32, 35, 36]. Applying SMS on our FFT prob-
lem in the TI C66 core, it produced a schedule of II = MII
with a minimum register usage of 20 per core side (40
needed registers), which is greater than the available regis-
ters for the DAG allocation, meaning that this is not an
implementable schedule. Our scheduling technique aims
to find a valid schedule with II=MII and a minimum
register requirement in a reasonable time.

5.2 A proposed modulo scheduling algorithm

The new scheduling algorithm starts with ordering
the graph nodes for a one core side into a 1-
dimensional array, such that if a node is j-indexed
into this array, all of its predecessors must be indexed
less than j. This is the case as the scheduling algo-
rithm that will be presented next uses this generated
array-order to schedule/un-schedule graph nodes in a
backtracking fashion and computes the best starting
time of each node (regarding register lifetime) based

Table 1 Instructions’ features of some Tl C66 operations

Instruction  Operand size (op1, op2, dst) Delay slot  Possible execution

[in number of core registers] latency (DS) units
DADDSP (2,2, 2) 2 LS
DSUBSP (2,22 2 LS
CMPYSP  (2,2,4) 3 M
STDW (2,0, 1) 0 D
LDDW (1,0,2 4 D
ADD (1,1, 0 LS D
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on all of its already scheduled predecessors. The
scheduling order is critical and our algorithm uses a
special ordering of graph nodes, which will be pre-
sented later.

For each node on the ordered list, we define two pa-
rameters that are node possible start time (NPST) and
node end time (NET), which describe the freedom or
possible slots in the actual schedule; they are defined ac-
cording to (5). We define as well the node start time
(NST) as the effective start time, varying between NPST
and NET, and pred; being the ith predecessor of a node.
Special freedom ranges were attributed for root nodes
not having any predecessor and those with inter-iteration
dependences.

NPST(node) = max;(NST(pred;) + DS(pred;) + 1)
NET(node) = II-1 + min;(NST(pred;) + DS(pred,) + 1)

(5)

Based on slot freedom of each node on the formed
ordered list, we schedule them in a 2-dimensional
kernel starting from their NPST. When it is not feas-
ible to schedule an operation due to a unit or write
conflict, other possible units are tried or another
cycle in [NPST +1; NET] is used in a backtracking
mode. The algorithm is lifetime-sensitive, integrating
an accumulative measure of how much time the
returned operands remain in core registers before be-
ing used. This criterion at a graph node is defined as
the total lifetimes since results are being returned by
all its predecessors before being consumed by this
node; it is expressed in (6) (NRS [“node result size”]
is the size in terms of core-registers for a node’s re-
sults). Notice that this provided lifetime is weighted by the
amount of registers that are presented and pended for use.
The scheduling algorithm should minimize the overall ac-
cumulative lifetime which takes into consideration every
node of the graph; in this case, register usage is in general
also minimized.

lifetime(node)
= ZNRS(predi) (NST(node)—NST(predi)

—DS(predi))
(6)

The total length of the accumulative lifetime divided by
II gives a lower bound on register pressure, denoted AvgL-
ive. Despite the fact that a minimized AvgLive gives smaller
register usage, it does not necessarily provide the lowest.
For example, a found schedule with a total lifetime of 110
requires a minimum of 17 registers, while another schedule
with a lifetime of 118 required only a minimum of 16
registers. A better register lower bound is computed
considering overlapped lifetimes over II cycles, getting
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an array (called LiveVector) of II elements as de-
scribed in [33]. The maximum among the LiveVector
values was named the MaxLive, which is a precise
lower bound measure of the number of needed regis-
ters. It was shown in [33] that a schedule requires at
most MaxLive + 1 registers.

Our algorithm merges the calculation of the MaxLive
in the search process, informing of register pressure at
any partial schedule. This serves us to efficiently cut off
useless branches in the state space, reducing significantly
the scheduling time. The pseudo-code of our scheduling
algorithm is given in Fig. 15.

As the state space cannot be scanned entirely due to
its NP-Complete nature despite MaxLive cut-offs, we
propose to make smaller successive searches with differ-
ent starting points on the search space. This is having
the advantage to make finding a better schedule faster.
Indeed, if we are not able to find a better solution within
a specified amount of backtracking tries (100M nodes as
an example), then it is more likely because first placed
operations constrain the efficiency and therefore must
be changed. The algorithm starts then with an initial
ordering in the scheduling array, subsequently, if the
backtracking amount limit is reached, the scheduling
array is re-ordered according to specific rules and the
search process starts again using a new initial state; this
sequence is repeated until a solution fitting available
registers is found.

