
EURASIP Journal on Advances
in Signal Processing

Sheng et al. EURASIP Journal on Advances in Signal
Processing  (2016) 2016:46 
DOI 10.1186/s13634-016-0345-z

RESEARCH Open Access

Feature extraction of SAR scattering
centers using M-RANSAC and STFRFT-based
algorithm
Hui Sheng, Yesheng Gao†*, Bingqi Zhu, Kaizhi Wang and Xingzhao Liu†

Abstract

This paper introduces a modified random sample consensus (M-RANSAC) and short-time fractional Fourier transform
(STFRFT)-based algorithm for feature extraction of synthetic aperture radar (SAR) scattering centers. In this algorithm,
the range migration curve (RMC) of a scattering center is formulated as a parametric model. By estimating these
parameters, the backscattering envelope of scattering center, corresponding to the backscattering variation in
synthetic aperture time, is extracted directly from a time-domain range-compressed signal. The estimated parameters
can also reconstruct the geographical location and along-track velocity of scattering centers. Thus, even without
knowing explicit knowledge of platform velocity and forming a SAR image, this algorithm is capable of realizing feature
extraction. To estimate parameters scatter by scatter, M-RANSAC approach is proposed as an implementary method
with iterative procedure. In the iterations, fitting precision indicator (FPI) works cooperatively with construction fitness
coefficient (CFC) to determine the optimal parameters of different scattering centers. Adapting this method to more
general cases, STFRFT is introduced to separate the overlapped trajectories of RMCs of scattering centers. The root
mean squared errors (RMSEs) of parameter estimation are close to their Cramér-Rao lower bounds (CRLB). The
effectiveness of feature extraction based on the devised algorithm is validated by both simulated and real SAR data.
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1 Introduction
Feature extraction has confirmed its usage in synthetic
aperture radar (SAR) target recognition and classification,
where a given target is classified as a specific target type
by feature matching over the known database [1–5]. In
fact, the high-frequency scattering response of a target is
well approximated as a sum of response from individual
scattering centers [6]. The attributes of these scattering
centers, including scattering mechanism, location, and
velocity, are physically relevant to those of the target [7].
Thus, to characterize target properties, feature extrac-
tion of corresponding scattering centers is a meaningful
approach.
Interested attributes for each scattering center generally

include backscattering envelope, geographical location,
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and the relative velocity between radar platform and
scattering center. Backscattering envelope indicates the
backscattering variation of a scattering center within
synthetic aperture time. Illuminated by radar signals,
some targets, like metallic surfaces, have a very direc-
tive backscattering pattern or can be sensitive only to a
singular frequency (anisotropic scatters or dihedral cor-
ner reflectors). Oppositely, some targets like trihedral
corner reflectors have isotropic patterns. It leads to a sta-
ble backscattering during the acquisition. Therefore, the
backscattering envelope can be the feature of major con-
cern to characterize target properties, especially when
a wide-angle SAR is operated [8]. Moreover, the geo-
graphical location and relative velocity are equivalently
important, since the location denotes the cross-track and
along-track positions while the relative velocity reflects
the along-track speed.
To extract the attributes of scattering centers, a fam-

ily of time-frequency analysis (TFA) approaches has
been devised. They use Wigner-Ville decomposition [9],
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wavelet transforms [10], and Fourier transform [8, 11]
to realize feature extraction. Starting with spectrum of
SAR imagery, these methods are constrained with know-
ing explicit knowledge of platform velocity and forming a
SAR image first. Free from SAR image formation, another
group of approaches can directly extract the feature from
the spectrum of raw data. These methods rely on spec-
tral estimation and include parametric [12–14], nonpara-
metric [15–17], and semi-parametric approaches [18].
However, sometimes, the spectrum may wrap around
azimuth frequency as a result of ambiguity [19]. Since the
aforementioned methods start with the spectrum, it may
degrade the effectiveness of feature extraction.
In this paper, we propose an innovative algorithm to

realizes feature extraction. Starting with a time-domain
range-compressed signal, this algorithm establishes its
main contribution as the signal-level ambiguity-free fea-
ture extraction of scattering centers. The realization of
feature extraction without knowing explicit knowledge
of platform velocity and forming a SAR image provides
additional novelty of this algorithm. The procedure of
this algorithm is detailed as follows. First, a parametric
model is presented to describe the range migration curve
(RMC) of scattering center in a range-compressed sig-
nal of SAR raw data. Then, using the points extracted
from the contour of the range-compressed signal, an
modified random sample consensus (M-RANSAC)-based
algorithm is developed to estimate the parameters scatter
by scatter. Within the method, fitting precision indica-
tor (FPI) works cooperatively with construction fitness
coefficient (CFC) to determine the optimal parameters
of different scattering centers through iterations. Given
the estimated parameters, the backscattering envelopes
can be extracted from the range-compressed signal. Along
with the backscattering envelopes, geographical location
and relative velocity can also be reconstructed. However,
the performance of M-RANSAC-based algorithm may
be degraded when the trajectories of RMCs are over-
lapped in the range-compressed signal. To guarantee the
effectiveness in more general cases, a trajectories separa-
tion method based on STFRFT [20] is proposed, further
improving the M-RANSAC-based algorithm in feature
extraction.
This paper is organized as follows. Section 2 reviews

the mathematical expression of received signal and mod-
els the RMC of scattering center. Section 3 describes
the M-RANSAC-based algorithm for feature extraction of
SAR scattering centers. Section 4 introduces a STFRFT-
based trajectories separation method. An enhanced M-
RANSAC algorithm embedded with this STFRFT-based
method is also detailed in this section. Section 5 dis-
cusses the root mean squared error and Cramér-Rao
bounds of the parameter estimation. Section 6 presents
the experimental results to validate the performance of

the algorithm in feature extraction and demonstrates the
usage of extracted feature in target recognition and classi-
fication. In the end, Section 7 concludes this paper.

