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Abstract

Indoor localization in wireless sensor networks (WSN) is a challenging process. This paper proposes a new approach
to solve the localization problematic. A fuzzy linguistic localization scheme is proposed. Based on interval type 2
fuzzy logic (IT2FL), a signal processing of the radio signal strength indicator (RSSI) minimizes the uncertainty in RSSI
measurements from anchors caused by the indoor obstacles. The fuzzy system subdivides the map on fuzzy sets
described by a new fuzzy location indicator (FLI). Fluctuations on RSS fingerprints are then reduced thanks to the
IT2FL in the input side and the FLI in the output side. Experimentations were done in the Cynapsys indoor environment
on a WSN test bed. The experimental results prove higher success rate in position estimations thanks to the FLI concept
and the superiority of interval type 2 fuzzy logic to handle signal fluctuations.
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1 Introduction
Do we really need x, y, and z coordination for indoor
localization? When we are subjected to human localization
process, we refer generally to linguistic localization (near to
the desk, next to the window in front of the TV…). Thus, a
fuzzification of this problematic will change our angle of
view and enlarge our perception of localization
methods from Euclidean geometrical equations and
signal propagation models to more opened intelligent
and pervasive computing.
The availability and diversity of wireless communication

(wireless area networks (WAN), wireless sensor networks
(WSN)…) give researchers a huge amount of creative
areas. Those available transmitted data and indicators may
be exploited in applications to facilitate human being life.
Smart buildings, smart homes, and ubiquitous cities are
the trends of leading projects in pioneer companies.
Hence, the progress in WSN deployment for “smart” pur-
poses, besides the implication of those huge technological
companies in this field, give a big motivation to innovate
in various communication techniques. Mobility and
localization are indeed two constraining factors relative to
WSN design problematic. Many emerging context-aware
applications are stand on location-based services (LBS).

Since that, geo-localization in WSN has been the subject
of many researches. For outdoor as well as indoor
environment, the use of computational intelligence in
localization techniques is not a new invented method-
ology. However, the specific nature of the indoor environ-
ment (shadowing, reflection, path loss…) originates depth
investigation using different optimization techniques.
Type 1 fuzzy logic (T1FL) is one of those techniques for
geometrical localization and as a clustering-based method-
ology. Nevertheless, there has not been any attempt to
investigate the usage of interval type 2 fuzzy logic (IT2FL)
in indoor geo-localization. But, it was proved that the use
of IT2FL in complex real-word applications presenting a
high level of uncertainty in measurements performs better
[1–3]. In control theory, some industrial application
results were presented in [4], and the type 2 fuzzy logic
controller (FLC) was applied to three domains: industrial
control, mobile robot control, and ambient intelligent
environment control. The author proved that type 2 FLC
for each application provides smooth responses outper-
forming always the type 1 counterparts. This is due to the
powerful paradigm of type 2 FLC to handle the high level
of uncertainties present in real-world environments.
In [5], a data-driven IT2 fuzzy logic modeling framework

is presented and very good computational efficiency was
demonstrated through real industrial case study posing par-
ticular challenges in terms of data uncertainty comparing
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to type 1 fuzzy logic. The superiority of IT2FL to type 1 in
handling measurement uncertainties in real-world applica-
tions was also proved in [6] and [7].
Since the localization problematic that we discuss here

is based on radio signal strength indicator which is
submitted to a high level of fluctuations and uncertainty
in indoor environments and Interval Type 2 Fuzzy
Localization System (IT2FLS) was proved to give better
results dealing with data uncertainty, the use of IT2FLS
may give similar results on the radio frequency (RF)-
based localization.
In this paper, a new approach on fuzzy geo-localization

