
EURASIP Journal on Advances
in Signal Processing

Kumar et al. EURASIP Journal on Advances in Signal
Processing  (2016) 2016:48 
DOI 10.1186/s13634-016-0348-9

RESEARCH Open Access

Online rate adjustment for adaptive
random access compressed sensing of
time-varying fields
Naveen Kumar1*, Fatemeh Fazel2, Milica Stojanovic2 and Shrikanth S. Naryanan1

Abstract

We develop an adaptive sensing framework for tracking time-varying fields using a wireless sensor network. The
sensing rate is iteratively adjusted in an online fashion using a scheme that relies on an integrated sensing and
communication architecture. As a result, this scheme allows for an implementation that is both energy efficient and
robust. The objective is to promote an “active" framework which uses the information extracted from the network data
and iteratively adjusts the monitoring process to capture the temporal variations in the monitored field. We propose
two metrics based on target detection/tracking for this feedback scheme that seek to trade off between energy
efficiency and accuracy of the detection/tracking tasks. Our simulation results suggest that tying target detection with
the rate adjustment algorithm ensures that the robustness to changes in the field can be achieved simultaneously with
the end goal of accurate target detection. Compared to a baseline method that uses the correlation of the acquired
field over time, our method exhibits better performance when the targets of interest have a smaller spatial spread.

Keywords: Sensor networks, Adaptive sensing, Detection, Random access, Compressed sensing,
Joint communication and detection

1 Introduction
The emergence of compressed sensing framework
presents significant potential for efficient sensing and
sampling systems [1–3] by helping to reduce sample
complexity under realistic communication constraints.
Sensor network technology greatly benefits from the
compressed sensing paradigm [4–12]. Consider for exam-
ple, large-scale networks that are deployed for long-term
monitoring of dynamic fields such as the ocean bed that
typically need to account for power consumption con-
siderations. An efficient scheme in such cases requires
performance optimization that jointly considers both the
sensing and communication constraints.
To address this issue, Fazel et al. proposed a random

access compressed sensing (RACS) scheme in [13, 14] for
energy-efficient reconstruction of sensing fields. The pro-
posed sensing scheme depends on integrating information
from the communication and channel access modules into
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the data acquisition process. The method is simple to
implement under realistic communication constraints and
requires minimal assumptions on the field. However, the
proposed RACS scheme is designed for stationary1 sens-
ing fields, where the field being monitored is assumed to
remain static during sensing. In order to monitor time-
varying fields, in [15], the authors employed low-rank
matrix recovery to reconstruct the space-time map of the
field. However, this approach is offline and entails con-
siderable delays since full recovery can be attained only
after the data have been collected over multiple time
segments. Moreover, it is assumed that the coherence
properties of the underlying field are known a priori and
remain unchanged throughout the full sensing duration.
This assumption might be justified for the monitoring
of natural phenomena, where the field is assumed to be
either stationary or changing at a fixed rate. It is also com-
mon to find similar assumptions of stationarity in related
works in object detection or classification in underwater
fields [16, 17]. However, when the field being monitored
undergoes a varying rate of change (e.g., when the process
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is impacted by a target that is moving at an unknown or
variable speed), such assumptions may not hold.
In a more recent work, Kerse et al. [18] addressed

this problem by proposing to unify target detection with
reconstruction using a standard sparse identification tech-
nique. Targets are tracked from frame to frame and the
authors further suggest that the tracking error could be
used as a measure to adjust the sensing rate in turn. While
their method does not require any a prioi knowledge
of the number of targets or coherence properties of the
underlying field, it relies on knowledge of the exact target
signatures for both target localization and tracking. In this
paper, we propose a rate adjustment method that does not
require explicit knowledge of the target signature. Rather,
knowledge of the family of models to which the fieldmight
belong is adequate as the field model parameters can be
jointly estimated.
Similar to the work in [18], we consider that the end

goal in sensing is to detect or track targets and incorpo-
rate these data processing aspects into the joint sensing
and communication scheme. We propose a framework to
adjust the sensing rate by estimating different attributes
of the field to make an informed decision. Our adaptive
rate adjustment procedure for compressed sensing iter-
atively adjusts the per-node sensing rate to capture the
variations in the underlying field. First, we treat the field as
piecewise stationary and apply random access compressed
sensing within each sensing period. Second, we compute
two heuristic metrics that seek to tie in the end goal of tar-
get detection/tracking with the rate adjustment scheme.
Using the data collected in each segment, the fusion cen-
ter (FC) relies on a detection algorithm to first determine
the current state it is in. Finally, depending on the current
state, a control algorithm instructs the FC to change the
sensing rate if required.
A high rate of sensing would typically bode well for