2 Mathematical model
The demodulated received signal is the superposition of
those of multiple scattering centers, the expression can be
written as:

s(τ , η) =
M∑
i=1

σi (η − ζi)wr

(
τ − 2Ri(η)

c

)
wa (η − ζi)

× exp
{
−j

4πRi (η)

λ

}
exp
{
jπkr

(
τ − 2Ri (η)

c

)2}

(1)

in which M is the number of overall scattering centers in
the illuminated scene, τ and η represent the fast time and
slow time, respectively, c is the speed of light, kr stands
for frequency modulation (FM) rate of the transmitted
chirp signal, and λ is the carrier wavelength. wr denotes
the range envelope which is usually considered as a rect-
angle function for chirp signal, and wa means the azimuth
beam pattern which is normally a sin-squared function. ζi,
Ri, and σi are defined as the ith scattering center’s beam
center time, the instantaneous slant range, and the com-
plex backscattering envelope, respectively. After matched
filtering in range direction, the range-compressed signal
of (1) can be expressed as:

src(τ , η) =
M∑
i=1

σi(η − ζi)pr
{
τ − 2Ri(η)

c

}
wa(η − ζi)

× exp
{
−j

4πRi(η)

λ

}
.

(2)

Here, pr
{
τ − 2Ri(η)

c

}
is a sinc function. For a single

pulse, the peak locates at 2Ri(η)
c . The locations of these

peaks decide the trajectory of the RMC during synthetic
aperture time. To implement RMC fitting, Ri(η) which
indicates the instantaneous slant range between antenna
phase center (APC) and the scattering center should be
well understood. As show in Fig. 1, Ri(η) can be formu-
lated as:

Ri(η) =
√
R2
0i + V 2

ri(η − η0i)
2, (3)

where the ith scattering center has the nearest slant range
R0i at the time η0i and relative velocity Vri between APC
and itself. Consider some scattering centers may be mov-
ing target, Vri = V − vai may not be the same as platform
speed V (see Fig. 1). To simplify the further derivation,
Ri(η) is approximated with Taylor’s series. In squint mode,
Ri(η) should be expanded at ζi rather than ηoi. Let ηci =
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Fig. 1 SAR raw data acquisition geometry on slant range plane

R0i tan θ/Vri be the offset between zero doppler time ηoi
and beam center time ζi, which yields:

ζi = η0i − ηci. (4)

(3) is expanded by Taylor’s series at ζi:

Ri(η) = R(ζi) − Vri sin θ(η − ζi) + V 2
ricos2θ
2R(ζi)

(η − ζi)
2.

(5)

Since we assume both the exposure time and the squint
angle are moderate, the terms up to quadratic order in (5)
are sufficient to model a RMC precisely.
Define a new coordinate:

�ψ = (X,Y )T =
(
2γRi(ηn)

c
, ηn
)
, (6)

in which the subscript n represents discrete sampling and
γ scales fast time 2Ri(ηn)/c to a similar scale of magni-
tude of slow time ηn. Here, γ=PRI · fs is decided by range
sampling frequency fs and pulse repetition interval PRI.
For convenience, we let ϑ = c/2γ . Together with (5), the
discrete version of the ith scattering center’s RMC can be
modeled as:

X = AiY 2 + BiY + Ci (7)

where

Ai = V 2
ricos2θ

2ϑRi(ζi)

Bi = −VriRi(ζi) sin θ − V 2
riζicos2θ

ϑRi(ζi)

Ci = V 2
riζ

2
i cos2θ + 2Ri(ζi)Vriζi sin θ + 2R2

i (ζi)

2ϑRi(ζi)

(8)

In this proposed algorithm, �μ = {A, B, C}, which
parameterizes the RMC of an individual scattering cen-
ter, is estimated scatter by scatter. Applying the estimated
�μ, the backscattering envelope σ can be extracted from
range-compressed signal. Along with it, the geographical
information R0 and η0 and the relative velocity Vr will
be reconstructed. The process will be detailed in the next
section.

3 M-RANSAC-based feature extraction algorithm
The proposed algorithm is an iterative method to esti-
mate �μ of different scattering centers through fitting
their RMCs. Then, the estimated parameters will be used
to realize feature extraction . As shown in Fig. 2, this
algorithm consists of two major steps: parameter estima-
tion and feature extraction.
In the step of parameter estimation, the observed data

is extracted from the contour of the range-compressed
signal. It is a mix set of “inliers” and “outliers”, indicating
the trajectories of RMCs. The inliers can be explained by
the parameter set �μ of current scattering center, while the
outliers do not fit the model and may come from other
scattering centers’ RMCs or noise.
To separate the inliers from the outliers and obtain the

current optimal fitting RMC with parameterized repre-
sentation �μ, RMC construction and performancemeasure
are implemented iteratively in this algorithm. The itera-
tive procedure of M-RANSAC-based approach continues
until the points within observed data set are classified
according to their corresponding RMCs, thus scattering
centers. Along with the classified points, the overall num-
ber of scattering centers M and a set of �μ corresponding
to different scattering centers are obtained.
Then, the step of feature extraction starts with

these classified points and the estimated �μ. The loca-
tion and relative velocity of scattering centers can be
directly reconstructed by �μ. The backscattering scattering
envelopes will be extracted from the range-compressed
signal. Thus, feature extraction of M scattering centers
are accomplished. The details of parameter estimation
and feature extraction are summarized in the following
subsections.

3.1 RMC construction with hypothetical inliers
Within a single iteration, a subset of observed data is
randomly selected to construct a candidate RMC with
the parametric representation �μc. However, the observed
data, which is directly extracted from the contour of
the range-compressed signal, is sampled by sampling fre-
quency fs and pulse repetition frequency 1/PRI. Thus, the
original coordinate of the observed data �x = (x, y)T obvi-
ously differs from the new coordinate �ψ = (X,Y )T in
(6). To locate the points of subset in the new coordinate
system, a coordinate transformation should be processed
first. The mapping relationship is expressed as:

�ψ = K�x + O, (9)

where

K =
[ c

2ϑ 0

0 PRI

]
and O =

[ Rs
ϑ

ηs
.
]

(10)

Here, ηs and Rs are the minimum slow time and slant
range of the given raw data, respectively.
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Fig. 2 Flowchart of M-RANSAC-based feature extraction algorithm