is proposed. Based on a linguistic concept, the expert
builds an adaptive fuzzy model to the target environment.
In a first learning stage, he defines the distribution of
anchor nodes in a manner to cover all target space. Then,
he ranges the radio signal strength indicator (RSSI) using
linguistic fuzzy descriptors {low, medium, or high}. Be-
cause of the instability in the indoor RSSI measurements,
an IT2FL processing is programmed. On the other hand,
the expert clustered the target map on fuzzy sets using a
new fuzzy location indicator (FLI). Thus, for each FLI, the
expert takes the RSS fingerprints and proceeds to rule
base building. Through semantic relations, the geomet-
rical map dispositions are fuzzified to an “if-then” linguis-
tic description. In the online stage, signals are submitted
to IT2 fuzzification and then aggregated using the infer-
ence engine of the fuzzy localization system (FLS). The
FLI is defuzzified to a crisp value describing the location
zone in the map. Experiments in the Cynapsys indoor en-
vironment have proved the effectiveness of this approach.
This paper is organized as follows. Section 2 will present

the background of localization algorithm based on fuzzy
logic. Section 3 will detail the proposed approach
concepts. In Section 4, the experimentation process and
the results are discussed. Finally, the paper is summarized
by a conclusion and perspectives.

2 Background
Two main technological choices are basic for the design
of localization systems: the localization technology and
the positioning technique. Firstly, location-based systems
are generally RF-based technologies. Thanks to the
speedy progress of nanotechnology [8] (the ease to reach
receivers and sensors) that heavily involves short-range
communications notably WiFi, Bluetooth, and ZigBee,
localization applications become available and some are
based on hybrid systems, from robotic guiding [9] to
location-based services. In their survey [10], Liu et al.
present existent indoor applications in the market and
their different performance criteria. They concluded that
fingerprinting schemes are better on indoor open areas.
Secondly, the localization techniques can be classified

in three categories. The first one consists of

deterministic techniques, classified as geometrical
methods. They are range-based and estimate the target
coordination through multi-lateration, triangulation, an-
gulation, angle of arrival (AoA), and time of arrival (TOA)
needing most of the time specific hardware. In their work,
Yan et al. [11] presented a fuzzy-based geometrical prob-
abilistic method to deal with non-light-of-sight (NLOS)
conditions. Although it presents good results, their algo-
rithm needs complex calculations and depends on the
known and precision of anchor coordination.
On the other side, a big number of research works

consider the probabilistic approaches [10] like Bayesian
algorithms [12] and a third localization process is based
on machine learning approaches [13–15], using SVM
[16] and neural network-based algorithms [17]. In this
category, K-nearest neighbor (KNN) classification was
deeply investigated in fingerprinting algorithms [14, 18, 19].
It shows promoting results in terms of offering adequate
estimation accuracy; however, a big number of anchors are
required to reach this accuracy.
Fuzzy logic was exploited in two manners: geometric

fuzzification concept [20] and rule-based fuzzification
concept. Wang et al. [20] demonstrate that the fuzzy
geometric approach outperforms the traditional least
squares approach. However, this approach is costly while
it requires velocity and azimuth angle measurements.
Besides, the system is only adaptable to linear trajectories
and not for the various kinds of fuzzy observer trajector-
ies. Fan et al. [21] suggest the use of fuzzy logic in a
recursive least squares filter. Although it proposes a
different methodology to process noise unlike statistical
models, it uses the classical coordinate-based localization
technique in a way raising the filtering processes leading
to the increase of computational complexity.
Garcia-Valverde et al. in [22] and [23] have worked on a

mobile application based on fuzzy logic. They build an
adaptive rule-based model to the system. Through a T1
fuzzification in RSS classification, the used technique is
able to automatically learn offline and online to adapt in
order to deal with the environmental changes. It reaches
82.22 % of success accuracy. But to handle RSS fluctua-
tions, they used two alternatives: a heuristic preprocessing
algorithm and a responsive universal based on trim-like
operation to remove peaks and drops and on a modified
standard deviation-based technique applied to the last
received RSSI values for every access point. On the other
side, paper [24] investigates the RSS-based range-free
fuzzy ring method. This approach proves good perform-
ance face to radio propagation irregularity. However, it is
computational intensive and difficult in experimental
deployments while it depends on the propagation model
parameter estimation.
In [25], the author uses T1FL for RSS clustering and

