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Abstract

The continuous phase modulation (CPM) signal has the characteristics of continuous phase, excellent spectral
properties, less out-band radiation, and constant envelope. Thus, CPM technology is widely used in communication
systems. The shape of frequency pulse can influence the bandwidth occupancy of CPM, and smoother phase
trajectories are obtained by using smoother frequency pulses. In this paper, a mathematical Pan-function model of
the optimized frequency pulse is established and solved by introducing Fourier series, which can provide smooth
phase trajectories of CPM signal. The simulations of the CPM signal quadrature modulation and coherent
demodulation are performed using the MATLAB software. Moreover, the spectral characteristics of the obtained
optimized CPM signal were analyzed and compared with the minimum shift keying (MSK) signal and other CPM
signals with smooth frequency pulses. The simulation results indicate that the proposed method provides an
excellent bandwidth efficiency compared to other existing methods discussed in this paper. The whole system has
been successfully downloaded to field programmable gate array (FPGA) devices. The operating results are consistent
with expected results, verifying the correctness of this method.
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1 Introduction
The spectral characteristics of the digitally modulated
signals are extremely important in the design of mod-
ern digital communication system. Continuous phase
modulation (CPM) is one of the most important modu-
lation techniques due to its efficient use of bandwidth.
It has been widely applied in many communications,
where multipath fading and nonlinear distortions
make constant signal envelope and efficient bandwidth
necessary.
For CPM systems, the transmitted signal can be

expressed in the following form [1]

s(t; �a) =
√
2Es
T

cos
[
2π fct + ϕ(t; �a) + ϕ0

]
, t ≥ 0 (1)
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where the information carrying phase is

ϕ(t; �a) = 2πh
n∑

i=−∞
aiq(t − iT), nT ≤ t ≤ (n + 1)T

(2)

and {ai} is the sequence of M-ary information symbols
selected from the alphabet±1,±3, · · · ,±(M−1), Es is the
symbol energy, T is the symbol time, fc is the carrier fre-
quency, and ϕ0 is the initial phase of the carrier that can
be set to zero in the case of coherent transmission without
any loss of generality. h is the modulation index, and the
amplitude of the pulse g(t) is chosen to give the maximum
phase change ahπ radians over each symbol interval. The
phase pulse q(t) can be represented in general as the time
integral of pulse g(t), as given in (3)

q(t) =
t∫

0

g(τ )dτ (3)

If g(t) = 0 for t > T , the CPM signal is called full
response CPM. If g(t) �= 0 for t > T , the modulated
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signal is called partial response CPM. An infinite vari-
ety of CPM signals can be generated by choosing dif-
ferent pulse shapes g(t) and by varying the modulation
index h and alphabet size M. The rectangular pulse,
raised cosine pulse, and Gaussian minimum-shift keying
(GMSK) are commonly used CPM pulse shapes [2–4].
An appropriate pulse g(t) can be selected that can pro-
vide a continuous phase trajectory of modulated signal.
This study aimed to achieve an optimized frequency pulse
based on Pan-function model, for h = 1/2 binary full
response CPM, with characteristics of a higher spectral
roll-off rate, less out-of-band radiation, and a constant
envelope.

2 Foundation of the optimizedmathematical
model

2.1 Minimum energy radiation criterion outside the
frequency bands

The optimized mathematical model is established by
introducing the minimum out-of-band radiation criterion
[5] that can be expressed as follows:

J = 1
2π

+∞∫
−∞

g (ω)|S (ω)|2dω (4)

where the Fourier transform of a(t) is

S (ω) =
T/2∫

−T/2

a (t)e−jωtdt (5)

a(t) is the symbol signal waveform, which is an even
function assumed in interval [−T/2,T/2], T is the sym-
bol period, |S (ω)|2 is the power spectrum of a(t), and
g(ω) is an increasing function that determines the roll-off
rate of the spectral density function S(ω). The increas-
ing function g(ω) = ω2n(ω > 0) with different n values
is shown in Fig. 1. The value of n depends on the degree
of suppressed out-band radiation. In order to achieve a

convergent and integrable J, the roll-off rate of |S (ω)|2
should be greater than the increase rate of g(ω) to limit
the roll-off rate of the power spectrum |S (ω)|2 of the
signal a(t).
The power spectral density of a(t) can be written as

follows:

|S (ω)|2 =
T/2∫

−T/2

T/2∫
−T/2

a (t)a (s)e−jω(t−s)dtds (6)

Replacing (6) into (4), and after somemanipulations, the
following is obtained:

J= 1
2π

+∞∫
−∞

T/2∫
−T/2

T/2∫
−T/2

g (ω)a (t) a (s) e−jω(t−s)dtdsdω

(7)

In order to facilitate the solution, the function g (ω) can
be expressed as follows:

g (ω) = lim
r→0

g (ω) e−rω = lim
r→0

ω2ne−rω (r ≥ 0) (8)

When r lies on interval [ 0,+∞], the integral
+∞∫

−∞
ω2ne−rωe−jω(t−s)dω

is convergent; therefore, the order of the integral can be
exchanged as follows:

J= 1
2π

lim
r→0

T/2∫
−T/2

T/2∫
−T/2

a (t) a (s)

⎡
⎣ +∞∫
−∞

ω2ne−rωe−jω(t−s)dω

⎤
⎦dtds

(9)

Based on the Taylor series expansion,

e−rω = 1− rω +
( rω
2!

)2 + . . . . . . + (−rω) !
n!

+ . . . (10)
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Fig. 1Waveforms of g(ω) under different values of n
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According to inverse Fourier transform [6], δ(t) can be
written as follows:

δ (t) = 1
2π

+∞∫
−∞

ejωtdω (11)

As δ(t) is an even function

δ (t) = 1
2π

+∞∫
−∞

e−jωtdω

δ (t − s) = 1
2π

+∞∫
−∞

e−jω(t−s)dω

(12)

Hence, the following equation can be obtained:

∂2n (δ (t−s))
∂t2n

=δ(2n) (t−s)=
(−j

)2n
2π

+∞∫
−∞

ω2ne−jω(t−s)dω

(13)

when r → 0+, substituting (12) and (13) into (9), the
following expression can be obtained:

J =
T/2∫

−T/2

T/2∫
−T/2

a (t) a (s) (−1)nδ(2n) (t − s) dtds

= (−1)n
T/2∫

−T/2

a (t)

⎡
⎢⎣

T/2∫
−T/2

δ(2n) (t − s) a (s) ds

⎤
⎥⎦dt

(14)

Using the characteristics of δ(t) function, (14) can be
written as follows:

J = (−1)n
T/2∫

−T/2

a (t) a(2n) (t) dt (15)

where a(2n)(t) is the 2n-order derivative of the symbol
signal.
According to (15), the criterion for minimum out-band

radiation can be transformed into the problem of unrav-
eling the symbol function a(t) when minimizing the
Pan-functional J [7].

2.2 Additional constraints of Pan-function
The mathematical Pan-function is added to the con-
straints of energy of a single-symbol signal, the boundary
conditions, and peak-to-average power ratio (PAPR) of
signal.

2.2.1 Restriction on the symbol boundary condition
According to [8], assuming that function a(t) is
in the finite interval [−T/2,T/2], if a (t) , a′

(t) ,

a′′
(t) , . . . , a(n−1)(t) are continuous in interval

[−T/2,T/2] without skipping, and a(n)(t) is finite, then
there is no skipping in the end point of the interval. The
Fourier transform of a(t) decays not less than C/ωn+1

in the finite interval [−T/2,T/2], where C is a con-
stant. Herein, a(t) should satisfy the following boundary
condition:

a (±T/2) = a(±T/2)′ = . . . = a(n−1) (±T/2) = 0 (16)