After coordinate transformation, the subset data in the
new coordinate system is qualified for RMC construc-
tion. Since the degree of freedom (DOF) of (7) is three, a
subset with �ψ1, �ψ2, and �ψ3 is sufficient to calculate corre-
sponding model parameters. �μc of this candidate RMC is
therefore computed by:

Ac = X12Y23 − X23Y12
X23Y ∗

12 − Y12Y ∗
23

Bc = X23Y ∗
12 − X12Y ∗

23
Y23Y ∗

12 − Y12Y ∗
23

Cc = X1 − AcY 2
1 − BcY1

(11)

in which

Xij = Xi − Xj and X∗
ij = X2

i − X2
j (12)

The accurate construction mainly depends on the accu-
racy of the selected points to solve (11). Only when �ψ1, �ψ2,
and �ψ3 come from the same RMC, this constructed �μc can
be the parametric representation of a scattering center.
However, the randomly chosen points might belong to dif-
ferent RMCs or be just noise points. Therefore, to assess
the performance of this constructed RMC, a measure
needs to be established in the iterations.

3.2 Performance measure establishment based on
quadratic orthogonal distance

In this subsection, a double-measure system is developed
to evaluate the performance of a candidate RMC. To deal
with the situation that selected points come from different

RMCs or are noise points, CFC, which denotes the num-
ber of points in observed data set can be explained by the
candidate RMC with �μc, is introduced. Another measure,
called FPI, is proposed to assure that a more precise RMC
will be chosen when two candidate RMCs share the same
CFC.
To judge whether a point can be explained by the candi-

date RMC, quadratic orthogonal distance (QOD) between
a point and a curve is developed. The qualification of a
point is decided by its QOD to the RMC with a specific
threshold value. Other than the least-squares distance,
QOD is defined as theminimum connecting length from a
point to the given curve, which is more precise in practical
applications [21]. To obtain this distance, the geomet-
ric feature of RMC is further analyzed. After coordinate
transformation, RMC can be considered as a parabola
with the vertex at �ψct =

(
C − B2

4A ,− B
2A

)
. According to (7),

the mathematical expression of RMC can be written as:

X −
(
C − B2

4A

)
= A

(
Y + B

2A

)2
. (13)

As shown in Fig. 3, �ψg is a point in the observed data.
To calculate the QOD between �ψg and a candidate RMC
parameterized with �μc, �ψp, which is the closest projec-
tion of �ψg on the RMC, should be located. Define �ψg =(
Xg ,Yg

)
and �ψp = (Xp,Yp

)
. Since �ψp locates on the RMC,

an equation can be obtained:

f1
(
Xp,Yp

) = AcY 2
p + BcYp + Cc − Xp = 0 (14)
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Fig. 3 Quadratic orthogonal distance to a curve

Moreover, the connecting line of �ψg and �ψp is perpendic-
ular to the tangent line of the RMC at the point �ψp. This
relationship can be formulated as:

dY
dX

· Yg − Yp
Xg − Xp

= 1
2AcYp + Bc

· Yg − Yp
Xg − Xp

= −1. (15)

Rewriting the above equation, it yields:

f2
(
Xp,Yp

) = (Yg − Yp
)+(Xg − Xp

) (
2AcYp + Bc

) = 0.
(16)

Combining (14) and (16) into a quartic equation will
result in maximum four solutions. Generally, the solution
with the minimum geometric distance to �ψg is chosen
as the optimal projection �ψp. However, this numerical
method is not stable. To optimize the calculation, Ahn
[21] proposes a generalized Newton-Raphson method to
locate the closest projection point. It is an efficient itera-
tive method which converges quickly. Given the functions
f1
(
Xp,Yp

)
and f2

(
Xp,Yp

)
, we define the derivative matrix

D, the current approximate result �ψk , and a more accu-
rate approximation �ψk+1 to compute �ψp. The process of
iterations can be presented as:

D� �ψ = −f
( �ψk

)
�ψk+1 = �ψk + � �ψ

(17)

where

D =
⎛
⎜⎝

∂f1
∂Xp

∂f1
∂Yp

∂f2
∂Xp

∂f2
∂Yp

⎞
⎟⎠ =

( −1 2AcYp + Bc
−2AcYp − Bc −1 + 2Ac

(
Xg − Xp

)
)

(18)

An initial value �ψ0 is given in Fig. 3, and its expression is:

�ψ0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎝ Cc − B2c

4Ac

− Bc
2Ac

⎞
⎟⎠ if Xg ≤ Cc − B2c

4Ac⎛
⎜⎜⎝

Xg

sign
(
Yg + Bc

2Ac

)√Xg+ B2c
4Ac −Cc
Ac

− Bc
2Ac

⎞
⎟⎟⎠ if Xg > Cc − B2c

4Ac

(19)

Equation 17 starts its iteration with the initial value �ψ0
and ends when |� �ψ | is no more than a given threshold.
During the iterations, parameters related to �ψp in (18) are
assigned with the value of the current iterative result �ψk ,
and the final closest projection �ψp is set to be �ψk when the
iterations end. Therefore, we define the square Euclidean
distance between �ψp and �ψg as the QOD of �ψg :

rho = | �ψg − �ψp|2. (20)

When rho of �ψg stays no more than the given thresh-
old rho_thr, this point is regarded as an inlier, otherwise
an outlier. The overall number of inliers N ( �μc) within the
observed data is denominated as CFC. As shown in Fig. 4,
this measure utilizes the number of inliers to define the fit-
ting degree of the candidate RMC. To evaluate the degree
of matching between the inliers and the candidate RMC,
FPI is introduced as:

χ(μ) = −
N∑
k=1

ε (rho_thr − rhok) · rhok. (21)

in which ε means unit step function. FPI, which is
the negative overall QOD of inliers, is known as the
accuracy of fitting. It works cooperatively with CFC to
locate the optimal candidate RMC with the largest num-
ber of inliers and best fitting precision. Conventional
RANSAC-based algorithm [22] only considers CFC as
measure without applying weighting for inliers’ QOD and
the maximum likelihood estimation sample consensus
(MLESAC)-based method [23] obtains the overall error
with a computationally complicated process. They fail in
either accuracy or efficiency. The double-measure sys-
tem of CFC and FPI in this algorithm steps out of this
dilemma and achieves a balance between precision and
efficiency.
As shown in Fig. 5, the comparative tests are conducted

to evaluate this double-measure system. In the test, each
set of observed data contains 100 inliers and 200 out-
liers (see Fig. 5a). Those inliers can be explained by a
RMC with the parameter set �μ = {0.2, 0, 4}, while the
outliers do not fit the RMC and surpass the QOD thresh-
old rho_thr = 0.5 to this RMC. There exists 100 sets of
observed data in all. Among them, the inliers are fixed
while the outliers are randomly generated which may
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Fig. 4 Construction fitness coefficient (the number of inliers for given μk)

change from set to set. Based on the observed sets, 100
Monte-Carlo tests are conducted with iterative times 50,
100, 150 and 200. First, the average Euclidean norm of
parameter set �μ’s estimation error

∥∥�μ̂
∥∥ versus iterative

times are provided when the RMC is fitted by three differ-
ent algorithms respectively. As shown in Fig. 5b, both the
estimation accuracy and the convergence rate ofMLESAC
andM-RANSACmethods outperform those processed by
RANSACmethod. And, the estimation accuracy of theM-
RANSAC method is surpassed by that of the MLESAC

method. However, the superiority of MLESAC’s perfor-
mance costs heavy computational burden. In this paper,
the computational times on a desktop PC (i5-3210M CPU
at 2.5GHz and DDR3 RAM at 8GB) corresponding to
iterative times are listed in Fig. 5c. According to this figure,
we can tell the computational efficiency of MLESAC is
obviously surpassed by those of the M-RANSAC and
RANSAC methods. Therefore, to balance the accuracy
and efficiency, the application of M-RANSAC algorithm
may be the optimal choice for RMC fitting, and the

Fig. 5 Performance evaluation of the double-measure system in M-RANSAC algorithm. a The set of observed data. b Estimation accuracy compared
with other measures. c Computational time compared with other measures
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superior performance of this double-measure system is
validated.
In the next subsection, M-RANSAC approach will inte-

grate the measures and RMC construction into the itera-
tive process of parameter estimation.

3.3 Iterative procedure of parameter estimation in
M-RANSAC-based approach

The iterative process of proposed algorithm starts with
a set of observed data D_set. It contains the points
extracted from the contour of range compressed results
and indicates the RMC trajectories of different scatter-
ing centers. This set also inevitably contains many noise
points introduced by undesired background information.
M-RANSAC-based algorithm is proposed to classify the
groups of points corresponding to different scattering
centers, get rid of existing noise, and realize parameter
estimation of these RMCs simultaneously. The pseu-
docode of this process is displayed in Fig. 6. It consists of
iterations of two levels: point-level iterations and scatter-
level iterations. In the point-level iterations, a parametric
RMC with optimal CFC and FPI is located to explain
a scattering center. Then, the scatter-level iterations will
lock all these RMCs in a range-compressed signal scatter
by scatter.

Fig. 6 The pseudocode of parameter estimation in M-RANSAC-based
approach

To begin with, the minimum iterative times min, max-
imum iterative times max, the threshold QOD to define
an inlier rho_thr and the threshold number of inliers to
confirm a scattering center N_thr should be preestab-
lished. What is more, we should initialize maximum non-
updating times m to infinite, the number of scattering
center M to zero, and the iteration proceeding factor
CONT to 1.
A point-level iteration starts with randomly selecting

three points from D_set to construct a candidate RMC.
The �μc of this RMC is computed with (9) and (11). Then,
according to subsection 3.2, the QOD between every
point in the D_set and this candidate RMC are calculated
and denoted by rho. The points whose rho stay no more
than rho_thr are defined as inliers and stored in set( �μc).
Then, CFC N( �μc) and FPI χ( �μc) of this candidate RMC
can be computed by (20) and (21).
This RMC can be regarded as the current optimal one

in two cases. The CFC N( �μc) exceeds that of the former
optimal BestN, or the FPI χ( �μc) goes over that of for-
mer optimal Bestχ under the circumstance that N( �μc)
equals BestN. When the conditions are satisfied and the
current optimal is renewed, not only Bestμ, BestN, Bestχ ,
and Bestset are updated in line with the values of cur-
rent optimal RMC but also the maximum non-updating
times m will be recalculated. The point-level iteration
stops when iterative times iteration exceed max or non-
updating times non_upd surpass m. An additional mini-
mum iteration times min is used to remain the stability.
In scatter-level iterations, a new scattering center will

be confirmed when the output of the point-level itera-
tions BestN goes beyond N_thr. At this time, the number
of recovered scattering centers M is updated. Bestμ and
Bestset are stored in setμ(M) and set(M). The idea of
CLEAN technique [24, 25] are taken, and the points in
Bestset will be subtracted from D_set. Another point-
level iterations will be processed to locate the next RMC.
Oppositely, if the point-level iteration fails to locate a
scattering center, the remaining points in observed data
set are considered as noise points. Thus, the scatter-level
iterations stop by setting CONT = 0.
After the two-level iterations, the total number of scat-

tering centers M is determined, the points of inliers are
classified in set, and the parametric representation μ of
scattering centers are estimated and saved in setμ. These
data will help to realize feature extraction for dominant
scattering centers of the targets in the next subsection.

3.4 Feature extraction based on estimated parameters
To realize feature extraction, a vector �Ti is established to
cover the interested information of the ith scattering cen-
ter, �Ti = { R0i, η0i, Vri, σi(η − ξi) }. In this vector set, R0i
and η0i present the geographical location in both cross-
track direction and along-track direction. Vri, which is the
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relative velocity between the radar platform and scatter-
ing center, indicates the possible along-track speed of the
scatter. They can be reconstructed using the estimated �μi
in setμ(i):

Roi = ϑ
(
4AiCi − B2

i
)
cos θ

2Ai
(
2 − tan2θ

)

η0i = − Bi
2Ai

+ sin 2θ − 2 tan θ

4Ai

√
4AiCi − B2

i
2 − tan2θ

Vri = ϑ

√
4AiCi − B2

i
2cos2θ − sin2θ

.

