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Abstract

In this paper, it has been shown that non-stationary received signals at ultra-wideband impulse radars can be
addressed by Fourier series model with time-varying coefficients. Next, simply by computing statistical features of the
coefficients, we show that this model can be considered as a sum of band-limited sources. Based on the unconditional
orthonormal representation of band-limited signals, a MMSE estimator is introduced to determine the Fourier
coefficients. Getting the most out of our novel estimator, we suggest a new method for blind and robust detection
that enables us to determine the range and velocity of moving targets, accurately without utilizing any matched
filters. In this new approach, no prior information is required for detection, except pulse repetition interval. Since the
novel method is based on the non-stationary analysis, the signal is analyzed in a long period of time to estimate the
velocity in high resolution. Furthermore, since there is no assumption on the noise distribution, the signal of interest
can be simply detected in the presence of correlated and non-Gaussian noise, i.e., encompassing the conglomerate
effects of clutter and interference. To verify our result, an experimental test and simulations are also presented
comparing the new detector with conventional ultra-wideband impulse radar detectors referred to as interleaved
periodic correlation processing (IPCP) in the literature.

Keywords: Robust detection, Ultra-wideband impulse, MMSE estimator

1 Introduction
The vast majority of traditional radars use harmonic
pulse signals to detect targets. The bandwidth of sig-
nals used in such radars is much less than the carrier
frequency. Consequently, these radars can provide only
low resolution detection. However, in today’s applications,
high-resolution radars are sought for fine and sensitive
surveillance of the environment.
Improving detected target range measurement accu-

racy, identifying target classes and types, low-altitude
detection, ground penetrating, immunity to passive inter-
ference, and some other advantages have been provided
by reducing the pulse width of signals in ultra-short pulse
or ultra-wideband (UWB) impulse radars [1]. This type
of the UWB radars, as a high-resolution radar, is widely
used for remote sensing of the objects in medicine, psy-
chophysiology [2], human being detection [3], through the
wall imaging [4], and stealth target detection [1].
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In some applications of ranging and velocity detection
traditional correlation is used to increase signal-to-noise
ratio [3]. Some factors such as multiple scattering points
and dispersion make echo waveforms seriously distorted
in ultra-short pulse radars; hence, the backscattered sig-
nal from a target upon impingement of an ultra-short
pulse signal has a complex shape in time domain and is
completely different from the transmitted waveform [5].
In addition, the radar cross section (RCS) in UWB tar-
get detection becomes time-dependent, so the concept of
instantaneous target RCS has been introduced [6]. In such
cases, the target scattered signal is non-stationary in time.
These phenomena cause the traditional correlation detec-
tion method, which selects the transmitted signal as the
reference waveform in the correlator, to degrade in detect-
ing targets. The parameters such as duration, location,
and amplitude of the scattered signal are strongly depen-
dent on the target geometry. Since the scattered signal
from a target is represented as a stochastic time series,
hence, generally speaking, its mathematical description
is unknown. Therefore, blind detection has attracted the
attention of advanced ultra-short pulse radar designers.
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A blind detector based on the correlation of the received
signals in two adjacent periods, has been introduced as
the interleaved periodic correlation processing (IPCP)
detector [7]. In the IPCP, an invariable channel in at
least two adjacent periods is assumed. The first period
is considered as the reference signal and matched fil-
ter for the second one. Because the reference signal may
be completely different from a real reference (transmit-
ted signal), this approach causes noticeable degradation
in detection compared to the optimum matched filter in
complicated scenarios such as moving target scenarios. In
the aforementioned detector, the integration period of the
correlation processing is determined by the observation
interval or the scattered signal duration which depends on
the target size. Hence, the detection threshold is unknown
and depends on the target size [8]. Another prominent
issue, which we will show in this article, is that the men-
tioned correlation processing, IPCP, causes removal of
the Doppler information, a major drawback in determin-
ing the velocity of a moving target accurately. Another
approach is introduced in [9], used in human being detec-
tion; there is no correlation processing and detection is
based on the frequency characteristics of the wideband
backscattered signals. In this application, Doppler shift is
negligible, and generally speaking, velocity estimation is
not important. Although the Doppler shift is really small,
extraction of Doppler shift is the base of the some nowa-
days strategies in this application [10, 11]. The velocity
measurements in ultra-short pulse radar is considered
in [6, 12] by taking the advantage of the conventional
correlation detectors. However, these measurements are
also limited in the resolution of velocity estimation. Due
to these limitations, velocity, which can be used as an
important parameter in the tracking filters in applica-
tions such as UWB radar sensor networks, has often
been ignored [13]. In another procedure, a UWB detec-
tion radar is introduced based on cell averaging constant
false alarm rate (CA-CFAR)[14]. CA-CFAR is a power-
ful technique that reduces the false alarm rate in a given
probability of detection, especially in the presence of clut-
ter and jamming signals. However, it is not consider the
non-stationarity issues in the interest signal and clutter.
Therefore, extraction of velocity is not possible by only
CA-CFAR technique.
There are some limitations to produce short time pulses