the FLS creates linear equations to estimate the location
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zone. This system provides 95 % accuracy in positioning,
whereas it has big granularity in localization (zones and
not rooms) which are relatively away from each other
and without providing results in case of adjacent rooms.
Furthermore, IT2FL was not used for localization. It is

used generally in WSN for clustering sensed data. Al-
though Liang and Wang in [26] presented a method-
ology to simulate uncertainty on RSSi and to cluster
measurements, it was not exploited on localization. In
literature, no real experiments on indoor mobile applica-
tion based on type 2 fuzzy logic were found and this is
the main contribution of this paper.
Our anchor-based proposed approach provides high

granularity in location definition. It uses no preprocessing
algorithm but the IT2 in the fuzzification phase which will
handle RSS fluctuations. The following section will give all
details of the proposed approach.

3 Proposed approach
Generally, when working on geo-localization, geometric
positioning is used to calculate the coordinates of mobile
nodes. Little work referred to “linguistic” geo-localization.
In our proposed linguistic approach, calculation of the
mobile’s node position is based on hierarchical fuzzy
clustering process. As presented in Fig. 1, in the first
learning phase, the target space is subdivided in zones
characterized by a FLI. The FLI is incremented in order to
respect continuity in the geometric space and translation

between rooms. This continuity in FLI will guarantee the
continuity in fuzzy space where each room is considered
as a fuzzy set (FS). Thus, each room is described by a
fuzzy vector of FLIn.
In each FLI, RSS measurements are collected from an-

chor nodes in the data base (DB). Those measurements
are processed using interval type 2 fuzzy logic algorithm
to minimize instability of this indicator through its
footprint of uncertainty (FOU) property. Based on the
created DB, the expert extracts the linguistic rules to
form the rule base of the fuzzy process.
On the online phase, RSSi measurements are first

fuzzified using IT2 process as described in Fig. 2 and
transmitted to the inference engine which will proceed
to implication and aggregation methods referring to the
rule base. The aggregated type 2 output will be then
type-reduced to a fuzzy type 1 FLI. Finally, the defuzzifi-
cation module will conclude the location estimation
process by calculating the crisp corresponding FLI.

3.1 Fuzzy interval type 2 input processing
An intelligent localization algorithm is proposed based on
“interval type 2 fuzzy logic” for input processing. Type 2
FLS is generally used when the circumstances are too
unknown to determine exact membership grade like when
the training data is affected by noise. In a big number of
control and clustering applications, higher accuracy has
been proved using the IT2 fuzzy logic [27]. Satvir et al.

Fig. 1 General fuzzy localization approach diagram
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[27] proved the viability of interval type 2 over type 1 FLSs
through implemented systems in real environment. IT2
handled the presented noise by its uncertainty modeling
property.
In their work [28], Aladi et al. demonstrated the

relationship between the FOU size and the amount of
uncertainty and noise in a given environmental setting.
Thus, considering the target space as fuzzy sets will
incorporate fluctuations in RSS measurements. An RSS
vector in a zone will not be as specific as it was saved in
the learning phase. The fuzzification process will limit
this specificity and takes into consideration the instabil-
ity of signal propagation in the indoor environment.
Two approaches exist to design an IT2FLS: the first

approach is partially dependent and based on a type 1
FLS design and then a translation to the IT2FLS. Thus,
a faster comparative study between T1 and the IT2
could be easily done. The second approach relies on a
direct design of predefined IT2FLS parameters and thus
avoids the effect of translation from T1 which may not
give the best results.
As in this work, we intend to compare the results of

the T1 and IT2 in localization error, and to prove the
superiority of IT2 upon T1, the first approach is used.
Thus, we will preserve the basic structure (the number
of membership functions and the rule base).
Zadeh defines “Fuzzy Logic is determined as a set of

mathematical principles for knowledge representation

based on degrees of membership rather than on crisp
membership of classical binary logic.” RSS is T1 FS
representing RSSi(t) in the fuzzy domain. Based on the
Zadeh theory, it can be defined as

RSS ¼
Z
DRSS

μRSS xð Þ=x ð1Þ

where DRSS is the universe of discourse: DRSS = [−100,−70];
μRSS is the membership function (MF): μRSS :DRSS→ [0, 1];
and “∫”denotes the collection of all points x ∈ DRSS with
associated membership grade μRSS (x)