target detection/tracking, but it is not energy efficient.
On the other hand, a low rate of sensing may not nec-
essarily lead to poor performance in detection. Thus,
there is a possible trade-off between energy efficiency and
the target detection accuracy which the rate adjustment
seeks to exploit. We perform simulation experiments
using the proposed method and present results that sug-
gest that the proposed sensing rate adjustment method
exhibits better performance compared to the baseline
method when compared on the following evaluation cri-
teria: (a) mean-squared error of tracking the underlying
coherence time and (b) F-score of the target detection
accuracy.
The paper is organized as follows. In Section 2,

we explain the basic sensing model for the station-
ary case, and in Section 3, we relax the stationarity
assumptions. In Section 4, we describe the sample field
model for simulation. In Sections 5 and 6, we describe

an adaptive strategy for sensing the time-varying field.
Finally, in Sections 7 and 8, we provide results for the
simulation.

2 Random sensing network over stationary fields
Consider a grid network consisting of N = P×Q sensors,
with P and Q sensors in the x and y directions, respec-
tively. The underlying assumption is that most signals of
interest (natural or man-made) vary smoothly spatially
and hence are compressible in the spatial discrete Fourier
transform (DFT) basis. We denote the sparsity of the sig-
nal by S. The data from the distributed sensors is conveyed
to the FC, where a full map of the sensing field is recon-
structed. This map can be used for target detection as will
be shown in Section 5.
Inspired by the theory of compressed sensing, the archi-

tecture proposed in [13, 14] employs random sensing, i.e.,
transmission of sensor data from only a random sub-
set of all the nodes. For a stationary field, each sensor
node measures the signal of interest at random time
instants—independently of the other nodes—at a rate of
λ1 measurements per second. It then encodes each mea-
surement along with the node’s location tag into a packet,
which is digitally modulated and transmitted to the FC
in a random access fashion. Owing to the random nature
of channel access, packets from different nodes may col-
lide, creating interference at the FC, or they may be dis-
torted as a result of the communication noise. A packet
is declared erroneous if it does not pass the cyclic redun-
dancy check or a similar verification procedure. Since
the recovery is achieved using a randomly selected sub-
set of all the nodes’ measurements, we let the FC discard
the erroneous packets as long as there are sufficiently
many packets remaining to allow for the reconstruction of
the field.
The FC thus collects the useful packets over a collec-

tion interval of duration T. The interval T is assumed to
be much shorter than the coherence time of the process,
such that the process can be approximated as fixed during
one such interval. Let Rxx(τ ) denote the temporal auto-
correlation of the process, which quantifies the average
correlation between two samples of the process separated
by time τ . The coherence time Tcoh is then defined as the
time lag during which the samples of the signal are suffi-
ciently correlated, i.e., Rxx(Tcoh) = qRxx(0), where q is the
desired level of the correlation (e.g., q = 98 %). We bor-
row the above random sensing strategy from Fazel et al.
[13, 14]. In this strategy, in addition to the compressibil-
ity assumptionmentioned earlier, we can reconstruct back
the field using Eq. (1)

y = R�v + z (1)

where z represents the sensing noise, � is the inverse DFT
matrix, v is the sparse vector of Fourier coefficients, and R



Kumar et al. EURASIP Journal on Advances in Signal Processing  (2016) 2016:48 Page 3 of 14

is a K × N matrix—with K corresponding to the number
of useful packets collected during T—which models the
selection of correct packets. Each row consists of a single
one in the position corresponding to the sensor con-
tributing the useful packet. The FC can form R from the
correctly received packets, since they carry the location
tag. We emphasize the distinction between the sensing
noise z, which arises due to the limitations in the sensing
devices, and the communication noise, which is a char-
acteristic of the transmission system. The sensing noise
appears as an additive term in Eq. 1, whereas the com-
munication noise results in packet errors and its effect is
captured in the matrix R.
The FC then recovers the map of the field using sparse

approximation algorithms [19]. It suffices to ensure that
the FC collects a minimum number of packets, Ns = O
(S logN), picked uniformly at random, from different sen-
sors, to guarantee accurate reconstruction of the field
with very high probability. The random nature of the sys-
tem architecture necessitates a probabilistic approach to
system design using the notion of sufficient sensing prob-
ability [13] denoted by Ps. This is the probability with
which full-field reconstruction is guaranteed at the FC.
Setting this probability to a desired target value, system
optimization under a minimum energy criterion yields
the necessary design parameter, i.e., the per-node sens-
ing rate λ1. The minimum per-node sensing rate can be
expressed in terms of the system parameters as shown
in [14]

λ1s = −1
2NTp

b
b+1

· W0

⎛
⎝2NTp

b
b+1e

b
γ0

T
log

(
1 − αs

N

)⎞
⎠
(2)

where Tp is the packet duration, b is the packet detec-
tion threshold, αs is the average number of packets that
need to be collected in one observation interval T to
meet the sufficient sensing probability, γ0 is the nom-
inal received signal-to-noise ratio (SNR), and W0(·) is
the principal branch of the Lambert W function. (More
details can be found in [14]). Note that as shown in Fig. 1,
λ1s depends on the collection interval T, which in turn
must be lower than Tcoh, for the stationarity assumption
to hold.