[6]. Since the Fourier series method for waveform gen-
eration overcomes these limitations [15], UWB radar
signals are generated using the Fourier series-based wave-
form paradigm [15]. The present article is based on the
Fourier series signal generation. Here, it is shown that the
UWB received signal is an almost periodic signal which
can be represented as a Fourier series expansion with
time-varying coefficients. Cyclostationary characteristics
which appear in this type of waveform can be exploited to

determine a blind detector which is based on detecting the
presence of cyclostationarity. Cyclostationary detection
is examined in [16]. Although cyclostationary features
appear in these kind of signals, actually, there is no pure
cyclostationarity, especially, when the observations have
to be made in large intervals and high resolution, veloc-
ity estimation is intended. In this article, in Section 2,
we first describe the model of received ultra-short pulse
signal scattered from a target, based on Fourier series
model for transmitted signal. Then, in Section 3, we will
do an analysis on the IPCP detector and demonstrate its
inability in velocity detection. Next, we aim to show that
the non-stationary received signal can be modeled by a
Fourier series with time-varying coefficients. In Section 4,
we have used here time-varying orthonormal sequences
as the optimal weights, that is an index-limited sequence
with maximum energy concentration in a finite sam-
ple interval to introduce a linear MMSE estimation for
the time-varying coefficients. The aforementioned opti-
mal window is related to the discrete prolate spheroidal
sequences (DPSS) [17]. In Sections 5 and 6, based on the
estimation of the coefficients, we extract range and veloc-
ity of targets. We fully describe the analysis of resolution
of range and velocity and the error estimation. Because
of utilization of time-varying weights in the estimation of
range and doppler, which leads to the estimation of non-
stationary signals, the novel estimator is robust for a wide
variety of lifelike scenarios including slow-moving or hov-
ering platforms. Since there is no assumption on noise
distribution, all analyses are done based on general corre-
lated non-Gaussian noise. Therefore, the noise considered
herein accounts for all interferences, clutters, and ther-
mal noise. In Section 7, in simulations, using this signal,
we have sketched the range-velocity plot to visualize the
results of detection and ROC plot to verify the advan-
tages of our work compared to IPCP. This will be done for
both cases of Gaussian and non-Gaussian noise, as well as
colored and white noise.

2 Systemmodel and problem formulation
In UWB radars, anomalies caused by the array antenna,
the propagation path and scattering from the target, will
change shape and bandwidth of the transmitted signal.
In this section, the model of transmitted signal and the
factors that may cause variations in the shape of a UWB
signal during the radar observation of a target is discussed.

2.1 Fourier series model in ultra-short pulse
Most of the UWB radar waveforms considered in the lit-
erature are of the form of impulse signals which could
be implemented byMarx-Bank or similar techniques [18].
In pulse generation, the energy stored in a long period
of time have to be released in a short while. In Marx-
Bank, as a typical way of energy storage, the capacitive
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stored energy is released by switches such as spark gap,
diode, and laser-actuated semiconductors which cause
the pulse shape, and PRI is not precisely controllable
[1]. The Fourier method of waveform generation [15]
(combination of conventional heterodyning method in
[1]) is an appropriate method to overcome these problems
[1, 15]. In this method, the transmitted signal s1(t) is pro-
duced by the summation of a truncated Fourier series
components.
The number of transmitting sources required to gener-

ate a short pulse train is a function of pulse width and
duration. In this case, the pulse train s1(t) can be rep-
resented by a series of N + 1 Fourier components as

s1(t) =
N/2∑

n=−N/2
cnejωnt , (1)

where ωn = 2πn
T , T is the total pulse duration of the sig-

nal and cn are the complex harmonic coefficients. s1(t)
assumed the transmitted baseband signal to be serve as an
ultra-short pulse signal. For example the complex coeffi-
cients for the 11-chip Barker sequence with chip width of
τ and pulse duration T = 11τ , can be written as

cn = 1
πn

1
2j

(
1 − 2e−jωn3τ + 2e−jωn6τ − 2e−jωn7τ

+ 2e−jωn9τ − 2e−jωn10τ + e−jωn11τ ) . (2)

It should be noted that after transmitting s1(t), there
will be no other transmissions during the pulse repetition
interval (PRI). So, the duration of the transmitted signal,
comprising both the transmitted pulse s1(t) and zero, is
PRI . As an example, the 11-chip Barker code is depicted
in Fig. 1.