Consider an IT2FS gRSS described based on the
definition in [29]:

gRSS ¼
Z
x∈DfRSS

Z
u∈Jx⊆ 0;1½ �

μfRSS x;uð Þ= x; uð Þ

¼
Z
x∈DfRSS

Z
u∈Jx⊆ 0;1½ �

1=u

" #
=x ð2Þ

where x is the primary variable in DfRSS = [−100,−70];
u ∈ [0, 1] the secondary variable in the domain Jx ⊆ [0,1] at
each x ∈DfRSS ; and the amplitude of μfRSS x;uð Þ is the

secondary grade of gRSS , equals 1 for ∀ x ∈DfRSS and ∀
u ∈ Jx ⊆ [0, 1].gRSS is described by its FOU, shown in the right part
of Fig. 3 using the upper and the lower membership
functions μRSS and μRSS [29] as

Type-reducer

RSSA1

FLI
RSSA2

RSSAn

Rule-Base

Inference Engine

Fig. 2 Interval type 2 fuzzy process

Fig. 3 Type 1 (left) and interval type 2 (right) RSS fuzzy sets (dBm)
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FOU gRSS� �
¼ ∪∀ x∈Jx μRSS ; μRSS

� �
ð3Þ

The FOU is not uniform in the FS’s region. With an
assumption that the noise/uncertainty is uniform, a FOU
construction method gave rise to an equal amount of
uncertainty in the memberships.
In order to ensure a uniform FOU, based on the work

of Aladi et al. [28] considering the FOU size, it is
expressed using the parameter c ∈ [0,1]. For c = 0, MFs
are of type 1 FS, and for c = 1, they are an IT2 set with a
very wide FOU. Thus, the upper and lower MFs are
expressed as follows:

μRSS ¼ min μRSS xð Þ þ c
2
; 1

h i
ð4Þ

μRSS ¼ min max μRSS xð Þ− c
2
; 0

h i
; 1−c

h i
ð5Þ

Gaussian membership functions are considered in
both T1 and IT2FLS.

3.2 Output processing: the FLI
Through a linearization process of the 2D plan, the
tagged environment “E” will be hierarchized in N fuzzy
sets, Z fuzzy subsets (FLI).

To be localized, a mobile node sends a message to the
nearest anchor in its coverage. The anchor stands by and
replies by a beacon message to the sender. This message
indicates the RSSI measurement and will be classified in a
FLI classified in the set {Room_A, Room_B,…,Room_N}
(Fig. 4).
Thus, the fuzzy set “Room_A” is defined by

Room_A = {FLI1, FLI2,…, FLIn}. Hence, Room_B will
be Room_B = {FLIn + 1, FLIn + 2,…, FLIn +m} and so
on for each room (Fig. 5). Those FSs are represented
by type 1 triangular membership functions (Fig. 6).
The FLI specification will be equivalent to the FSs of

Rssi vector in each room.
The variation in each FLI will specify the interval of

each membership function. For FLI = 1, an interval of
the lowest measured Rssi for FLI = 1 and the higher
measured one for the same FLI will be determined.
A subset RoomA of the set FLI is induced by its

membership function μRoom_A mapping the indicators of
the FLI with the elements of the unity interval [0, 1],
μRoom_A: FLI→ [0, 1] (Fig. 6).

3.3 FLS
Considering the correlation between input fuzzy RSS
sets and the output FLI, a Mamdani model is used, with
the following characteristics:

Fig. 4 Fuzzy location indicator (FLI) diagram

Fig. 5 Fuzzy location indicator (FLI) definition for room identification
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"Fuzzification = ‘Interval Type 2’"
"Approach = ‘Principal MF + FOU’"
"TNorm = ‘Product’"
"SNorm = ‘Probor’"
"Implication Method = ‘Product’"
"Aggregation Method = ‘Probor’"
"Type Reduction Method = ‘LoM’"
"Defuzzification Method = ‘Minimum’"
Details of those methods may be found in [28] and [30].