(22)

In broadside case, sin θ and tan θ equal zero. (22)
degrades to a simpler formula:

R0i = ϑ

{
Ci − B2

i
4Ai

}

η0i = − Bi
2Ai

Vri = ϑ

√
2AiCi − B2

i
2
.

(23)

Knowing R0i, η0i, and Vri, compressed range envelope
pr , azimuth beam pattern wa, and the phase informa-
tion related to instantaneous slant range Ri are calcu-
lated. By locating inliers set(i) in the range-compressed
signal, the complex values along the RMC of scatter-
ing center can be extracted. According to (2), we obtain
the complex backscattering envelope σi(η − ζi) by elim-
inating the influence of the aforementioned compo-
nents in the extracted complex values. The vector set{ �T1, �T2, . . . �TM

}
are calculated scatter by scatter.

It is worth noting that, the process of M-RANSAC-
based algorithm does not need the explicit parameters
(e.g., platform velocity). However, for conventional meth-
ods of feature extraction based on SAR image formation,
the platform velocity works as a crucial parameter of
realizing range cell migration correction (RCMC) and
azimuth matched filtering. Thus, compared with the con-
ventional approach, M-RANSAC-based algorithm can be
utilized in a more flexible way. Moreover, the proposed
algorithm extracts the features directly from a range-
compressed signal. Without forming SAR image, we may
realize target recognition and classification directly in a
signal level rather than in an image level.
When platform velocity is known and SAR image is

formed, the backscattering envelope extracted by the pro-
posed algorithm may classify targets which are similar in
the gray-level SAR image. Moreover, given the platform
velocity and the relative velocity between radar platform

and the dominant scattering center, the along-track veloc-
ity of target can be computed. Thus, even if SAR image is
formed, this feature extraction algorithm may help us to
better understand the target.

4 Trajectories separation based on STFRFT
Sometimes, RMC of one scattering center may overlap
that of the other. This phenomenon is called trajecto-
ries overlapping in this paper. As shown in Fig. 7a, the
trajectories of T1 and T2 are mixed after range com-
pression (to clearly state the principle, the range curve
are ignored under the low-resolution assumption). In this
case, M-RANSAC-based algorithm may fail in extract-
ing interested information of T1 and T2, respectively. To
solve this problem, short-time fractional Fourier trans-
form (STFRFT) is applied to separate the overlapped
trajectories. With a spatial filtering using a rectangle win-
dow, the trajectories of different scattering centers will be
separated in time-fractional frequency domain. The fea-
ture extraction can be successfully proceeded afterwards.
The phase component in (2) can be written as:

sφ(η) =
M∑
i=1

exp
{
jφi + j2π fiη − jπKaη

2} (24)

where,

φi = −4π
λ

{R(ζi) − Vri sin θζi} − πV 2
ricos2θ
R(ζi)

ζ 2
ri

fi = 2Vri sin θ

λ
+ V 2

ricos2θ
R (ζi)

ζi

Ka = V 2
ricos2θ
R (ζi)

≈ V 2
refcos

2θ

Rref
.

(25)

Here, Ka is considered as a constant. It is a reason-
able assumption when the range span of processed data
is moderate. fi, related to the beam center time ζi, dif-
fers with the azimuth location of scattering center. Taking
STFRFT of (24), it yields:

STFφ(η,u) =
M∑
i=1

exp
{
jφi
} ∫ ∞

−∞
exp
{
j2π fit − jπKat2

}
× g(t − η)Kp(t,u)dt.

(26)

where, to obtain the optimal 2D resolution [20], a
Gaussian window g(t) is used:

g(t) = (πξ2
)−1/4 exp

(
− t2

2ξ2
,
)

(27)

in which ξ2 = | sinα/Ka|, and Kp(t,u) denotes the kernel
function of fractional Fourier transform (FRFT) with an
expression:
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Fig. 7 Trajectories separation based on STFRFT. a Overlapped trajectories of T1 and T2. bMatched STFRFT and spatial filter of trajectories in selected
range bin. c Separated trajectory of T1

Kp(t,u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
1−j cotα

2π exp
(
j t2+u2

2 cotα − jut cscα
)
,α �= kπ

δ(u − t), α = 2kπ
δ(u + t), α = (2k + 1)π

(28)

Based on the frequency shift property of STFRFT [20],
(26) becomes:

STFφ(η,u) =
M∑
i=1

exp
{
jφi + j2πufi cosα

−j2π f 2i sinα cosα
}
STFKa

(
η,u − 2π fi sinα

)
(29)

where,

STFKa(η,u) =
∫ ∞

−∞
exp
{−jπKat2

}
g(t − η)Kp(t,u)dt.

(30)

Note that (30) is a matched STFRFT only when the
second-order phase term is set to zero, thus, α is:

α = arc cot
{
2πKa · NaPRI2

}
(31)

where, PRI is the pulse repetition interval and Na denotes
the length of azimuth sample. In the real application,
NaPRI2 is used as the factor of coordinate transfor-
mation in digitalized computation [26, 27]. Back to
(29), the STFRFT of an individual scattering center is
decided by STFKa (η,u). The matched STFRFT of (30)
will locate the spectrogram line of a scattering center
parallel to η. For multiple scattering centers, the shift
�u = −2π fi sinα along u axis in (29) separates their
energy according to their different azimuth locations. As
shown in Fig. 7b, a simple spatial filter using a rectan-
gle window will separate the energy of one scattering
center from the others. After inverse STFRFT, the tra-
jectories of scattering centers with similar range posi-
tion but different azimuth location are separated (e.g.,
Fig. 7c).

To realize trajectories separation in feature extaction,
the STFRFT-based method is embedded in the afore-
mentioned M-RANSAC-based approach. The processing
steps can be summarized as follows:

1. Select the trajectory of an isolated scattering center
and estimate Ka using the points extracted from it.

2. Calculate α based on (31).
3. Execute α-angle STFRFT for a range bin.
4. Implement spatial filtering using rectangle windows.
5. Realize trajectories separation with inverse STFRFT.
6. Repeat steps 3 to 5 until the last range bin is

processed.
7. For every sub-patch range compressed signal,

estimateM, setμ, and set using M-RANSAC
approach.