The re-ordering part tries to guarantee different initial
schedules and a fast convergence rate. The main used
criteria while sorting is that when an operation v is un-
scheduled, next operations to be rescheduled must be
those who maximize their effect on this operation v. In
order to illustrate this criteria; let’s take an example
and assume that the scheduling array is arranged as
follows: {mwl, mw2, mw3, m0, ml, m2, m3, a0, al,
a2, a3, a3il, a3i2, v0, vl, v2, v3, {1, f2, {3, sf0, sfl, sf2,
sf3, wl, w2, w3}.

Next, we assume that operations until “sf3” were
placed successfully into the kernel and found a valid slot.
If the operation “w1” cannot be placed into the schedule
(either because it presents higher MaxLive pressure, or
no free place could be found within its slots freedom
range), then the algorithm will reschedule the previous
operation in the scheduling array which is “sf3” and
checking if this enhanced scheduling opportunities for
“wl”. It will not have an effect, because “sf3” is not
sharing the same resource unit as “wl” nor among its
direct predecessors. Hence, rescheduling “sf3”, “sf2”,
“sf1”, or “sf0” merely leads to useless states; only
“mwl” (its direct predecessor) or operations using the
same unit resource could have a chance to make a
valid placement for “w1”. In order to avoid scanning
useless states first, a better order should have been
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done (making “mwl” close to “wl” in the scheduling
array for example).

Accordingly, re-ordering the scheduling array will take
those considerations:

If an operation is j-indexed into this array, all its
predecessors must be indexed less than j {1}

Each operation must be close as possible to its
direct predecessors {2}

Each operation must be close as possible to
operations using the same unit resource {3}

Operations with larger input/output sizes are more
critical to re-ordering considerations {4}

We next define for each graph node on the ordered
list, a measure on its rescheduling easiness, denoted RF.
It expresses how much a graph node meets the previ-
ously mentioned criteria regarding its indexing order
into the scheduling array. Equation (7) defines the con-
sidered RF for a graph node operation op:

1 op.pn
RF(op) = <2op.id—w Zop.pred[i].id (7)
1 %o =t

- . j].id Jop.b
op.cn ;op concli] i )op $

The “id” field in (7) represents the ordering position of a
node within the array. The pn and cn fields denotes re-
spectively the number of predecessors of op and the num-
ber of concurrent operations using the same unit resource
as op and which are indexed less than its index. The for-
mula is scaled by the number of registers (buffers size “.bs”)
that are required by op.

The sum of all RF for every operation in the array reflects
the ordering penalty (referred next by OrdP). A better
ordering should have a minimized sum. The re-ordering
routine generates a number of ordering possibilities; the
one having the minimal penalty is picked and used next.
This routine is as follows (assuming the array is presented
with condition {1} verified):

function change_order(Sch_Array)

begin

loop

choose op: an operation from the Sch_Array;
min_i =index(op);

max_i = min(index(successors(op)));

//if no successor, set max_i to upper bound
choose a position s in the range [min_i, max_i-1];
move in array operation from position min_i to s;
compute the OrdP;

compare it to the best penalty found so far;

end loop

return the order having the lowest OrdP;

end
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/* the search function definition */

LiveVector={0};

void search(int op_index) {
if (cut_count==0) retumn;
else cut_count--;
MaxLive=max(LiveVector);

best_registers_pressure=MaxLive;
report solution;
return;

op=sch_amray[op_index];

x=imod II;

}

registers_pressure_goal=12; // setting the stop condition
best_registers_pressure=+oo; // best registersusage found so far
while (best_registers_pressure>registers_pressure_goal) {
inits(); // re-assign startup conditions on the kernel
change_order(sch_amay); // re-order the scheduling array
search(0); // start the search process, placing the 0-indexed operation

cut_count=100M: // stop searching if 100M nodes are discovered

if (MaxLive >=best_registers_pressure) return; // if worst then a previously found solution, cut-off
if (op_index >=op_number) { // all operations were placed, a valid schedule is found

updateNPSTandNET(op); // update NPST and NET values for each node
for (i € [op.NPST, op.NET] ) { // through possible scheduling slots

for (v € op.possible_units) { // through possible units
if (fit_constraints(op,x.v)) { // check if resource/write constrainsts are valid
kemel[x][v]=op: // schedule an operation
updateLiveVector(op): // modify the LiveVector
search(op_index+1); // try to schedule the next operation (recursive call)
kemel[x][y]=NULL; // un-schedule this operation
resetLiveVector(op); // modify-back the LiveVector

Fig. 15 Pseudo-code of our scheduling algorithm
A\

The presented heuristic in this section was tested on a
TI C66 VLIW core and generated an efficient schedule
with II=MII and MaxLive =12 during few minutes.
Figure 16 shows the ordering penalty effect on the con-
vergence speed. The resulting kernel form for the FFT/
iFFT on C66 is shown in Fig. 11.