4 Experimental results and discussion
4.1 Experimental test bed
For the experimental setup, we considered the implementa-
tion of a localization platform in the indoor environment of
the Cynapsys Company (Fig. 7). The experimental bench is
realized by the deployment of a WSN platform. The choice
of the communication protocol and kit was restricted by
the used sensors in Cynapsys for their smart home project.
This platform is based on an STM32W108C kit set of four
application boards to build a mesh network (two standard
boards (MB851) and two with power amplifiers
(MB954)). STM32W108 is a ZigBee RF4CE and IEEE
802.15.4 certified platform. The boards integrate a 2.4-
GHz, IEEE802.15.4 compliant transceiver and a 32-bit
ARM®-CortexTM M3 microprocessor. Thus, it allows
evaluating IEEE 802.15.4 capabilities and developing a
testing localization application.
Let us consider the plan of Cynapsys as our test bed.

Three STM32W108 boards are deployed as anchors.

Figure 9 shows there dispositions in a way their range
covers all the target zones.
The mobile node MB954 is attached to an i5 Pc through

a USB cable. The expert takes five fingerprints in each
indicated zone along the target space: {Open_Space,
Pythagore_meeting_room, Pythagore_corridor, Reception,
Descartes_meeting_room, Descartes_corridor, RD_room}.
The localization process is composed of two main

phases. The first one is the “learning phase.” In this
stage, the expert saves the fingerprints relative to each
room. In the second stage, the system proceeds to a
fuzzy localization process.

4.2 Software developments
4.2.1 Network creation
The implementation of the localization platform was
started by connecting the STM32W108 boards and
building the network. In the first place, the choice of
network topology was made based on the application
needs. It is necessary to keep in obvious fact that the
mobile board must be able to communicate directly with
anchors so that we obtain the value of the RSSI between
these two nodes and not with regard to another node
which has broadcast the message. Based on the
optimized MAC library IEEE 802.15.4, three possible
topologies for the network are possible. The first one is
star topology. In this type of network, all nodes are
directly connected to the coordinator. Thus, there is no
direct communication if we place more than one mobile.
The second topology is in a tree where nodes which are

Fig. 6 Membership functions of the FLI

Fig. 7 Experimental setup of the localization test bed
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in various connections of the tree are not in direct
contact what does not suit our application. The final
proposed topology is meshed where nodes are in direct
contact. This topology suits our case.
Hence, the embedded program is charged of RSSI

collection and sending. The functions realized by the
embedded system are the following ones: firstly, to
establish a wireless network, then connecting cards on
the same network; secondly, to assure a stable commu-
nication between them. In addition to making requests
to collect RSSI from various anchors, it sends the RSSI
vector collected and realizes commands reading via USB
to manage card behavior.
The “Simple MAC” library is used for the program.

One of its functions is the callback function named
“ST_RadioReceiveIsrCallback” which is going to serve us
to get back the value of the RSSI. The callback function
types are generally functions of interruption which runs
automatically in case of an event. In our case, the
“ST_RadioReceiveIsrCallback” function runs in the re-
ception of a message. It allows getting back the package
in question, the time of arrival, if it contains errors, and
the RSSI. Thanks to this function, the recovery of the
RSSI of every message is possible; thus, it is enough to
send any message to be able to know the RSSI with the
transmitter.
To realize the communication between boards, it is ne-

cessary first of all to create a private network. The creation
of the network is only realized by the coordinator which
plays the role of a server. As indicated in Fig. 8, all at first
begin by making out a choice, if the boards are already in
a network or not. If not, the coordinator proceeds to the
initialization of the network intern variables, and then, it
wakes up the radio. Next, it looks for the best channel (en-
ergetic side) and it chooses randomly one ID for the net-
work, and then, the latter is created in the chosen
channel. Finally, it attributes the logical address 1 in the
table of address. The protocol was developed in IAR
Embedded Workbench for ARM 6.50 and loaded on the
STM32W108 boards using a programmer and debugger J-
Link of flash memory JTAG.