2.2.2 Restriction on the single-symbol signal energy
condition

The energy per transmission for the signal a(t) in the finite
interval [−T/2,T/2] with a length of T, can be expressed
as follows:

E =
T/2∫

−T/2

a2 (t) dt (17)

2.2.3 Restriction on the PAPR of signal
The signal a(t) is an even function and the maximum
value of signal a(t) is set to be a(0), which is the value of
a(t) at time t = 0. The PAPR of the signal a(t) is consid-
ered as a parameter, which has significantly influence on
spectral characteristics of the signal a(t); it is defined as:

K = amax√√√√ 1
T

T/2∫
−T/2

a2(t)dt

= a(0)√√√√ 1
T

T/2∫
−T/2

a2(t)dt

= a(0)√
E
T

(18)

Thus, the criterion for minimum out-of-band radiation
can be transformed into the problem of unraveling sym-
bol function a(t), whenminimizing the Pan-function with
the constrains of single-symbol energy, symbol boundary
condition, and PAPR of the signal, which can be expressed
as follows:

H= J + λ

⎛
⎜⎝

T/2∫
−T/2

a2(t)dt − E

⎞
⎟⎠+ μ

(
a(0) − K

√
E
T

)

(19)

where λ and μ are the Lagrange constants.

2.3 Optimized frequency pulse solving process using
Fourier series

Any function in interval [−T/2,T/2] can be infinitely
approximated by Fourier series [9, 10]. The efficient
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spectrum signal a(t), with a code width of T, can be
expressed in the following Fourier series form:

a(t) = a0
2

+
m∑
k=1

(
ak cos

(
2π
T

kt
)

+ bk sin
(
2π
T

kt
))

(20)

where

a0 = 2
T

T/2∫
−T/2

a (t) dt

ak = 2
T

T/2∫
−T/2

a (t) cos
(
2π
T

kt
)
dt

bk = a0
2

+
m∑
k=1

ak cos
(
2π
T

kt
)

a(t) is set as an even function; therefore, bk = 0, and a(t)
can be expressed as follows:

a (t) = a0
2

+
m∑
k=1

ak cos
(
2π
T

kt
)

(21)

As cos(k)(t) = cos
(
t + k π

2
)
, the following equation can

be obtained:

a(2n)(t) =
m∑
k=1

ak ·
(
2π
T

k
)2n

· cos
(
2π
T

kt + nπ

)

= (−1)n
m∑
k=1

ak ·
(
2π
T

k
)2n

· cos
(
2π
T

kt
)

(22)

Substituting Eq. (22) into Eq. (15), J can be expressed as
follows:

J = (−1)n
T/2∫

−T/2

a(t)a(2n)(t)dt

=
T/2∫

−T/2

[
a0
2

+
m∑
k=1

ak cos
(
2π
T

kt
)]

·
[ m∑
k=1

ak ·(2πT k)
2n

· cos
(
2π
T

kt
)
]
]
dt

=
T/2∫

−T/2

a0
2

[ m∑
k=1

ak
(
2π
T

k
)2n

cos
(
2π
T

kt
)]

dt

+
T/2∫

−T/2

m∑
k=1

ak cos
(
2π
T

kt
)

·
[ m∑
k=1

ak
(
2π
T

k
)2n

cos
(
2π
T

kt
)]

dt

= T
2

m∑
k=1

ak2
(
2π
T

k
)2n

(23)

where the energy in the signal a(t) is defined as

E =
T/2∫

−T/2

a2(t)dt =
T/2∫

−T/2

[
a0
2

+
m∑
k=1

ak cos
(
2π
T

kt
)]2

dt

= T
2

(
a20
2

+
m∑
k=1

a2k

)

(24)

which can be further simplified to obtain:

2E
T

−
(
a20
2

+
m∑
k=1

a2k

)
= 0 (25)