3 Adaptive sensing
In the above framework, the minimum per-node sens-
ing rate λ1s can be determined based on the proper-
ties of the field and is then kept fixed throughout the
entire sensing process. However, most fields of interest
are seldom stationary, and the coherence properties of
a non-stationary dynamic field usually vary significantly
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Fig. 1 Per-node sensing rate λ1s vs. the collection interval T, for
N = 1000 nodes, S = 10, Tp = 0.2 sec, b = 4, αs = 244 packets, and
γ0=15 dB

over time. This calls for the design of an adaptive ran-
dom sensing network for the monitoring of temporally
varying fields. The objective is to transition from passive
monitoring where only the map of the sensing field is
reconstructed to an active framework where the relevant
information is extracted (e.g., target detection/tracking)
and exploited to instruct the sensor nodes to adjust their
sensing rates. In practice, we assume the coherence prop-
erties of a non-stationary field to be piecewise constant
over time, such that given prior information about the
field at a particular time instant it can be assumed to be
stationary within a single coherence time interval. To this
end, we employ a detection method, which uses the col-
lected data to determine the attributes of the underlying
field. The FC can then use this information to determine
any appropriate modifications to the per-node sensing
rate, i.e., increase, maintain, or decrease the sensing rate.
This cycle of sensing-decision-adjustment is illustrated
in Fig. 2.
For a given collection interval T, the corresponding

per-node sensing rate can be determined using Eq. (2),
as shown in Fig. 1. The proper choice of T however
depends on the rate of variations in the field and is adap-
tively tuned. In particular, we use an approach based on
target detection, where we assume that an object/target
model of interest is known beforehand. This is a com-
mon assumption in most supervised pattern recognition
tasks. Given a reconstructed map, the location of targets
is first estimated. Using this knowledge, we then esti-
mate the parameters of the object model from the map.
These parameters describe the detection system’s under-
standing of the field and can be used to generate the
map of the field. Comparing this model-based map with
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Fig. 2 The adaptive sensing scheme

the observed one reconstructed using sparse approxima-
tion algorithms provides us with a reliability metric for
reconstruction. In other words, if there is a difference in
what the algorithm expects to see and what it sees, it
indicates an error in either the acquisition of the field
or the algorithm’s understanding of the map. In either
case, the FC needs to adapt its sensing rate. We specifi-
cally discuss our methods in the context of the following
two cases:

3.1 Oversensing
This situation corresponds to the case when there occurs
redundant sensing because the per-node sensing rate is
much larger than the rate of change of the field, i.e., T <<

Tcoh. Although this case favors reconstruction using the
RACS architecture, it leads to a wastage of communica-
tion resources. Thus, we seek to lower the sensing rate
in this case to an optimal point such that the accuracy
of our end goal is not affected. Figure 7 shows the result
for of oversensing for the example discussed in Section 5.
In this case, we devise a scheme to estimate the motion
of targets using multiple frames. We use the term frame
here and elsewhere in the paper to refer to the field recon-
structed from samples acquired within a single sensing
time duration.

3.2 Undersensing
In this scenario, the rate of sensing per node is insuffi-
cient and the field changes within one collection interval
since T > Tcoh. Thus, the per-node sensing rate λ1s needs
to be increased. The targets are no longer steady within
the duration of a collection interval T leading to blurring,
which makes target detection challenging. The estimation
task in this case is further complicated by the fact that
the packets from different frames may have been collected
during the interval T. This scenario leads to a violation
of the stationarity assumptions made initially. The recon-
structed map is thus blurred because of different packets

originating from different frames (Fig. 3). In this case,
we use a specific error metric based on model fitting
to estimate the reliability of reconstruction and object
detection.

4 Simulation of a sample dynamic field
In this paper, we demonstrate the adaptive monitor-
ing procedure using a sample model for the field. We
demonstrate our adaptive scheme to adjust the per node
sensing rate in RACS using a simulated example field in
this paper. Using a realistic example allows us to control
the coherence parameter Tcoh and monitor the effect of
changing the collection interval T in accordance with the
adaptive algorithm.
We first describe the example field that serves as

our test case. Suppose, a field with M targets is being
observed. Each target in the field is assumed to generate
a signature (e.g., heat, sound, etc) decaying exponentially
with distance from its location. At time t, the process
observed by sensor node i at coordinate (xi, yi) is given by
Eq. (3)

ui(t) =
M∑

m=1
Ame−p

√
(xi−am(t))2+(yi−bm(t))2 (3)