8. Use the estimatedM, setμ, and set to compute the
vector set

{ �T1, �T2, . . . �TM
}
.

5 CRLB and RMSE of parameter estimation
The parameter estimation of �μ lays the foundation for fea-
ture extraction in this algorithm. In this section, Monte-
Carlo tests are conducted to obtain the root mean squared
errors (RMSEs) of the estimates. To evaluate the accuracy
of estimation, these RMSEs of estimators compared their
theoretical minimal errors, named Cramér-Rao lower
bound (CRLB). We start this section with computing the
CRLBs according to observation.
The observation can be derived from (2) and (7):

χo [n] = �
[
n; �φe

]
+ ω0 [n] , n = 0, 1, 2, . . . .Na − 1

(32)

in which,

�[ n; �φe] = σ {n · PRI}wa {n · PRI}
exp
{
−j

4πϑ

λ

(
A · PRI2n2 + B · PRI · n + C

)}
.

(33)
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Here, ω0(n) denotes a complex white noise with zero
mean and the variance of σ0. The estimator vector �φe =
[ Â, B̂, Ĉ] contains three parameters waiting to be esti-
mated.
According to [28], the Fisher information matrix of (32)

can be calculated using the expression:
[
I
( �φe
)]

ij
= 1

σ 2
o

Na−1∑
n=0

∂�[ n; �φe]

∂
[ �φe
]
i

∂�[ n; �φe]

∂
[ �φe
]
j

(34)

The computation of its inverse is complicated and tedious,
we omit the procedures of derivation and directly give the
result:[

I( �φe)
]−1 = 3

(
σ0λ

4πϑ�

)2
⎡
⎢⎢⎢⎢⎢⎣

60
PRI4�1

60
PRI3�2

10
PRI2�3

60
PRI3�2

12(16N2
a−30Na+11)
PRI2�1

−6(2Na−1)
PRI�3

10
PRI2�3

−6(2Na+1)
PRI�3

3N2
a−3Na+2

�3

⎤
⎥⎥⎥⎥⎥⎦

(35)

where the � is the average amplitude of backscat-
tering envelope σ {n · PRI} and azimuth beam
pattern wa {n · PRI}. �1 = Na (Na − 1) (Na − 4),
�2 = Na

(−N3
a − N2

a + 4Na + 4
)

and �3 =
Na (Na + 1) (Na + 2). According to (35), the CRLBs of
estimated parameters are the diagonal elements of inverse
matrix. Thus, the CRLBs of Â, B̂, and Ĉ are equal to[
I( �φe)

]−1

11
,
[
I( �φe)

]−1

22
and

[
I( �φe)

]−1

33
, respectively.

Then, 100 Monte-Carlo tests are conducted when
signal-to-noise ratio (SNR) is 0, 2, 4, 6, 8, and 10 dB,
respectively. The experiments utilize the SAR simulation
parameters listed in Table 1. To better exhibit the results,
both RMSEs and CRLBs of the estimated parameters are
expressed in decibels. As shown in Fig. 8, the RMSEs
of the estimated values stay close to their CRLBs. Since
CRLB is the theoretical lowest estimation error, we can
conclude that the parameter estimation based on the pro-
posed algorithm is accurate and effective. The precisely

Table 1 System parameter of simulation and real data

Parameter Simulation test Real data experiment

Squint angle 0◦ −1.584◦

Signal bandwidth 150 MHz 30.111 MHz

Sample frequency 200 MHz 32.317 MHz

Pulse duration 5.12μs 41.74μs

PRI 1.7 ms 0.7956 ms

Platform velocity 153.3 m/s 7062 m/s

Range to scene center 7500 m 998263 m

estimated parameters guarantee the subsequent process
of feature extraction.

6 Experimental results
To validate the performance of this algorithm, a series
of experiments, named performance test, simulation test,
and real data test, respectively, are presented in this
section. In the performance test, we generate raw data
of a single target when the broadside airborne SAR
system operates. This raw data is added with various
Gaussian white noise and then taken as the input of
M-RANSAC algorithm to estimate the location and veloc-
ity of dominant scattering center. RMSE of the esti-
mated parameters are listed corresponding to different
input SNR and iterative times. Then, the scenario of
multiple targets is considered in the simulation test.
In the illuminated scene, three targets with different
backscattering envelopes and along-track velocities are
introduced. The features of dominant scattering centers
are extracted from the generated data by M-RANSAC-
based algorithm and compared with the theoretical ones.
In addition, the potential usage of these extracted fea-
tures in target recognition and classification are fully
considered. In the end, the real data of RADARSAT-1
are processed to validate the performance of the pro-
posed algorithm when the trajectories of targets are over-
lapped. The features of the dominant scattering centers,
including locations, relative velocities, and backscatter-
ing envelopes, are extracted using both STFRFT-based
trajectories separation and M-RANSAC-based feature
extraction method. To verify the effectiveness of feature
extraction, the reconstructed locations and velocities are
compared with those obtained using conventional meth-
ods. To confirm the potential usage of these extracted fea-
tures in target classification, the backscattering envelopes
are used to further interpret the ships in English Bay
which is located in the city of Vancouver, Canada (see
Fig. 13a).