4.2.2 Input fuzzification
As we considered in the localisation test bed of three an-
chors, three fuzzy inputs are defined: ZRSS1, ZRSS2,
and ZRSS3. Their properties are as defined in Table 1
defined the same way for ZRSS2 and ZRSS3 on the Gen-
eralized Fuzzy System toolbox on Matlab R2014. The
universe of discourse (UOD) was defined based on the
experimental measurements, and FOU was defined as 2.

4.2.3 Output FLI definition
The testing environment for localization on Cynapsys
was divided into 20 zones. Each zone is defined by its

Fig. 8 Wireless sensor network creation diagram
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FLI, and every room is considered as a type 1 triangular
fuzzy set presented in Fig. 9 from the left to the right
and with the following parameters:

"MF1 = ‘Open_Space’:‘Triangular’,[0 1.5 3]"
"MF2 = ‘Pythagore_room’:‘Triangular’,[2.5 3.5 5]"
"MF3 = ‘Pythagore_corridor’:‘Triangular’,[4.5 6 8]"
"MF4 = ‘Reception’:‘Triangular’,[7 9 11]"
"MF5 = ‘Descartes_room’:‘Triangular’,[10 12 14]"
"MF6 = ‘Descartes_corridor’:‘Triangular’,[13 15 17]"
"MF7 = ‘RD_room’:‘Triangular’,[16 18 20]"

4.2.4 Rule base creation
Twenty-one rules were defined based on the expert lin-
guistic evaluations. Some rules were technically impos-
sible and were not considered, for example, IF (ZRSS1
IS Medium) (ZRSS2 IS High) (ZRSS3 IS High) is impos-
sible, the mobile node cannot be near anchor 2 and an-
chor 3 in the same time.

1. IF (ZRSS1 IS Low) (ZRSS2 IS Low) (ZRSS3 IS
Low)THEN (FLI IS Open_Space)(1)

2. IF (ZRSS1 IS Low) (ZRSS2 IS Low) (ZRSS3 IS
Medium)THEN (FLI IS Open_Space)(1)

3. IF (ZRSS1 IS Low) (ZRSS2 IS Low) (ZRSS3 IS
High)THEN (FLI IS Open_Space)(1)

4. IF (ZRSS1 IS Low) (ZRSS2 IS Medium) (ZRSS3 IS
Low)THEN (FLI IS Open_Space)(1)

5. IF (ZRSS1 IS Low) (ZRSS2 IS High) (ZRSS3 IS
Medium)THEN (FLI IS Open_Space)(1)

6. IF (ZRSS1 IS Medium) (ZRSS2 IS Low) (ZRSS3 IS
Low)THEN (FLI IS Open_Space)(1)

7. IF (ZRSS1 IS Medium) (ZRSS2 IS Low) (ZRSS3 IS
Medium)THEN (FLI IS Open_Space)(1)

8. IF (ZRSS1 IS Medium) (ZRSS2 IS Low) (ZRSS3 IS
High)THEN (FLI IS Open_Space)(1)

9. IF (ZRSS1 IS Medium) (ZRSS2 IS Medium) (ZRSS3
IS Low)THEN (FLI IS Open_Space)(1)

10.IF (ZRSS1 IS Medium) (ZRSS2 IS Medium) (ZRSS3
IS Medium)THEN (FLI IS Open_Space)(1)

11.IF (ZRSS1 IS Low) (ZRSS2 IS Medium) (ZRSS3 IS
Medium)THEN (FLI IS Open_Space)(1)

12.IF (ZRSS1 IS Low) (ZRSS2 IS Medium) (ZRSS3 IS
High)THEN (FLI IS Open_Space)(1)

13.IF (ZRSS1 IS Low) (ZRSS2 IS High) (ZRSS3 IS
Medium)THEN (FLI IS Open_Space)(1)

14.IF (ZRSS1 IS Medium) (ZRSS2 IS High) (ZRSS3 IS
Low)THEN (FLI IS Open_Space)(1)

15.IF (ZRSS1 IS Medium) (ZRSS2 IS High) (ZRSS3 IS
Medium)THEN (FLI IS Open_Space)(1)