where am(t) and bm(t) are the coordinates of the mth
target at time t, Am is its strength, and p is the
decay rate of the sources. The process then evolves
over time as the sources move along random tra-
jectories. Similar models are commonly found in the
energy-based localization literature for static sensor net-
works [20–22] when the targets being detected are not
moving.
Initially, the FC has no knowledge of the location of

targets or the rate of variation in the field, i.e., the
speed at which the targets are moving. It thus instructs
the data collection to begin with an initial sensing rate
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Fig. 3 a–d The effect of the field changing at rate faster than the sensing rate. a is the original undistorted map that was sensed at Tcoh while
(c) shows the same field obtained through temporal blurring after an observation interval T = 10× Tcoh. d is the field obtained as a result of sensing
at a rate 10 times slower than the field’s underlying rate of change. Notice how (d) is more similar to the blurred map (c) than (a). This distortion in
the sensed field is an example of undersensing

λinit1s . The initial sensing rate is determined using histor-
ical data by setting the desired parameters in Eq. (2).
Once the map of the field Gsa is recovered using sparse
approximation techniques, the FC may now use the
rate adjustment algorithm described later to decide if
the sensing duration T needs to be adjusted. The sen-
sors employ the adjusted sensing rate in the ensuing
sensing duration. In this paper, we discuss metrics for
the proposed rate adjustment algorithm for this family
of field models, although the framework itself is quite
general.
For simulating a map of the field as defined above, we

start with a set of randomly chosen parameters. In addi-
tion, each target is assigned a random velocity and direc-
tion of movement. To simulate the undersensing case, we
consider that collection occurs over Nb coherence time
intervals (referred to as frames) where T ≈ NbTcoh. The
randomly sampled packets are then collected uniformly
over the last Nb frames (Fig. 3). This effectively leads to
motion blurring of the targets as mentioned before. To
simulate the oversensing case, the collection interval is
reduced to T ′ = Tcoh while each target’s velocity is scaled
by T/Tcoh to make them appear to be moving slower. To
deal with the issue of a finite field size, targets moving
out of the field are replaced by new targets starting from
the same location assigned a new random velocity and
direction.

5 Adaptive field monitoring scheme
In this section, we discuss specific algorithms and met-
rics extracted using the reconstructed map, which are
used for the adaptive rate control of per-node sensing
in RACS. Although the algorithms discussed below have
been adapted to this particular family of models used
in the simulation example, we have attempted to lay-
out broad steps whenever possible and provide a general
scheme to be used in such cases. These algorithm stages
have been presented in the block diagram shown in Fig. 4.

5.1 Target localization
Before taking any decisions about the current sensing
state, we first detect and localize the targets in the image.
Similar to [18], by involving target detection in the feed-
back process, we would like to ensure that the rate of
sensing is optimized for the end goal of target detection.
Traditionally, most energy-based localization methods

[20–22] assume that the number of targets is known in
advance. In addition, they assume a field model for tar-
get signature decay allowing for parameter estimation
by model fitting. More recently, Kerse et al. proposed a
method for direct target localization based on a standard
sparse identification technique [18]. The advantage in
their method is that target localization can be performed
in a single step without first having to reconstruct the
field. The number of targets can also be jointly estimated
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Fig. 4 Block diagram for the adaptive feedback mechanism. G denotes the true measurements on the time varying field

in this process using a sparsity constraint. However, the
method still depends on exact knowledge of the field
model.
To overcome this drawback, we propose a target local-

ization algorithm based on local gradient ascent. The
proposed method only requires that the target signatures
be monotonically decaying away from the target. This
technique is adapted from the mode seeking mean shift
algorithm [23] which is frequently used for unsupervised
clustering of data. Consequently, it can be interpreted as
searching local peaks in the data histogram. In the task
at hand, we are instead interested in finding local peaks
in field intensity. We also modify the algorithm slightly to
adapt to the discrete search space for this problem. Specif-
ically, we start from a random initial pointX on themap. A
mean-shift-based gradient ascent technique is then used
to update the location of this point in each iteration till a
peak is found. Given the current location X, we estimate
an intensity weighted mean Xc for locations around X in a
window of sizeW as shown in Eq. (4). Note that the direc-
tion from X to Xc gives the direction of gradient ascent,
along which X should be updated in the next iteration.
However, in the current problem, we are working on

a space of discrete sensor locations. To make the algo-
rithm better suited to such a scenario, we quantize the
gradient direction to eight angular bins. Depending on the
direction of the gradient, X is then shifted to one of its
eight connected points. This process is explained using
a schematic in Fig. 5. The iterations are repeated until
X converges to a local maximum or reaches a point that
has already been visited. The entire procedure is repeated
multiple times with new random initial points till the
peaks have been discovered. In practice, it is not necessary
to traverse all points in the field to discover all the peaks
(Fig. 6), and we restrict the algorithm to a fixed number
of iterations. The parameter W in this algorithm serves
as a mask over which the gradient can be estimated more
robustly. The target detection procedure is explained in
Algorithm 1.