Using the Eqs. (23) and (25), (19) can be written as
follows:

H =T
2

m∑
k=1

ak2
(
2π
T

k
)2n

+ λ

(
2E
T

− a20
2

−
m∑
k=1

a2k

)

+ μ

(
a(0) − K

√
E
T

)

(26)

The normalizations are assumed as E = 1 and T = 1;
therefore, the coefficients, a0, a1, . . . , am of the Fourier
series, and the Lagrange constants, λ and μ, are the
only unknown parameters. The goal is to determine the
coefficients, a0, a1, . . . , am of the Fourier series. Based
on the extreme value theory [11, 12] of variational cal-
culus, a0, a1, . . . , am should satisfy the following partial
differential equations:

∂H
∂ak

= 0 k = 1, 2, . . . ,m;
∂H
∂λ

= 0 ;
∂H
∂μ

= 0. (27)

The solution of simultaneous equations is used to deter-
mine the unknown coefficients.
The Pan-function is solved by using Fourier series,

and the solution can be very close to real value when
the number of components in Fourier series is infi-
nite. The results computed using MATLAB show that
a proper selection of number of components in the
Fourier series can guarantee the accuracy of the Pan-
function solution. The mean square error ε(m) is
defined as

ε(m) = |am(t) − am−1(t)|2 (28)

where am(t) is the solution of the Pan-function when the
number of components in Fourier series is m. Similarly,
am−1(t) is the solution withm−1 number of components
in the Fourier series. ε(m) shows the proximity of am(t)
and am−1(t). When the value ofm is equal to 4, the calcu-
lated results indicate an error ε(m) less than 10−5. Table 1
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Table 1 Coefficient of Fourier series and signal PAPR

m n a0 a1 a2 a3 a4 PAPR

4

1 1.7550 0.6627 −0.1291 0.0551 −0.0306 1.44

2 1.6606 0.7875 −0.0341 0.0066 −0.0021 1.59

3 1.5076 0.91996 0.12822 −0.0285 0.0094 1.79

4 1.4720 0.9396 0.1830 −0.0174 0.0032 1.84

5 1.3519 0.98337 0.3442 0.0281 −0.0088 2.02

6 1.3475 0.9897 0.3624 0.0404 −0.0060 2.06

shows the obtained coefficient of Fourier series and the
PAPR under different values of n, and m. Figure 2 shows
the waveforms of the optimized signal a(t) corresponding
to different values of n.
The optimized signals a(t) have excellent spectral char-

acteristics. Therefore, smooth phase trajectories of CPM
signal can be achieved using pulse a(t) as frequency pulse.
The obtained CPM signal using proposed method has the
characteristics of a higher out-of-band spectral roll-off
rate and spectral efficiency.
Considering a normalized solution, the frequency pulse

integrates to 1/2 over a symbol interval. Therefore, a
normalization coefficient K is required to satisfy

q (t) =
{ ∫ t

0Ka(τ )dτ 0 < t < T
1/2 t ≥ T (29)

Figure 3 shows the phase pulse q(t) generated by pro-
posed optimized frequency pulse over a symbol interval.
The other commonly used phase pulses generated by rect-
angular pulse, half-sine pulse, and raised cosine pulse are
illustrated to provide a comparison with the proposed
pulse. It can be noticed that the phase pulse trajectory of
proposed optimized frequency pulse is very smooth.