16.IF (ZRSS1 IS High) (ZRSS2 IS Low) (ZRSS3 IS
Low)THEN (FLI IS Open_Space)(1)

Table 1 Fuzzy interval type 2 ZRSS1 properties

Fig. 9 FLI membership functions (MFs)
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Fig. 10 Fingerprinting GUI

Fig. 11 Experimental setup of the localization bench
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17.IF (ZRSS1 IS High) (ZRSS2 IS Low) (ZRSS3 IS
Medium)THEN (FLI IS Open_Space)(1)

18.IF (ZRSS1 IS High) (ZRSS2 IS Low) (ZRSS3 IS
High)THEN (FLI IS Open_Space)(1)

19.IF (ZRSS1 IS High) (ZRSS2 IS Medium) (ZRSS3 IS
Low)THEN (FLI IS Open_Space)(1)

20.IF (ZRSS1 IS High) (ZRSS2 IS Medium) (ZRSS3 IS
Medium)THEN (FLI IS Open_Space)(1)

21.IF (ZRSS1 IS High) (ZRSS2 IS Medium) (ZRSS3 IS
High)THEN (FLI IS Open_Space)(1)

4.2.5 Experimental platform
Using Matlab R2014, a fuzzy localization platform was
developed. The graphical user interface (GUI) presents
two windows. The first one, shown in Fig. 10, is dedi-
cated to fingerprinting. In the second red rectangle of
Fig. 10, the communicating interface between the anchor
nodes and the mobile node linked to the PC through the
“COM4” port.
The second interface processes those measurements

and displays the calculated FLI on the map as presented
in Fig. 11.

4.3 Experimental scenarios
Two test cases were defined. In the first test case, the
target environment where divided into 20 zones as

shown in Fig. 11. The average zone’s area is 20 m2. In
the second test case, we divided the target environment
into 130 zones with an average area of 2.25 m2. For each
test case, five scenarios were evaluated through five tra-
jectories and four of them are shown in Fig. 12: blue, or-
ange, and purple and the other trajectory repeats the
fingerprinting trajectory; hence, it tested all the zones.
For each trajectory, we started from the star point in a
defined zone.
Then, relying on the RSSI measurements from the

ZigBee anchors Z1, Z2, and Z3, the system calculates the
FLI, and using the algorithm below, the localization
process is evaluated.

4.4 Results and discussion
While this work is based on a linguistic localization, the
performance of the design is evaluated through the suc-
cess and failure rate of the estimated position in the
zone level and in the room level.
For the first test case where FLI = 20, Table 2 details

success rates in both zone and room levels. The true es-
timated position was mentioned by the user as correct
during evaluation for two characteristics: is it the correct
zone? And is it the correct room? Saved answers in the
data base are used to calculate the success rate. From
the fifth trajectories, less success rate was recorded for

Fig. 12 Experimental scenarios on the Cynapsys map

Table 2 Experimental results for FLI = 20

Scenarios Total positions True estimated position True estimated room Success rate in
the zone level (%)

Success rate in the
room level (%)

Fingerprinting trajectory 120 105 107 87.5 89.16

Red trajectory 65 57 57 87.69 87.69

Orange trajectory 18 16 16 88.88 88.88

Purple trajectory 30 24 25 80 83.33

Blue trajectory 30 25 25 83.33 83.33
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the longer trajectory where all zones are crossed. Errors
in the zone level are not necessarily errors in the room
level. In the purple trajectory, for example, six errors
were noticed. One error was a wrong zone but in the
correct room, and the others are wrong zones and
wrong room estimation. Higher success rate was re-
corded on the orange trajectory positions. This is due to
the fact that this trajectory presents a simple path where
less neighboring rooms and zones cause similarity.
Hence, the average success rate in the zone level is
85.48 %, and the average success rate for the room level
is 86.47 % which is an excellent positioning rate.
For the second test case where FLI = 130, harder work

was done to collect five fingerprints in a 2.25 m2 zone.
Their experimental results presented in Table 3 shows
an average success rate in the zone level as 81.69 % and
an average success rate in the room level as 89.59 %. In
comparison to the first case, the success rate in the zone
level was decreased but the success in the room level
was increased. This is because the number of zones in a
room rises, for example for RD room, it was only 3
zones and became 20 zones. Hence, the positioning er-
rors in the zones become more frequent. Besides, errors
when taking fingerprintings have higher probability to
occur while zones are small (2.25 m2) and fingerprints in
the same room are nearly similar.