Our proposed scheduling algorithm aggressively mini-
mized register usage, enhancing the MaxLive by a factor
of 1.7 in the TI C66 core, toward the SMS scheduling
method (which returned a MaxLive of 20), making an
FFT completely without memory references of twiddle
factors implementable.

The key parameters of our scheduling method are
mainly the computed MII and U,, in Section 4.2.1, the
number of symmetric clusters (denoted SymC) in the
VLIW core (The method would schedule U,,/SymC

butterflies per cluster, reducing the algorithmic problem
size by a factor of SymC). The scheduling is also
dependent on the VLIW instruction’s delay slots, oper-
and sizes, and their possible execution units and on the
number of available core registers per cluster.

6 Implementation and experimental results

Subsequent implementation strategy for the FFT/iFFT
was implemented in the high-end TMS320 C6678 VLIW
DSP and in the 66AK2H12 DSP, using the Standard C66
Assembly. Data samples were single-precision complex
floating point, with imaginary parts in odd indexes and
real parts in even ones. During benchmarks, L1D/L1P
was fully used as cache. Input/output buffers are stored
into the memory L2 (512 Kbytes in C6678, 1 Mbytes in
66AK2H12). Moreover, the program code is mapped to
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the local memory L2. Experimented FFT sizes are in the
range [256, 64k], which correspond to most signal pro-
cessing applications. The comparison is made with the
most vendor-tuned linear assembly-optimized FFT of TI
(found in the DSPLib version 3.1.1.1), with the TT com-
piler’s optimizations all active (-03, version 7.3.2).

A common efficiency measure for the FFT algorithm
will be used, which is the number of cycles per pseudo-
radix-2 butterfly (that we will denote as CPPR2B), de-
fined by the FFT cycle count divided by Nlog,(N)/2. A
perfect FFT implementation on the CorePac C66 would
have a CPPR2B of 1; otherwise, it will be greater than 1.
Performance comparison between our new FFT/iFFT
(bit reversal included) and the optimized TI routines is
presented in Fig. 17 and Table 2 (results are for 1 core
of C6678, running at the frequency of 1 GHz).

Our presented FFT implementation shows great im-
provements over T1I; the peak performance was reached
for N =4k, as the limited cache associativity made our
special optimization to take place for N = 8k and larger,
inducing relatively less efficiency for integrating radix-2
stages. Small FFTs usually suffer from non-negligible
overhead toward main processing. We are then able to
reach an average gain of 50.56 % (2 times acceleration)
over TI's routines, with a maximum performance of
1.119 CPPR2B (89.36 % of absolute efficiency). This ob-
tained gain is explained by the proved 27 % gain in
Section 4, the suppressed latencies of twiddle factors
and by the other described optimizations.

Besides the speed performance, our FFT saves 50 % of
input buffers toward conventional (TI) FFT routines
(Table 3). Indeed, our scheme does not require twiddle
factors to be stored nor to be referenced from external
memory.

The bit reversal computation did not affect the per-
formance for FFT sizes less than 8k (0 % increase due to
our cache-efficient bit reversal optimization), while it in-
creased the cycles count by an average of 18.4 % starting
from 8k sizes; the loss represents the price of the time
needed to process bit reversal separately for large FFTs.
Besides, the proposed FFT/iFFT adaptation to the cache
associativity is having at least a gain of 69 % in terms of
efficiency. The inverse FFT was optimally reformed
such that its performance overlapped with the FFT
routine, despite the fact it included extra arithmetic
operations.