The power spectra of the CPM signal with different fre-
quency pulses are calculated and the normalized power
spectra are shown in Fig. 4. The CPM signals with the pro-
posed frequency pulse and the raised cosine pulse have
high bandwidth efficiency when the normalized power
spectra decrease to −60 dB. Furthermore, the normal-
ized power spectra of proposed optimized CPM signal
decrease more rapidly compare to the other CPM sig-
nals when the normalized power spectra attenuation is
below −60 dB. For example, if the bandwidth is com-
pared when the normalized spectra decrease to −80 dB,
the CPM signals with frequency pulses of half-sine pulse,
raised cosine pulse, and optimized pulse show the band-
widths of 7.8/T, 5.3/T, and 4.6/T, respectively. While the
normalized power spectra decrease to −90 dB, the CPM
signals with frequency pulses of raised cosine pulse and
optimized pulse show the bandwidths of 6.8/T and 5/T,
respectively. Thus, the obtained optimized CPM signal
can well inhibit the out-of-band energy radiation of the
signal.
A part of the phase tree for obtained CPM signal with

optimized frequency pulse is illustrated in Fig. 5. For com-
parison, the corresponding phase tree for MSK is also
shown.
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Fig. 2Waveform curves of the optimized signals
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The power spectra of the CPM signals selecting differ-
ent frequency pulses under different values of n and PAPR
are calculated, according to Table 1.
The normalized power spectra density of the obtained

CPM and MSK signals are illustrated in Fig. 6, and it
can be observed that the power spectra of obtained opti-
mized signal fall off considerably faster. For example, if
the bandwidth is compared when the normalized power
spectra decrease to −60 dB, the optimized CPM signal
show a bandwidth of 3.2/T (when n = 3, m = 4),
while the bandwidth is decreased by 2.43 times compared
to the MSK signal, thus well inhibiting the out-of-band

energy radiation of signals. Further bandwidth efficiency
can be achieved by increasing the value of n; therefore, the
out-of-band radiation of signals and the interference for
adjacent channel will be significantly reduced.

3 Themodulation and demodulation scheme
3.1 The modulation scheme of system
A CPM signal can be expressed by two orthogonal com-
ponents:

sk (t) =
√

2Es
T
{
pkC (t) cos 2π fct +qkS (t) sin 2π fct

}
(k − 1)T < t ≤ kT

(30)
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where C (t) and S (t) are defined as:

C (t) = cos
{
2πh

∞∑
n=−∞

q (t − nT)

}

S (t) = sin
{
2πh

∞∑
n=−∞

q (t − nT)

} (31)

Block diagram of the quadrature modulation system
is shown in Fig. 7. The input data sequence ak , is
transformed into sequence bk after differential encoding.
Afterwards, the sequence bk is converted parallel, and the

even data are sent from the upper branch pk , while the
odd data are sent from the lower branch qk . Note that the
durations of symbols after serial to parallel converter is
2T .

3.2 The demodulation scheme of system
The normalized minimum squared Euclidean distance of
h = 1/2 binary full response CPM signals with the
frequency pulses of proposed optimized frequency, rect-
angular pulse, half-sine pulse, and raised cosine pulse
that are calculated refer to [1]. And all of them have
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Fig. 11 Simulation results of the coherent demodulation (Eb/N0 = 10)

the minimum squared distance d2min = 2. Therefore,
the bit error rate (BER) performance of CPM with fre-
quency pulse of optimized pulse is comparable to that
of raised cosine pulse and rectangular pulse. However,
the optimized CPM signal has a higher spectral roll-off
rate and less out-of-band energy radiation well inhibit-
ing the adjacent channel interference. Block diagram of
the optimum receiver is shown in Fig. 8. The CPM sig-
nals with frequency pulses discussed above can have
almost the same BER performance when the optimum
receiver is adopted. In order to reduce receiver complex-
ity, a reduced-complexity receiver is used to complete the
demodulation process shown in Fig. 9. The received mod-
ulated signal is coherently demodulated by the quadrature
carriers and low-pass filters to remove the high-frequency
components. The signal on each channel is integrated, and
the baseband signal is acquired by sampling.