On the other side, the localization system was
tested using a T1 RSS signal processing. For FLI = 20,
the average success rate has remarkably decreased in
the zone level to 75.59 % and the average success rate
for the room level to 77.4 %. For FLI = 130, it
decreases to 72.39 % in the zone level and to 78.88 %
in the room level. Hence, the use of IT2 fuzzy logic
has enhanced the performance of the system by 10 %
as presented in Fig. 13, despite that the FLI approach
has proved good localization precision regards to
fuzzy systems.
Further experiments were conducted on the R&D room

(8 m × 5.5 m) to calculate the average localization error
(The localization error is measured as the Euclidean
distance between the actual and the estimated locations).
For three anchor boards (STM32W108), 200 fingerprints
were taken through 40 FLI in the target zone. Thirty-five
locations were considered for evaluation. For the sake of
consistency and completeness, we use our gathered data
to evaluate our proposed IT2FL algorithm and two non-
fuzzy algorithms: the KNN-based localization method and
the lateration algorithm.
The KNN method is based on comparative searches of

the profiled fingerprints to choose the K closest profiled
samples in terms of minimizing the RSS discordance
between the query RSS sample and the profiled ones.

Table 3 Experimental results for FLI = 130

Scenarios Total positions True estimated position True estimated room Success rate in
the zone level (%)

Success rate in
the room level (%)

Fingerprinting trajectory 120 98 110 81.66 91.66

Red trajectory 65 55 59 84.61 90.76

Orange trajectory 18 16 16 88.88 88.88

Purple trajectory 30 24 28 80 93.33

Blue trajectory 30 22 25 73.33 83.33

Fig. 13 Success rate in T1 and IT2FLS for FLI = 20 and 130
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The weighted coordinates of these K samples generate
the estimated location.
For the lateration-based localization algorithm, a log-

normal shadowing propagation model is configured as
follows:

RSS ið Þ ¼ RSS0−10 � np � log d ið Þ=d0ð Þ þ σ ð6Þ

where RSS0 parameter refers to the initial signal strength
in d0 (for our experimental bed RSS0 = −63 dBm, for d0 =
1 m), np is the path loss parameter np = 2.25 (considering
an indoor office environment), and σ is the standard
deviation of valid RSSI values per link. We use the profiled
fingerprints to estimate σ = 4.9 dB. Then, the system of
equation system is solved using a standard least squares
approach [31] deducing the average error distance.
Table 4 exhibits the average localization error of the

testing fingerprinting sets. The experimental results of our
proposed approach outperform the two non-fuzzy
localization-based algorithms followed by the KNN-based
and then by the lateration method. The integration of
interval type 2 fuzzification has limited the effect of
RSSi fluctuations. Hence, the proposed localization
system performs better regarding the obstacle’s pres-
ence in indoor environments. It integrates a linguistic
classification approach, simplifying the KNN-based
classifications and reducing the heavy calculations
found in the lateration method.

5 Conclusions
This paper proposed a linguistic fuzzy modeling
focused on interpretability for localization of mobile
nodes in wireless sensor networks. The uncertainty in
the linguistic localization system was processed in two
ways: in the first place, an interval type 2 fuzzification
was proposed to handle RSSI fluctuations. Secondly, a
fuzzy location indicator (FLI) was considered to handle
geometric repartitions of fuzzy fingerprints. Experimen-
tations have proved a high success rate either for the
zone level or the room level. Besides, the superiority of
IT2FL to T1FL to minimize RSSI uncertainties has
been proved.
In the future work, we intend to work on the automatic

generation of the rule base through a neuro-fuzzy
algorithm (GARIC), in addition to automating the FLI
recording through a preprogrammed drone.
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