Algorithm 1: Modified gradient ascent algorithm for
target detection on the acquired map. (See Fig. 6)
Input: P × Qmap Gsa reconstructed by RACS
Output: Location of targets μ1,μ2, . . . where the

number of targets is initially unknown
Set maximum number of iterations toM, size of
window toW
Cluster index K ← 1
for iter ← 1 toM do
Randomly select an initial location X on the map.
while X hasn’t already been visited do

Mark X as visited and belonging to cluster K
//assuming we’re going to find a new target
Compute the new center of mass Xc within a
window of sizeW around X.
Compute the direction from X to Xc and
quantize it into 8 bins between
{−π/8,π/8, 3π/8 . . .} (Fig. 5)
Update the position of X to one of the 8
adjacent positions based on the quantized
direction (Fig. 5)

end while
Mark all points in this trail leading upto X as
belonging to the same cluster as X
if X belongs to the new cluster K then

Append X as μK to the set of targets
//new target found
K ← K + 1

end if
end

Xc =
∑
s
I(s)K(s − X)s∑

s
I(s)K(s − X)

, s ∈ P × Q grid

K(s − x) =
{
1 if ||s − x||c ≤ W
0 if otherwise (4)
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Fig. 5Modified discrete step update scheme using quantized
directions. Asterisk (*) indicates points on the grid. I denotes the P × Q
grid of intensity values, and K(.) denotes our particular choice of
kernel function used for computing mean

5.2 Parameter estimation
Once the positions am and bm for the targets have
been identified using the target localization algorithm
described above, we try to obtain aminimummean square
error (MMSE) estimate of the field parameters defined
in Eq. (3) using a method of comparison by synthesis to
match the acquired map Gsa against a model. The param-
eters of model denoted by Gmodel comprise the target
locations (am, bm), their respective strengths Am, and the
decay parameters of the target signature (p).
We estimate the parameters using a nonlinear regres-

sion [24] technique to optimize an MMSE formulation as

shown in Eq. (5). We use the nlinfit function in MATLAB
for solving this optimization problem. Since the optimiza-
tion is not convex, the choice of initial points is important.
We use the target localizations estimated earlier and a
reasonable value for the decay as our initial point. The
estimated parameters are then used to generate a map of
the field Gdet (Fig. 7d). Gdet represents what the control
algorithm expects the field to look like based on the target
localizations and its knowledge of the model.

̂a,b,A, p = argmin
am ,bm ,Am ,p

P∑
i=1

Q∑
j=1

( M∑
m=1

Gmodel
ij (am, bm,Am, p) − Gsa

ij

)2

(5)

Gdet = Gmodel( ̂a,b,A, p) (6)

5.3 Reliability metric for reconstruction
We obtain a reliability metric for reconstruction based on
the error in the model fitting described above. We com-
pare the model-based map Gdet against the non-model-
based map Gsa recovered via sparse approximation by
projecting both of them on the DFT matrix and decom-
posing the error into a high-frequency (HF) and low-
frequency (LF) term. The intuition is that Gsa should be
similar to Gdet, but for any errors resulting from issues in
either sensing or localization. A gross mismatch between
the coefficients will be captured by the LF term indicat-
ing an inaccurate detection while a large value of the HF
term (denoted by er) is a characteristic of a poor recon-
struction due to violation of the assumptions in RACS
(Fig. 8a, b). The definition of this error term is shown in
Eq. (7) where FH denotes a 2D high-pass filter, and er is
obtained by convolving it with the difference between the
images Gdet and Gsa. The cutoff frequency for the filters
can be chosen from a previous estimate of the field. The
error metric er thus comes in handy in the undersensing

Fig. 6 Figure on the left shows a sample map with sequential update steps for each point converging at local peaks (marked by diamond symbols).
The figure on the right shows the window of widthW = 3 during the current iteration and the general direction of the gradient from the center
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Fig. 7 Steps in rate adjustment. b shows the samples chosen at random, and (d) is the map generated using the parameters estimated on (c).
Notice how (d) is approximately similar to (a) when detection is accurate

case when the acquiredmapGsa is either blurred or poorly
reconstructed.

er = FH ∗
(
Gdet − Gsa

)
(7)