3.3 Simulation of modulation and demodulation
The signal obtained with n = 3, m = 4, was used as the
baseband symbol, and the simulations of quadrature mod-
ulation and coherent demodulation were completed using
the MATLAB software. The simulation results are shown
in Figs. 10 and 11.
In Fig. 10, A is the baseband symbol signal transmitted

in the in-phase channel, B is the baseband symbol sig-
nal transmitted in the orthogonal channel, and C is the
quadrature-modulated output signal.
Figure 11 shows the simulation results of coherent

demodulation when the Eb/N0 is equal to 10 dB. In
Fig. 11, D is the transmitted signal corrupted with addi-
tive white Gaussian noise (AWGN), which is the input
to the receiver, E is the baseband signal demodulated
in the in-phase channel, and F is the baseband signal

demodulated in the orthogonal channel. The enve-
lope of the output signal after the modulation is
found to be constant and consistent with the expected
results.
In Fig. 12, the BER performance of the reduced-

complexity scheme with AWGN is presented. The
performance of CPM signal with frequency pulses of rect-
angular pulse (MSK) and raised cosine pulse are also
shown for comparison; these are strong competitors of
the proposed scheme. It can be noticed from Fig. 12
that the required Eb/N0s are 7.8, 8.3, and 8.6, to achieve
a BER = 10−3 for rectangular pulse, raised cosine,
and proposed pulse, respectively. And we can observe
that the optimized CPM signal is only about 0.7 dB infe-
rior to CPM signals with frequency pulses of rectangu-
lar pulse (MSK) at a BER of 10−4. Although the BER
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Fig. 12 Bit error rate curves of simulation system
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performance suffers a small Eb/N0 penalty which is a
small price to pay for the large improvement in band-
width efficiency and reduction in implementation com-
plexity. Additional gains in performance can be achieved
by introducing additional redundancy through coding.
In particular, trellis-coded CPM using relatively simple
convolution codes has been thoroughly investigated and
many results are available in the technical literature. The
Viterbi decoder for the convolutionally encoded CPM sig-
nal now exploits the memory inherent in the code and
in the CPM signal. Performance gains of the order of 4–
6 dB, relative to uncoded MSK with the same bandwidth,
have been demonstrated by combining convolutional cod-
ing with CPM. Also, the detector is purely an integrate-
and-dump (I&D) (i.e., matched to a rectangular pulse);
the received signal plus noise is respectively followed by
I&D circuits of duration 2T . The multiplier-integrator
combination constitutes a matched filter that, in the
case of AWGN and no intersymbol interference (ISI),
results in optimumdetection.When optimumdetection is
adopted, the system could also obtain performance gains.
The complexity of demodulation scheme adopted in this
paper is very small and equivalent to normal QPSK or
OQPSK demodulation scheme with a low cost in hard-
ware implemention. So the proposed optimized pulse is
the most suitable method due to its superior spectral
efficiency and lower complexity. As discussed above, the
method proposed in this paper can be employed in band-
limited channel with high requirement for adjacent chan-
nel out-of-band energy radiation and completed in low
complexity.

3.4 Hardware implementation
The modulation and demodulation of the CPM system is
ultimately implemented on the field programmable gate
array (FPGA) devices. FPGA have features of high inte-
gration, flexible programming, more pins, low power,
and fast design speed. The hardware architectures have
been implemented in Quartus II software which provides
several tools for synthesizing the design, configura-
tion techiques, performance analyses, including resource,
speed, and power consumption. The whole system is

divided into several small modules based on top-down
design method and using verilog HDL hardware descrip-
tion language to design each module. The whole system
also has been simulated in Modelsim SE10.0 simulation
environment and successfully downloaded to the chip of
the Altera Cyclone III EP3C55U484C6N.
According to the block diagram of the quadrature mod-

ulation system shown in Fig. 7, the architecture has been
built with some basic modules in Quartus II. It has real-
ized differential coding, serial-to-parallel converter, and
modulation. Figure 13 shows the simulation waveforms of
CPM modulation signal under Modelsim SE10.0. “Base-
band_I” is the baseband symbol signal transmitted in the
in-phase channel, “Baseband_Q” is the baseband symbol
signal transmitted in the orthogonal channel, and “Modu-
lated signal” is the modulated CPM signal; we can observe
that the envelope of the modulated signal is found to be
constant.
According to the block diagram of the reduced-