2.2 Effect of array antenna
We assume the UWB signal sc1 (t) = Re

{
s1 (t) ej2π fct

}
to

be transmitted with the carrier frequency fc in a form of
current pulse by an array antenna with P radiators shown
in Fig. 2. The effects of the array antenna change sc1(t) to
another pulse train sc2(t). These effects, discussed in [7],
are briefly explained in the following.

If the antenna radiators have a length of Lr � cτ (c is
the velocity of light and τ is the pulse width), the antennae
radiate several pulses of the electromagnetic wave serially.
As a result, a single pulse transforms into a sequence of K
pulses each of which radiates in a time interval εk . Another
phenomenon occurs due to the spatial delay of radiated
signals which is (dp/c) cos(φ), for adjacent radiators. Here
dp is the spacing between the radiators and φ is the obser-
vation angle of the radar. Therefore, the baseband signal
s2(t) in the radiated waveform sc2 (t) = Re

{
s2 (t) ej2π fct

}
can be written as:

s2 (t) =
P∑

p=1

K∑
k=1

ejφkp s1
(
t + εk + dp

c
cosφ

)
(3)

φkp = 2π fc
(

εk + dp
c
cosφ

)
.

If we assume uniform spacing between the radiators of
distance d, Eq. (3) can be written as:

s2 (t) = P
K∑

k=1
ejφk s1

(
t + εk + d

c
cosφ

)
(4)

φk = 2π fc
(

εk + d
c
cosφ

)
.

2.3 Model of the target in UWB radar
Assume the maximum dimension of the target be Lt sat-
isfying the condition cτ � Lt . Then, the target can be
modeled as a combination of M local scattering elements
(bright point [8]). The delay of radiated signal sc2(t) in
arriving at themth bright point is:

τmd = R(t)/c + δm + κm(t), (5)

where R(t) = R − vt, R is the distance from the receiver
to the center of the target, v is the radial velocity of the
target’s combination, δm models the distance from the
center of the target to the mth scatterer; and κm(t) mod-
els time-varying aspect angle in the target’s plate [19–22].
The signal sc2(t) is reflected by the discrete target elements
with various time delays τmd and various attenuations αm.
The reflected signal will come back to the radar receiver

0 5 10 15 20
-1
0
1

Time [ns]

A
m

pl
itu

de

Transmitted pulse in UWB radar

Fig. 1 A UWB pulse signal. This signal is generated by Fourier series model using 40 harmonies. The pulse is produced by the Barker code with the
length of 11, chip width of 2 ns and the total pulse duration 22 of ns
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Fig. 2 Array antenna with P radiators

after τmd . Hence, s3(t), the baseband received signal during
one pulse repetition interval (TPRI ), is expressed as

s3 (t) =
M∑

m=1
αme−j2π fc(2κm(t))e−j2π fc(2δm+2R/c)ej2πFdt

s2 (t − 2δm − 2R/c) . (6)

In Eq. (6), because v << c, the vt/c and κm(t), due to
far field assumption, are very small and can be neglected
in the argument of s2(t). αm, the intensity of reflection of
each bright point, has an statistical model based on the
RCS models which is discussed in several literatures [8].
An ultra-short pulse signal possesses a large bandwidth
that causes the radar cross section (RCS) to vary signifi-
cantly. Therefore, in practical applications, the target RCS
depends on the frequency [7]. The frequency-dependent
RCS implies that αm, previously assumed to be a single
coefficient, should act as a FIR filter hm with complex
coefficients for each bright point. Hence, s3(t) is expressed
as:

s3 (t) =
M∑

m=1

TPRI∫
0

hm (ξ − δm − R/c)

ej2πFdξ s2 (ξ − t + 2δm + 2R/c) dξ . (7)

Herein, instead of using hm(t) as a FIR filter, we uti-
lize αmn coefficients which depend on nth harmonic fre-
quency. By substitution Eq. (1) in (4) and (4) in (6) and
considering αmn instead of αm, the s3(t) during a pulse
repetition interval can be represent as:

s3 (t) =
N/2∑

n=−N/2
an (t) ejωnt (8)

an (t) =
M∑

m=1

K∑
k=1

Pcnαmne
−j2π fc(2κm(t))ej

(
ϕk+φm+θnkm

)
ej2πFdt

ϕm = 2π fc (2δm + 2R/c)

θnkm = ωn

(
εk − 2δm + d cos (φ) − 2R

c

)
.