Figure 18 shows the relative RMS error comparison
between the new FFT and TI’s one. The proposed FFT
using 1 twiddle factor (tradeoff factor of 0) achieves for
instance an RMS error of about 1E-05 (FFT size of 4k),
against 5E-07 for TIs. Our FFT variant with a tradeoff
factor of 1 (using log(N) pre-computed twiddle factors)
achieved about a 10 times enhancement in terms of
precision, preserving exactly the same presented speed
performance. For most signal processing applications,
this FFT accuracy is enough, and we can see for instance
that the signal on FFT-noise ratio (SNR) we achieve in
Fig. 18 for a 4k-FFT is about 107 dB, compared to
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127 dB for the TI FFT and to 138 dB for the maximum
achievable SNR of an IEEE-754 single-precision floating
point. Worth to note that a 16-bit ADC converter has
an SQNR of about 84 dB [40] (which is even less than
the SNR due to FFT’s computation accuracy); the SQNR
is usually raised by coherent signal processing gains (e.g.,
a 4k-FFT processing can increase the SQNR by 33 dB or
by 10 log;o(N/2) dB).

On the other hand, our scheduling heuristic generates
the kernel codes of the FFT/iFFT and aggressively opti-
mizes the number of cycles and registers’ usage. It is able
to compute the best schedule respecting tight pressure
constraints with a fast convergence rate, overcoming
results given by SMS by a factor of 1.7 (40 % gain) on

Table 2 Performance comparison between the new FFT/iFFT

and Tls

Implementation  FFT size  CPPR2B  Cycles  Relative gain over Tl (%)
New FFT Tk 1.206 6175 3762
TIFFT Tk 1933 9899 -
New FFT 4k 1.119 27502 46.65
TIFFT 4k 2.097 51547 -
New FFT 8k 1.896 100979 5363
TIHFFT 8k 4.090 217782 -
New iFFT Tk 1211 6198 47.89
THFFT Tk 2.323 11894 -
New iFFT 4k 1.130 27779 5350
THIFFT 4k 2431 59745 -
New iFFT 8k 1.896 100977 5659
THIFFT 8k 4368 232613 -

the found MaxLive. The best generated schedule of
instructions with a MaxLive = 12 was computed within
2- to 15-min range.

Furthermore, a 4k-sample floating-point FFT was per-
formed in-chip during 2.6 ps within a 10-W power con-
sumption in a TI 66AK2H12 DSP device, making a
remarkable FFT implementation efficiency of 9.5 GFLOPS/
watt. This makes it possible for use in several compute-
intensive applications, such as radar processing [41]. Our
work has been used within the official FFT library of Texas
Instruments [42].

In contrast to previous works, on-the-fly generation of
twiddle factors as in [43—45] used the CORDIC algorithm
or related generation designs to compute the needed twid-
dle factors instead of performing ROM accesses. These
techniques target hardware FFT designs in FPGAs or
ASICs and are not applicable for CPU or DSP platforms.
Indeed, the idea of generating twiddle factors using multi-
pliers (or equivalent operations) in software for CPU/DSP
is usually avoided, as it requires in most cases more
latency than FFT schemes with pre-computed twiddle

Table 3 Twiddle factor (TF) storage/reference comparison

Implementation FFT size Number of Number of memory
stored TF references due to TF

New FFT 512 1 1

TIFFT 512 512 511

FFT of [21] in C64x 512 254 127

New FFT Tk 1 1

TIFFT Tk 1024 1023

FFT of [21] in C64x Tk 510 255
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factors. To the best of our knowledge, no published work
proposed a software-efficient solution to do an FFT with
in-generation of twiddle factors. The idea becomes pos-
sible with recent high-end VLIW processors, where we
have to issue parallel instructions computing the twiddle
factors in the masked time; however, it requires proper
scheduling and low-level control on the execution pattern
to be done successfully.

7 Conclusions

In the present paper, a new radix-2>-based FFT/iFFT
scheme is proposed to fit VLIW processors. This structure
made a balance between the VLIW computation capabil-
ities and the data bandwidth pressure, optimally exploiting
parallelism opportunities and reducing memory references
to twiddle factors, leading to an average gain of 51 % on
efficiency toward the most assembly-optimized and
vendor-tuned FFT on a high-end VLIW DSP. Our imple-
mentation methodology took into account the VLIW
hardware resources and the cache structure, adapting the
FFT algorithm to a broad range of embedded VLIW pro-
cessors. On the other hand, a resource-constrained and
register-sensitive modulo scheduling heuristic was de-
signed to find the best low-level schedule to our FFT
scheme, minimizing clock cycles and register usage using
controlled backtracking, generating efficient assembly-
optimized FFT with balanced resource usage.
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