5.4 Measuring motion by target tracking
In addition to compensating for the dynamic nature of
the field in the undersensing case, we would also like to
eliminate any redundant sensing. Recall, that in the over-
sensing case, the field changes very slowly, yielding perfect
reconstruction and detection. This makes it necessary to
monitor the field over multiple frames for detecting any
signs of oversensing.
To quantify motion in the field, we track the loca-

tion of detected targets over the last L frames. Note
that this is not trivial since the number of targets
detected is not guaranteed to be consistent from one
frame to another. Moreover, the target indices assigned
by the detection algorithm are non-unique. To deal
with this issue, we use a tracking approach based on
dynamic programming that ensures tracking even if
the object is not detected in some of the intermedi-
ate frames. More specifically, we recursively minimize
the total distance moved by a target over L frames.
If the targets are spaced sufficiently apart, this ensures

tracking of the slowest moving target over multiple
frames.
Suppose

(
âti , b̂ti

)
denote the location of the ith target

detected in frame t and let dtij be defined as the distance
between the ith target detected in the frame t and the
jth target detected in the frame t + 1. Then the net dis-
tance D(n1, n2, . . . , nL) moved by a target over L frames
and detected at the indices {n1, n2, . . . , nL} is given by
Eq. (8).

D(n1, n2, . . . , nL) =
L−1∑
t=1

dtntnt+1 ; 1 ≤ nt ≤ Mt (8)

dtij =
√(

ati − at+1
j

)2 +
(
bti − bt+1

j

)2
(9)

where Mt is the total number of targets detected at each
frame. The optimization problem then boils down to find-
ing the sequence of object location indices {n1, n2, . . . , nL}
that minimizes the sum of total point-to-point distances
over L frames. To normalize over the length of the tempo-
ral window, we use the minimum average distance moved
as a tracking-based metric as shown in Eq. (10). This met-
ric (denoted by em) is expected to be low when the targets
move slowly in the oversensing case while it is expected
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Fig. 8 a HF and b LF components of the model-based error and the minimum average motion per frame for (c) L=5 and (d) L=10 cases. The system
is in open-loop control, i.e., the error metrics are not being compensated for which can be noted by the flat T line

to be much higher when the objects get blurred in the
undersensing case.

em = 1
L

min
n1,...,nL

D(n1, . . . , nL) (10)

6 Feedback algorithm for rate adjustment
After computing the error metrics er and em, a control
algorithm is used to determine if the current sensing rate
needs to be changed. This information is fed back to
the FC which makes any necessary changes to the sens-
ing rate, thereby establishing a closed-loop control. The
objective of control is to minimize the reconstruction
error-based metric er at the same time ensuring that the
targets move significantly from frame to frame as indi-
cated by the tracking error metric er . This ensures that
the system is in a sweet spot between undersensing and
oversensing.

In this paper, we propose a dual threshold feedback
scheme to keep the system in this “optimal” state. We
define two parameters: a lower threshold thm for the met-
ric em and an upper threshold thr for er , respectively. In
the proposed scheme, the value of these two parameters is
tuned adaptively. The control algorithm itself consists of
two modes: an “adjust” mode and a “calibrate” mode. The
system’s current mode is decided based on which of the
four system states (A–D) it currently is in. These system
states are shown in Fig. 9.
In the adjust mode (states A and D in Table 1), the

collection interval T is incremented or decremented by
a scalar update (κ > 1) depending on the value of the
metrics. In state A, the condition em ≤ thm indicates over-
sensing and hence the algorithm would decide to increase
T, thereby decreasing sensing rate. In state D, the condi-
tion er ≥ thr indicates that the system is undersensing
which would result in the control decision to decrease T
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Fig. 9 Four states of the control algorithm as determined by the error
metrics er and em based on the thresholds thr and thm . The ideal
operating zone is shown by the shaded region

thereby increasing the sensing rate. The mutually oppos-
ing nature of these two conditions gives rise to a “stable”
or buffer region for T (see Table 1) where it is not updated.
In this mode, we only adapt the width of the buffer region
by adjusting the threshold values such that for the current
value of T, the control is just within the stable zone. Note,
that it might not be feasible to guess a value for thm or thr
making this adaptive approach necessary.
In practice, the thresholds can be initialized to extreme

values such that the buffer region is wide enough and the
system is guaranteed to start in state B. In subsequent
intervals, the thresholds are updated in the “calibration”
mode to shrink this buffer region. The ideal operating
zone, centered at (thr , thm), is shown by a shaded region
in Fig. 9. If the system steps out of this operating zone, the
thresholds are adjusted in a direction such that the cur-
rent system state is contained within the operating zone.
In the calibration mode, the thresholds are adjusted by

predefined steps α and β such that the system stays within
the operating zone. In other words, the aim of this adap-
tive control is to obtain the tightest stable region of control
for T.
To provide an intuition of how the scheme works, con-

sider the graphical illustration of the proposed feedback
algorithm in Fig. 9. At any time instant, the system state
can be represented as a point on the erem plane. The rel-
ative position of this point with respect to the thresholds
thr and thm is then used to decide the next course of
action. In general, the algorithm tries tomaintain a narrow
buffer region of control by keeping the operating point
(er , em) close to (thr , thm). This can be achieved by either
updating the sensing time period T (states A and D) or by
adapting the thresholds (states B and C).
By observing how the states of the algorithm transition,