Since the transmitted signal is repeated every TPRI , we
have ωn = 2πnf0 where f0 is the pulse repetition fre-
quency. Equation (8) has been expressed for one TPRI .
This equation is valid in all time by assuming an almost
periodic hm with the period of pulse repetition inter-
val which leads to uniform coefficients αmn in every
pulse repetition interval. This assumption for a finite
number of pulse repetition intervals, will be reasonable
if 2TCPIv � cτ , where TCPI is the time of coherent
processing interval. The estimation of velocity for low
speed targets (where v is small), needs the duration of
coherent processing interval to be long enough. There-
fore, in our scenario that the wide range of velocity
detection is considered, αmn cannot be assumed con-
stant and varies smoothly in time. Equation (8) can be
extended to be valid for every t if an(t) is expressed as:

an (t) =
M∑

m=1

K∑
k=1

Pcnαmn (t) e−j2π fc(2κm(t))

ej
(
φk+ϕm+θnkm

)
ej2πFdt .

(9)

In Appendix A, we find an expression for the corre-
lation function and the spectrum of the time-varying
coefficients an(t). In there, we demonstrate that the an(t)
processes are band-limited signals all around the Doppler
frequency. So, if a summation of N Fourier components
is transmitted as an ultra-short pulse signal as mentioned
before, the received signal will be a wideband signal com-
posed of a sum of non-stationary signals each of which
acts as a sine wave with a frequency nf0, multiplied by
a “smoothly varying” amplitude function. Therefore, the
baseband received signal s3(t) is modeled as a Fourier
series with time-varying coefficients an(t). Based on what
is described in this section, the scattering in UWB radar
elongates the pulse width τ and changes the resolution
of range gate. Because the number of pulses, time delay
δm, and the intensity αmn of the signal depends on the
target shape and target element, we can use variation of
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the pulse width as a feature in classification of targets.
The scattered signal from a real target and its spectrum
are depicted in Figs. 3 and 4, respectively. The experi-
mental test to obtain the signal is discussed in Section 7.
In next section, a linear MMSE estimation has been
introduced to determine of the mentioned time-varying
coefficients.

3 IPCP detector
Let s(t) be the baseband transmitted signal, then, this sig-
nal is reflected back from a target with the velocity v at
the range of R the received baseband signal is represented
as

r (t) = ej2πFdt̂s
(
t − 2R

c

)
+ n (t) , (10)

where c is the speed of light, Fd = 2v
λ
is the Doppler fre-

quency, and λ is the wavelength of received signal. The
effects of array antennas, anomalies due to the propaga-
tion path and effects of target scattering may change s(t)
to the pulse train ŝ(t), these effects will be discussed in
Section 2. n(t) is a zero mean additive noise which is
independent of the transmitted signal.
The IPCP receiver uses the received signal as the ref-

erence signal. The receiver model is shown in Fig. 5. The
output could be expressed as

U (nTPRI) =
∫ (n+1)TPRI

nTPRI
r∗ (τ ) r (τ − TPRI) dτ , (11)

where TPRI is the pulse repetition interval and n is the
neutral number. Now, using Eq. (10) in Eq. (11), we have

U (nTPRI) =

e−j2πFdTPRI

(n+1)TPRI∫
nTPRI

ŝ ∗
3

(
τ − 2R

c

)
ŝ
(
τ −TPRI− 2R

c

)
dτ (12)

+
(n+1)TPRI∫
nTPRI

e−j2πFdτ ŝ ∗
(
τ − 2R

c

)
n (τ − TPRI) dτ (13)

+
(n+1)TPRI∫
nTPRI

ej2πFd(τ−TPRI )ŝ
(
τ −TPRI− 2R

c

)
n∗(τ )dτ (14)

+
(n+1)TPRI∫
nTPRI

n∗ (τ ) n (τ − TPRI) dτ . (15)

Since the noise and signal are uncorrelated, Eqs. (13) and
(14) are zero. It can be seen in Eq. (12) that the Doppler
frequency exists in a phase factor which is independent of
the time sequence. Hence, velocity can not be extracted in
the Doppler processing. Since the noise is zero mean and
independent of the transmitted signal, there is no infor-
mation about velocity in Eq. (13) or Eq. (14). Therefore,
the velocity information is ignored in the IPCP detector.