6.1 Performance test
In this subsection, raw data of a single target are sim-
ulated to evaluate the estimation accuracy. This target
is a stationary one with the geographical location R0 =
7500 m and η0 = 0.8717 s. In the simulation, the system
parameters are listed in the middle column of Table 1 and
beam width in azimuth dimension is set to be 0.059 rad.
The generated raw data are added with Gaussian white
noise when the input SNR= −10,−5, 0, 5, and 10 dB. For
each input SNR, we generate 150 sets of random Gaus-
sian noise; thus, in total, 750 sets of observed raw data are
obtained.
The M-RANSAC-based algorithm starts with those

time-domain range compressed signals (see Fig. 9a). Its
initial parameters are carefully designed. The scale factor
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Fig. 8 RMSEs of parameter estimation and their CRLBs. a RMSE and CRLB of A. b RMSE and CRLB of B. c RMSE and CRLB of C

ϑ in (10) is set to be 450. The threshold of quadratic
orthogonal distance rho_thr is 0.003 and the threshold
number of inliers N_thr is 0.85Na. The overall iterative
times are set to be a fixed number Titer = 50, 100, 150,
and 500. After estimating �μ for theM dominant scattering
centers and classifying inliers in set, the geographical loca-
tions and velocity information are reconstructed based
on (23). For each input SNR, 150 sets of observed raw
data will output 150 sets of

{
R̂0, η̂0, V̂r

}
. Compared with

the theoretical ones, RMSE of {R0, η0, Vr} correspond-
ing to different input SNR and iterative times are obtained
and shown in Fig. 9b–d. According to this figure, several
conclusions can be made:

(1) The estimation errors of location and relative
velocity are quite limited especially when input SNR
is 5 and 10 dB. Thus, We can expect a high
estimation accuracy in a high-SNR case.

(2) The estimation accuracy may decrease along with the
input SNR. The reasonable explanation is that a
higher-level noise will impact the precision of inliers
in a larger degree and thus decrease the estimation
accuracy. In the performance test, this phenomenon
becomes obvious when the low-SNR data is
implemented.

(3) The estimation accuracy will be continuously
enhanced with the increasing of iterative times until
it converges. When input SNR is high, the estimation
error converges fast. We can expect a high-precision
output with a small number of iterative numbers.
However, under low-SNR scenario, the estimation
error converges slowly. max can be considerably
increased to obtain relatively high-accuracy
estimators. Unfortunately, there exists no
SNR-related closed-form expression of max. The
initial parameter max is an empirical parameter in
this paper.

6.2 Simulation test
To further analyze this algorithm, the scenario of multi-
ple targets is introduced in this subsection. According to
the Li’s research [12], most of man-made objects can be
considered as the composition of trihedral corner reflec-
tors and dihedral corner reflectors. Generally speaking, a
trihedral corner reflector has a flat backscattering enve-
lope during synthetic aperture time while a dihedral cor-
ner reflector has a variant one. Thus, in the simulation
test, we simplify the types of targets in [8] to two: azimuth
invariant target (e.g. Fig. 10a) and azimuth variant target
(e.g. Fig. 10b), and their different backscattering envelopes



Sheng et al. EURASIP Journal on Advances in Signal Processing  (2016) 2016:46 Page 12 of 16

Fig. 9 Performance test. a Time-domain range compressed signal with different input SNR (range-compressed azimuth-time domain). b RMSE of R0.
c RMSE of η0. d RMSE of Vr

are shown in Fig. 10c. In the illuminated scene, we have
two azimuth invariant point targets: T1 and T2. The
amplitude and phase of their theoretical backscattering
envelopes are presented in Fig. 11a, b, respectively. T1 is
set to be “brighter” than T2, which means it has a rela-
tively higher backscattering coefficient or a larger radar
cross section (RCS) [29]. We also have an azimuth variant
point target T3, the maximum backscattering envelope of
which stays lower than both T1 and T2 (see Fig. 11a).

Different from T1 and T2, T3 has an inconstant phase
envelope during the synthetic aperture time (see Fig. 11b).
In the simulation test, these targets are customized with
the size of 2 m in range by 1 m in azimuth, and their geo-
graphical locations are shown in the columns R0 and η0
of Table 2. Moreover, both T1 and T3 are stationary tar-
gets while T2 is a moving target with a 5.5 m/s along-track
velocity. The relative speed between radar platform and
targets are listed in the column Vr of Table 2.

Fig. 10 Scattering centers with different backscattering envelopes. a Azimuth invariant scattering center. b Azimuth variant scattering center.
c Backscattering envelopes of different scattering centers
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Fig. 11 Backscattering envelopes of targets. a Theoretical backscattering amplitude envelopes of targets and the extracted ones of dominant
scattering centers. b Backscattering phase envelopes of targets

Using the SAR simulation parameters in Table 1, we
generate the raw data of these three targets when SNR
is 5 dB and beam width in azimuth dimension is 0.0785
rad. In this case, the Doppler spectrum of the range-
compressed signal wraps around azimuth frequency as
a result of ambiguity (see Fig. 12a). It may degrade the
effectiveness of feature extraction algorithm starting with
spectrum. To validate this assumption, a FFT-based time-
frequency approach [8] and a complex spectral estimation
algorithm called APES [16] are used to extract the spec-
tral envelope of T3 respectively. As shown in Fig. 12b,
the extracted results differ from the real data due to the
impact of ambiguity. Thus, the proposed M-RANSAC-
based feature extraction algorithm, which establishes
itself as an ambiguity-free approach, is required in this
case. The M-RANSAC-based algorithm starts with time-
domain range compressed signal (see Fig. 12c). Its initial
parameters are carefully designed. The scale factor ϑ in
(10) is set to be 450. The lower bound of iterative times
min is 30 and the upper bound max is 200, the thresh-
old of quadratic orthogonal distance rho_thr is 0.003, and
the threshold number of inliers N_thr is 0.85Na. After
estimating �μ for the M dominant scattering centers and
classifying inliers in set, the geographical locations and
velocity information are reconstructed based on (23). As

shown in the columns R̂0, η̂0, and V̂r of Table 2, the esti-
mated errors are quite limited. Meanwhile, the backscat-
tering envelopes are extracted and normalized. In Fig.11a,
the extracted backscattering amplitude envelopes of dom-
inant scattering centers match the theoretical ones of the
corresponding targets.
Without knowing the explicit knowledge of platform

velocity and forming a SAR image, the extracted backscat-
tering envelopes can label T1 and T2 as azimuth invariant
targets and T3 as an azimuth variant target. Thus, a rough
target classification can be achieved. R̂0 and η̂0 present
the geographical locations of dominant scattering centers.
To visualize the extracted information, we map R̂0 and η̂0
of scattering centers into image domain. The amplitudes
of them are obtained by averaging their backscattering
envelopes. As shown in Fig. 12d, the image is free from
the impact of sidelobes. Realizing the target classification
and location, M-RANSAC-based algorithm help us to
comprehend the targets without forming a SAR image.
When the explicit platform velocity is given, SAR image