complexity receiver in Fig. 9, the I&D circuits are timed
to match the zero crossings of the I and Q symbol wave-
forms and easy to complete. However, carrier synchro-
nization is very important and difficult in this scheme.
In carrier synchronization module, the received signal
multiplies the quadrature carriers generated from local
oscillator with the same frequency and phase as the
carrier of transmitter. The carrier is generated by the
module of NCO. Figure 14 shows the simulation wave-
forms of baseband signal output after carrier synchro-
nization. “Demodulated_I” is the baseband symbol signal
demodulated in the in-phase channel, “Demodulated_Q”
is the baseband symbol signal demodulated in the orthog-
onal channel, and “Phase discriminator” is the phase
discriminator output; we can observe that the carrier
synchronization can be fulfilled, and the phase locked is
accomplished.
For high carrier frequencies, direct synthesis of the

CPM signal by computing phase, using a digital approach
is impractical since maintaining an adequate sampling
rate requires an extremely high operating frequency.
Instead, one can resort to a quadrature implementation,
where baseband I and Q signals containing the phase

Fig. 13Waveforms of CPM modulation signal
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Fig. 14Waveforms of baseband signal output after carrier synchronization

information are generated that vary much slower than the
phase of the modulated carrier, thus making it feasible to
implement them digitally. An efficient I-Q implementa-
tion of a CPM modulator skips some steps and instead
generates the I and Q baseband signals directly from
the binary data, thereby eliminating errors in filtering
and phase and sine/cosine computation inherent in the
conventional architecture.
In band-limited communication system, the modulated

signal always run through filter to limit the bandwidth
of the signal; however, the hardware resource consump-
tion of filter includes themultipliers, adders, and registers.
In this paper, the binary data output is passed through
optimized waveform read-only memories (ROMs) whose
outputs are applied to I and Q carriers. Also, the modu-
lated signal passing through filter could introduce ISI and
increase the complexity of the channel equalization.

When optimized symbol waveform is employed, the
modulation signal has a more compact power spectrum;
therefore, a signal does not need to be filtered to reduce
the out-of-band power radiation which can reduce system
complexity and hardware sources. The scheme applied in
this paper could obtain significant hardware reduction.
Meanwhile, we can collocate hardware resources reason-
ably, for example, we can select the number of sampling
points within a symbol period according to the hardware
sources. The higher the number of sampling points is, the
higher accuracy of the output waveform would be. For
example, we can sample 64 points within a symbol period
or more points to store in ROMs. The method of ROM
table lookup can cause T time delay; however, it has little
influence for high-speed information transfer communi-
cation system. The experimental setup of the CPM system
is shown in Fig. 15.

Fig. 15 Experimental setup of the CPM system
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4 Conclusions
In general, the constant continuous phasemodulation sys-
tems use the pre-existing waveforms as frequency pulse,
such as rectangular, cosine, raised cosine pulse, and other
forms or through a filter (GMSK signal). There are few
uses of the method of establishing a mathematical model
base on some standards to obtain the optimized fre-
quency pulse. In this paper, a Pan-functionmodel is estab-
lished to obtain optimized frequency pulse in accordance
with theminimum out-of-band energy radiation criterion.
The mathematical derivation is performed using Fourier
series. It is shown that the phase trajectories of the CPM
signal are smoothed using the proposed frequency pulse.
The simulation of the signal modulation and demodula-
tion scheme was performed using the MATLAB software.
It is demonstrated that the CPM signal with proposed
optimized frequency pulse has a higher spectral roll-off
rate, less out-of-band radiation, and a constant envelope.
The whole system has been successfully downloaded to
FPGA devices. The operating results are consistent with
expected results and it is verified the correctness of this
method.
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