4 DPSS-MMSE estimator
Sampling the noisy received waveform r(t) = s3(t) + ν(t)
with sampling time Ts, we will obtain L samples where
s3(t) and ν(t) are assumed uncorrelated. ν(t) accounts for
all interferences, clutters, and thermal noise and hence
can be considered as colored and non-Gaussian noise.
Taking into consideration that f0 is the only known a priori
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Fig. 3 Backscattered signal from a target. The signal from a target that impinge on the 11-chip barker sequence as the transmitted signal. Chip
width is 2 ns and the total pulse width is 22ns. PRI is 1 μs in transmitted signal
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Fig. 4 Spectrum of the backscattered signal from a target. Spectrum of the backscattered signal from a target. The duration of observations in
computation of spectrum is 4 PRI s. PRI is 1 μs in the transmitted signal

information, in this section, we will introduce a MMSE
estimator for determination of the finite bandwidth sig-
nals an(�), and then, we develop our estimator to detect
the presence of the UWB signal and extract the target’s
range and velocity. In estimating of an(�), we first expand
it by the optimum orthogonal bases. The optimal bases,
that is an index-limited sequence with maximum energy
concentration in a finite sample interval, is related to
the zeroth discrete prolate spheroidal sequence (DPSS)
[17]. In accordance with this decomposition, an(�) can be
expressed in terms of DPSS sequences

an(�) =
M∑
m=1

cmnφm(�) = �(�)TCn, � = 0, · · · , L − 1

�(�) = [φ1(�) φ2(�) · · · φM(�)]T (16)
Cn = [c1n c2n · · · cMn]T ,

where {φm (�)}Mm=1 are DPSS orthonormal sequences, Cn
is the coefficient vector. M < L is the order of expansion
and depends on the normalized bandwidth of an(t), W,
and observation length, L,

M = �2WLTs� + 1. (17)

We use linear estimation model with time-varying
weights, which is defined as

ân(�) = wn(�)
Hr, (18)

where r is the L × 1 observation vector has been made by
sampled received waveform and wn(�) are time-varying
weights. Substituting Eq. (8) in to the sampled received

Fig. 5 The block diagram of the IPCP receiver
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signal, r(�) = s3(�) + ν(�), the matrix presentation of the
observation vector r will be:

r =
N/2∑

n=−N/2
FnCn + υ, (19)

where υ is the L × 1 noise vector which is uncorrelated to
the signal and Fn is a L × Mmatrix with entries:

fn(i,m) =
{
φm(i)ej

2πn
Tp i

}
,
{
0 ≤ i ≤ L − 1
1 ≤ m ≤ M (20)

Incorporating Eq. (19) into Eq. (18), the expansion of
ân(�) is achieved:

ân(�)=wn(�)
H

N/2∑
n′=−N/2

Fn′Cn′ +wn(l)Hυ (21)

=wn(�)
HFnCn +

N/2∑
n′=−N/2,n′ 	=n

wn(�)
HFn′Cn′ +wn(�)

Hυ.

The above equation reveals that each estimate is formed
of two components: the first depends on the time-varying
amplitude at the frequency of interestωn, while the second
is an error term which depends on all the other compo-
nents of r(�) at frequencies separated from ωn and noise.
The optimal estimator must produce the accurate time-
varying amplitude from the first component andminimize
the contribution of the error term. In other words, we
need to impose the restrictions that:

wn(�)
HFn = �(�)H . (22)

Also, we have to minimize the mean-squared error
(MSE):

MSE(�) = E
{∣∣an(�) − ân(�)

∣∣2} . (23)

Minimization of Eq. (23) is performed subject to the
constraint (Eq. 22) using the method of Lagrange multi-
pliers, i.e., we have to minimize the cost function:

J(�) = wn(�)
H�wn(�) + wn(�)

HRυwn(l) (24)
− [

wn(�)
HFn − �(�)H

]
λ,

where

� =
N/2∑

n′=−N/2,n′ 	=n
Fn′E

{
Cn′CH

n′
}
FHn′ , Rυ = E

{
υυH}

(25)

and λ is aM×1 vector of Lagrange multipliers. By setting
the first derivative of the cost function to zero, we arrive
at optimum least square weights as [23]:

wn(�) = Fn�(�). (26)

By using this model, MMSE is determined as

MMSE(�) = (
1 + σ 2

υ

) M∑
m=1

|φm(�)|2, (27)

where σ 2
υ is the variance of colored or AWG noise.