we present an argument to show that the proposed algo-
rithm is bounded-input bounded-output (BIBO) stable.
This means that for a finite coherence time Tcoh, the con-
trolled variable viz. the sensing time period T is always
bounded. This can be shown by considering each of the
four states of operation A, B, C, and D of the proposed
algorithm above.
Suppose, we are currently in state A (oversensing) and

the feedback algorithm responds by increasing T. This
leads to an increase in both em and er since fewer sam-
ples are sensed per unit time. This, in turn, prevents
the system from staying in state A and is most likely to
cause a transition to states B or C. Similarly, if the sys-
tem is in state D (undersensing), the algorithm responds
by decreasing T. This leads to the net effect that both er
and em decrease, taking the system out of state D. When
the system is in states B or C, the thresholds are var-
ied so that operating point is maintained close to the
adapted thresholds. This ensures that the sensing time
period T and in turn the error metrics er and em cannot
grow unbounded for a given finite Tcoh. As an exam-
ple, note the state transitions in Fig. 10 which shows the
internal states of the algorithm for a simulated control
scenario.

Table 1 Control feedback rules (“adjust” mode: A, D ; “calibrate” mode: B, C)

Oversensing

em < thm

Stable region Undersensing

er > thr

State A B C D

Condition em < thm em > thm em < thm er > thr
er < thr er < thr er > thr em > thm

Decision T ↑ Narrow Widen T ↓

Update T = κT thr = thr − α

thm = thm + β

thr = thr + α

thm = thm − β

T = T/κ
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Fig. 10 Figure shows the internal states of the algorithm as it makes various rate adjustment decisions. States are the same as described in Table 1

7 System operation
We presented an example of the control system in an
open-loop operation earlier in Fig. 8 which showed the
value of metrics er and em for a particular Tcoh profile.
Figure 8c, d suggests that a larger L might be related to a
slower response time of em as can be seen around t = 80,
100 when the field’s Tcoh changes. The error metrics based
onmodel fitting (Fig. 8a, b) are computed from the current
frame and thus respond instantaneously to the changes
in field coherence. It is also worth noting here that the
HF errors (spatial high-frequency component) typically
correspond to the reconstruction error in the undersens-
ing case, while the LF error serves as a sanity check for
detection.
In this section, we present an example of closed-loop

control by using the feedback mechanism (Table 1) dis-
cussed earlier to compensate for the error metrics as
shown in Fig. 11. Note that the collection time interval
T now attempts to trace the underlying hidden parame-
ter Tcoh as the system tries to keep both er and em within
bounds. Figure 10 provides a better insight into the system
by showing the feedback algorithm’s underlying internal
state. Recall that states A andD correspond to oversensing

and undersensing respectively while in states B and C, the
thresholds are adapted to achieve a tight buffer region of
stability.

8 Simulation results
We run simulations with M = 4 targets and different
velocity and decay parameters, using the proposed
feedback algorithm for sensing rate adjustment. We
evaluate the performance of the algorithm using two
different criteria. First, the average mean squared error
(MSE) between the estimated sampling duration T (blue
line in Fig. 11) and the coherence time ground truth
Tcoh (red line in Fig. 11) is computed as a measure of
the algorithm’s ability to track and adapt to changes
in coherence time. Secondly, we calculate the F-score
measure for target detection in each frame. This is a
reasonable criterion for our task since the end goal
of such an application would be target detection and
tracking. To calculate the F-score of target detection
in a frame, we check how many of the localized targets
correspond to actual target locations. F-score weights
both the precision and recall of target detection as
follows
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Precision = # targets that were correctly localized
# targets that were localized

Recall = # targets that were correctly localized
# targets actually present

F = 2.Precision.Recall
Precision + Recall

(11)

8.1 Baseline algorithm
We compare the results against a baseline method based
on correlation of the currently acquired field Gsa with the
field acquired in the previous cycle as suggested in [15].
Control decisions are taken depending on two fixed high
(δh) and low (δl) thresholds on the correlation value. T
is incremented if correlation exceeds δh and decremented
if correlation falls below δl. T is not updated if corre-
lation lies between these two thresholds. The sampling
duration T is changed using a scaling parameter κ as
earlier.
Figure 12 shows the results of our simulation for the

baseline and proposed methods. The results, averaged for
each run, are shown for different parameter settings of
velocity and decay p as defined in Eq. (3). Remember that
a high F-score indicates accurate target detection while
a low MSE denotes accurate tracking of the underlying
coherence time (Tcoh).
Figure 12a shows the results for the baseline method

using correlation as a feedback metric. From the MSE
and F-score plots, it is evident that the baseline algorithm
performance drops with increase in decay parameter p.
This is expected since the targets with a lesser spread do
not affect the correlation metric significantly. In contrast,