(see Fig. 12f) can be formed by chirp-scaling algorithm
[30, 31]. Figure 12e presents the imaging result with eight
times interpolation. In this image, T1 is well-focused
while T2 and T3 are defocused. From the perspective
of SAR image, T2 and T3 may be mistakenly classified

Table 2 Original and estimated parameters in both simulation test and real data test

Type Scattering center R0 [m] η0 [s] Vr [m/s] R̂0[m] η̂0[s] V̂r [m/s]

Simulation T1 7500 0.8717 153.3 7500.7 0.8703 153.56

T2 7462.5 0.8717 147.8 7462.2 0.8721 146.62

T3 7537.5 0.8717 153.3 7538.7 0.8719 153.48

Real data T1 997743 1.3143 7062.4 997744.3 1.3127 7062.9

T2 997226 1.4202 7061.8 997226.8 1.4212 7061.9

T3 997375 1.7073 7061.7 997374.1 1.7097 7061.2

T4 997582 1.8665 7062.2 997582.5 1.8670 7061.7
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Fig. 12 Simulation test. a Doppler spectrum of a range-compressed signal (range-compressed Doppler domain). b Extracted spectral envelopes of
T3 using FFT and APES. c Time-domain range-compressed signal (range-compressed azimuth-time domain). d SAR image formed by mapping the
extracted feature. e SAR image with eight times interpolation formed by chirp-scaling algorithm. f SAR image formed by chirp-scaling algorithm

into the same type. However, defocus only indicates
the mismatch of azimuth matched filter. It may result
from either the along-track motion (T2) or the invariant
azimuth envelope (T3). Since the two cases are hardly dis-
tinguished directly from SAR image, the importance of
feature extraction is proved. The extracted envelopes of
dominant scattering centers in Fig. 11a clearly reveals the
backscattering feature of targets. Thus, we can label T1
and T2 as azimuth invariant targets and T3 an azimuth
variant one. The backscattering envelope of target’s dom-
inant scattering center can be complementary to the SAR
image in the application of target classification. Moreover,
given the explicit platform velocity, we confirm T2 as a
moving target according to column V̂r of Table 2.

6.3 Real data test
In this subsection, RADARSAT-1 raw data included in the
CD of [19] is applied in feature extraction. The key sys-
tem parameters are listed in Table 1. As shown in Fig. 13a,
the SAR image of English Bay is formed using the chirp-
scaling algorithm. Then, the region of four ships, marked
with a white rectangle, are truncated from this SAR image.
This patch of complex image is converted to a range-
compressed signal (use inverse chirp-scaling algorithm
and range matched filter).
As shown in Fig. 13b, the trajectories of RMCs of the

ship T2 and T3 are overlapped. Before extracting the
feature scatter by scatter, the overlapped trajectories are
separated using the STFRFT-based approach. First, Ka is
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Fig. 13 Experimental results based on RADARSAT-1 data. a SAR image formed by chirp-scaling algorithm. b Trajectories of RMCs of ships in
time-domain range compressed signal. c The result of trajectories separation based on STFRFT. d Extracted backscattering amplitude envelopes of
dominant scattering centers

estimated using the dominant scattering center of iso-
lated ship T1. Then, α is computed by (31). Using α-angle
STFRFT and spatial filtering, the energy of T3 are sep-
arated from the whole range-compressed signal. After
inverse STFRFT, two sub-patch results are obtained (see
Fig. 13c).
The M-RASNAC-based feature extraction algorithm

starts with the range-compressed signal in Fig. 13c. The
scale factor ϑ = 5800 in (10), the lower bound of itera-
tive times min = 30, and the upper bound max = 300,
the threshold of quadratic orthogonal distance rho_thr =
0.0016, and the threshold number of inliersN_thr = 0.85 ·
Na. After estimating �μ for the dominant scattering cen-
ters of each ship, the geographical locations and velocity
information are reconstructed based on (22) (see columns
R̂0, η̂0, and V̂r of Table 2). To verify the performance
of parameters construction, we define the dominant
scattering center of a ship as the point with maximum

amplitude in SAR image. Their geographical locations are
listed in columns R0 and η0 of Table 2. The micro along-
track velocity of dominant scattering centers are esti-
mated using fractional Fourier transform (FRFT)-based
method introduced in [32]. The relative velocity between
radar platform and these scattering centers are then listed
in column V̂r of Table 2. Since two groups of data are
in good agreements, the reconstructed errors are quite
limited.
Then, to better understand the targets, the backscatter-

ing envelopes of dominant scattering centers are extracted
from the range-compressed signal. As shown in Fig. 13d,
T1 is much brighter than the others which may indi-
cate the a relatively higher radar cross section (RCS) [29].
Moreover, T2 and T3 are azimuth variant while T1 and
T4 are nearly azimuth invariant. It means the illuminated
regions of T2 and T3 are more “flat” than those of T1
and T4.
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7 Conclusions
An M-RANSAC and STFRFT-based technique is intro-
duced to extract feature of SAR dominant scattering
centers in this paper. Starting with the time-domain
range-compressed signal, this algorithm provides an
ambiguity-free signal-level approach. Meanwhile, this
algorithm requires no explicit knowledge of platform
velocity. It can conduct feature extraction without forming
a SAR image. Within the extracted features, the backscat-
tering envelope is promising to classify the target type in
signal level, the geographical location indicates the target
position relative to SAR platform, and the relative velocity
denotes the along-track motion of illuminated target.
Experiments are conducted to illustrate the perfor-

mance of this algorithm. In the tests, the estimation
errors of location and relative velocity are quite limited
when SNR is relatively high. The normalized extracted
backscattering envelopes express their theoretical ones
well. Moreover, these extracted features validate their
usage in target recognition and classification. Without
forming a SAR image, these extracted features will help us
roughly understand and classify the illuminated targets.
When SAR image is formed by conventional methods, the
extracted backscattering envelopes can be complemen-
tary to SAR image in the application of target recognition
and classification.
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