Although, MMSE seems time-dependent in Eq. (27), but
it is almost constant in practice and is M

L
(
1 + σ 2

υ

)
.

By decreasing M and increasing L, the MMSE will be
decreased. Therefore, the suitable selection of L which
depends on the bandwidth of an(t) alleviate noise as much
as possible. The number of L andM is set by an educated
guesstimate. In the two following sections the extrac-
tion of range and velocity of the target from estimated
time-varying coefficients have been described.

5 Range processing
In this section, we use energy detector to find the range of
the target. We can write the received signal as

r (t) =
N/2∑

n=−N/2
rωn (t) + υ (t)

rωn (t) = an (t) ejωnt .

(28)

And the energy of the received signal in each time range
cell is expressed as

Ek =
∫ kTg

(k−1)Tg

|r (t)|2dt, (29)

whereTg is the the range cell and Ek is the energy of the kth
range cell. Neglecting the very slight overlap of rωn (t)’s,
|r (t)|2 can be replaced by:

|r (t)|2 =
N/2∑

n=−N/2

∣∣rωn (t)
∣∣2 + |υ (t)|2 . (30)

Therefore, the energy of the kth range cell can be
expressed as:

Ek ≈
N/2∑

n=−N/2

∫ kTg

(k−1)Tg

∣∣rωn (t)
∣∣2dt + εk

=
N/2∑

n=−N/2

∫ kTg

(k−1)Tg

|an (t)|2dt + εk ,

(31)

where εk is the energy of noise in the kth range cell.
The detection algorithm can be implemented under two
hypotheses test:{

r (t) = s3 (t) + υ (t) H1
r (t) = υ (t) H0,

where H1 shows the presence of the target and H0 shows
the absence of the target. By considering estimated energy
in every range cell as decision statistics and based on
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Eq. (31), the decision statistics can be presented as the
combination of the energy of estimated coefficients:

l (a) = 1
NL

N/2∑
n=−N/2

∑
i∈Ak

∣∣ân (i)
∣∣2, (32)

where l (a) is the decision statistics and Ak is a countable
set of the length of L =

⌊
Tg
Ts

⌋
,

Ak �= {i ∈ Z : (k − 1) L, . . . , kL − 1} . (33)

Therefore, the decision rule can be given by

l (a)
H1
≷
H0

γ , (34)

where γ is threshold. To define the threshold for a given
the probability of false alarm (PFA), we have to determine
an analytical expression for the distribution function of
l(a) underH0. This distribution function is approximated
as a Gaussian distribution:

l (a) ∼ N
(
μ,�2) , (35)

where μ and �2 are mean and variance, respectively.
In this approximation, considering large number of ele-
ments in observation vector r, central limit theorem is
used. When the amount of L is large enough, the approx-
imation of distribution of l(a) under H0 as a Gaussian
is independent of the type of noise (AWGN, colored or
non-Gaussian). In Section 7 the Kolmogorov-Smirnov test
is used to experimentally show the conformity of this
approximation. The statistical average in Eq. (35) for the
most general case, where no statistical assumption on the
distribution of noise is required, is expressed as:

μ = 1
NL

N/2∑
n=−N/2

L−1∑
i=0

wH
n (l)Rυwn (l). (36)

In this case, variance cannot be evaluated in closed
form. But, for iid noise, Eq. (36) can be simplified, hence,
we are able to evaluate statistical average and variance in
closed form as the following:

μ = σ 2
υ

L

L∑
i=1

M∑
m=1

|φm (i)|2, �=

√√√√√2σ 4
υ

L

L∑
i=1

( M∑
m=1

|φm (i)|2
)2

.

(37)

This allows the probability of false alarm, PFA to be
approximated as

PFA = P (l(a)|H0) = Q
(

γ − μ

�

)
, (38)

where Q(·) is the tail probability function of a zero-mean
unit-variance Gaussian random variable. Therefore, for
a the given probability of false alarm, we are able to
determine the threshold.
The probability of false alarm is decreased, and simul-

taneously, the probability of detection is increased by
increasing the length of L or equivalently the time range
cell Tg . We note that 1/Tg is the range resolution and it
cannot be a large number. The appropriate value for Tg
for the purpose of target range detection is the recipro-
cal of the received signal bandwidth. But, it can be set
smaller amount when more range resolution is needed.
the amount of this parameter is depend on the scenario of
detection.