for our proposed feedback algorithm, the performance
improves with increase in the decay parameter p since tar-
gets with lesser spread are easier to localize and hence
field reconstruction is more accurate (Fig. 12b). A simi-
lar trend can be seen for average MSE which is related
inversely to the target detection F-score. In other words,
this might indicate that poor tracking of the underlying
Tcoh is related to poor target detection, thereby making
a case for the proposed sensing rate adjustment in this
paper.
Since velocity for each target is assigned uniformly at

random in the simulation, we control the velocity range
that can be assigned to each target as a parameter instead.
We note that increase in velocity has a positive influence
on the performance of both the algorithms. This can be
easily explained by considering that an increase in velocity
of the targets makes it easier to discriminate between the
oversensing, adequate sensing, and undersensing states.
This holds for both the algorithms, and hence, we notice
a general increase in F-score and decrease in MSE with
increase in velocity. Finally, we also note that our pro-
posed detection-based feedback mechanism outperforms
the baseline correlation-based method in terms of the
accuracy of target detection as indicated by the higher
F-score. The average target detection F-score obtained
for the baseline algorithm was 0.32 while our proposed
method achieved an average F-score of 0.45.

8.2 Simulations with measurement noise
Next, we test the noise robustness of our proposed
method by adding synthetic sensor or measurement noise
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to the field. We simulate measurement noise by adding
zero mean white Gaussian noise at different amplitudes
(σnoise) while keeping the original field’s intensity the
same. Results are averaged on full runs for different
noise level, and the F-score for target detection accu-
racy is shown in Fig. 13. Other simulation factors such as
velocity-scale and decay were held constant at 1 and 0.3
respectively for the purposes of this simulation.
The results show a clear degradation in F-score for both

the proposed detection-based and baseline correlation-
based methods, as the SNR decreases. However, we
note that for the baseline algorithm, the F-score initially
increases with decrease in SNR hinting at suboptimal-
ity in processing. On further investigation, we found this
peculiar trait to be an artifact of the control algorithm
and the choice of metric used in the baseline scheme.
As noise is added to the field value of the correlation
metric drops, which leads the FC to confuse the current
state as undersensing. This inference leads to a monotonic
decrease in sampling duration T, temporarily increasing
performance at the cost of energy efficiency. The target
detection F-score peaks around σnoise = 0.05 beyond
which the accuracy of target-detection algorithm is signif-
icantly affected. On the other hand, this artifact does not
affect the proposed method significantly, since the met-
ric used for our control algorithm is based directly on
target detection. As a result, we note that our proposed
method exhibits a more graceful degradation in perfor-
mance with increase in noise without compromising on
energy efficiency.

9 Conclusions
In this work, we present a rate adjustment scheme for
random access compress sensing (RACS) to monitor and

compensate for the rate of change in time-varying fields.
Adjustment of sensing rate for RACS is motivated by the
trade-off between energy efficiency and the accuracy of
tracking targets of interest. Although direct estimation of
the coherence timemight seem to be the best approach for
sensing a time varying field, we note that it is not directly
related to our end goal of target detection in the field. We
also observe that the reconstruction error in RACS has
a complex relation to the current coherence time of the
field and factors like the position of targets, their velocity,
etc. Thus, by making the algorithm depend on the detec-
tion and localization of targets, we ensure that the rate
adjustment is tied in to our actual objective.
In this paper, we propose two unsupervised metrics to

inform the rate adjustment scheme. A model-based field
reconstruction is done after target localization for each
acquired frame, and the model fit error er is used as a
metric to detect cases when the FC is undersensing. To
account for oversensing in operation, we define a measure
for the motion of detected targets in the past L frames.
This motion based metric em indicates any redundancy in
sensing and can be used to decrease the collection time
interval T if needed.
We proposed a dual-threshold-based feedback mech-

anism using these error metrics for rate sensing adjust-
ments. The technique assumesminimumprior knowledge
and adapts the threshold in an online fashion using rea-
sonable assumptions about the field. We also show that
the proposed control mechanism is BIBO stable. In addi-
tion, we compare our results against a baseline algorithm
that uses temporal correlation of the acquired fields and
show that the proposed rate adjustment mechanism per-
forms better on an average in terms of target detection
accuracy even in the presence of noise.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0.37

0.375

0.38

0.385

0.39

0.395

0.4

0.405

0.41

0.415

0.42

σ
noise

F
−

sc
or

e

Detection−based
correlation−based

Fig. 13 Simulation results with additive white Gaussian noise at different levels for the proposed and baseline methods



Kumar et al. EURASIP Journal on Advances in Signal Processing  (2016) 2016:48 Page 14 of 14

Endnote
1We use the term stationary in this paper to refer to

fields that are temporally static during the sensing
duration.
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