6 Velocity processing
As previously mentioned in Section 2.3, an(t) is a band-
limited signal around the Doppler frequency, so the peak
of Snna

(
t; f

)
can determine the Doppler frequency and the

velocity of the target can henceforth be determined. Based
on Wiener-Kintchin theorem

Snna
(
t; f

) =
∞∫

−∞
Rnn
a (t; τ) ej2π f τdτ . (39)

Again, based on Eq. (51) we have

Snna
(
t; f

) = KP2 |cn|2 Snng
(
t; f − Fd

)
. (40)

As the Doppler frequency is independent of time, the
peak of Eq. (40) when time-averaged, will define the
Doppler frequency.

Snna
(
f
) = lim

T→∞
1
T

∫ T/2

−T/2
Snna

(
t, f

)
dt

= KP2 |cn|2 Snng
(
f − Fd

)
.

(41)

Based on [24], the time-averaged signal in Eq. (41) can
be considered as a spectral correlation density function
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at zero cycle frequency whose consistent estimator is the
frequency-smoothed cyclic periodogram [24]

Snna
(
t, f

) = lim
T→∞

lim
�f→0

1
T

∫ f+�f /2

f−�f /2

1
�f

∣∣An
T (t, λ)

∣∣2dλ,

(42)

where

An
T (t, λ) =

∫ t+T/2

t−T/2
an (s) e−j2πλsds. (43)

In addition, we define P as√
T�f

(
̂Snna
(
t, f

) − Snna
(
f
))

. (44)

In [24], it has been shown that P is an asymptoti-
cally zero-mean complex Gaussian random variable with
σP = 1.
To compute An

T (t, λ), an(iTPRI), the samples of an(t)
at sampling time iTPRI , are to be used as the inputs for
discrete version of Eq. (43) which it is FFT processing.
The resolution of the frequency must be selected such
that �f ≥ 1/T (in our scenario T is equal coherent
processing interval TCPI). So the best resolution for the
Doppler frequency can be 1/T which, based on Eq. (44),
causes maximum variance of the error in the estimation.
To reduce the variance of the error we have to increase�f .
By incoherent summation of Snna

(
t; f

)
over all harmonies

we are able to improve the signal-to-noise ratio in the esti-
mation. After this is done, the energy detection could be
employed to detect the Doppler frequency. Since, Snna

(
t; f

)
has beenmodulated from nf0 to the baseband, we shall use
Snna

(
t; f − nf0

)
instead of Snna

(
t; f

)
in the incoherent sum-

mation. Therefore, the result of incoherent summation
can be expressed as:

Sr(t; f ) =
N/2∑

n=−N/2
Snna

(
t; f − nf0

)
(45)

and

Sr( f ) =
N/2∑

n=−N/2
Snna

(
f − nf0

)
. (46)

The estimator
√
T�f ̂Sr(t, f ) which is an asymptoti-

cally complex normal random variable with the mean of√
T�f Sr(f ) can be computed based on Eq. (42). Based

on energy detection, the decision statistics under two
hypotheses can be represented as l (a) = T�f | ̂Sr(t, f )|2.
For white noise assumption under H0, the mean of the

estimator is expressed as:√
T�f Sr(f ) = √

T�f σ 2
v .

Therefore, the random variable l (a) has the non-central
chi-square distribution, expressed as:

f (l (a) |H0) = 1
2
e−

(
l(a)+λ

2

)
I0
(√

λl (a)
)
, (47)

where λ = T�f σ 4
v and I0(·) is the zeroth order modified

Bessel function of the first kind. The probability of false
alarm for the threshold γ , hence, is expressed as:

PFA = P (l (a) ≥ γ |H0) = Q1
(√

λ,√γ
)
, (48)

where Q1 (., .) is the Marcum Q-function. Again, to
decrease the probability of false alarm and to increase
the probability of detection simultaneously, �f should be
increased. Increasing�f would also cause the velocity res-
olution to increase. Here, it should be taken into account
that variations of the Doppler frequency lower than �f
cannot be sensed. As a result, in high-resolution velocity
applications, the FFT processing time i.e., T, must be large
enough. Since in our novel detection, the spectrum of sig-
nal is determined by a non-stationary analysis (Eq. 42), it
is still valid for large T.

7 Simulation and results
Computer simulations and an experimental test are car-
ried out to illustrate the performance of the proposed
algorithm. In the experimental test, we have produced
an ultra-short pulse signal with features mentioned in
Table 1 by a signal generator excited with an impulse
generator. The generated signal after near 13dB amplifica-
tion is inputted to a horn antenna with an approximately
10° beamwidth in both elevation and azimuth. Next, the
signal is impinged upon the “remote control Skyartec
mini Cessna” plain flying at the distance range of 90 to
130 m. The backscattered signal after being received by
the antenna and passing through the circulator will be
caught by a fast oscilloscope. A fast switch is used to alle-
viate ground clutter and to protect the oscilloscope. The
output signal of the oscilloscope is logged by a computer
at three positions of the target mentioned in the Table 2.
Since we have not used array antenna in our experimen-
tal test, the received signal model, previously mentioned
in Section 2, will be valid for P = 1 (P is the number
of radiators in the array antenna depicted in Fig. 2). The
experimental setup is shown in Fig. 6.
Since the target in the test is near the radar, the received

signal level is high. Actually, by measuring the noise and
signal level at the input of the oscilloscope we find that
the SNR is around 26 to 30dB in various range mentioned
in Table 2. To produce multi-target scenarios, we consider
this signal as the noiseless signal and combine them to
produce a signal refrying to three targets in three position
mentioned in Table 2. To produce (non)-Gaussian white
(colored) noisy signal, we make the signal under the test
by adding noise to the noiseless signal. The colored noise
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Table 1 Features of transmitted signal and receiver

Parameter Info Parameter Info

TPRI 1 μs L 8000

Carrier frequency 3 GHz CPI 7ms

Pulse width 2 ns Bandwidth 500MHz

Tobs 4 μs Velocity resolution 7m/s

N 40 Range resolution > 1m

M 5 Max of range 150m

is constructed by passing AWGN noise over a low-pass
FIR filter. The order of this filter is 9 and its bandwidth
is 10MHz. The non-Gaussian noise used in this paper is
the Middleton Class-A noise. From [25, 26] the proba-
bility of density function for the Class-A noise process is
considered as:

fx (x) = e−A
∞∑

m=0

Am

m!
√
2πσ 2

m
e
− x2

2σ2m ,

where

σ 2
m = m/A + �

1 + �
.

According to this pdf, this noise is thereby a weighted
sum of Gaussian distributions. σ 2

m is the variance of the
mth Gaussian distribution. A, which is called impulsive
index [25] is set to one in this paper.� refers to the portion
of the power of each Gaussian part in the total distribu-
tion which is set to � = 0.01 in this paper. In this paper,
we considerm = 2.
In this paper, to drive an equation between false alarm

rate and the threshold, i.e., Eq. (35), the hypothesis statis-
tic l(a) is approximated as Gaussian random variable.
In this section, the conformity of this approximation is
experimentally proved at the first. Based on Eq. (18),
ân(i) is a weighted combination of elements of r. Since
the length of r, i.e., L, is large, according to central lim-
ited theorem ân(i) has the Gaussian distribution. The
amount of L = 8000 is large enough that the Gaus-
sian distribution is independent of the type of noise
(AWGN, colored or non-Gaussian). The Kolmogorov-

Table 2 Targets information

Velocity Range

Target #1 +15m/sa 70 m

Target #2 -20m/s 95 m

Target #3 -35m/s 115 m

aplus for close to the radar, and minus for far from the radar

Smirnov test, is a very common and powerful test in
comparing the values in the given data vector, such as
ân(i), to Gaussian distribution [28]. We use this test
for 100 samples of ân(i) in the significance level 15%
(this parameter mentions to the error of unconformity
[28]). The test approves the conformity in all types of
noise. Therefore, There is no assumption on noise. Since,
ân(i) have almost standard normal distribution, l(a) has
the chi-squared distribution with N degrees of freedom.
The N is large enough to let us approximate the chi-
squared distribution with Gaussian distribution. Again,
the Kolmogorov-Smirnov test is done for 100 samples of
l(a) in the significance level 15% and the conformity is
approved.
In all simulation in this paper, the SNR is considered

as the power of the noiseless signal over the power of
noise that is added to the noiseless signal. In the first
simulation, we have assumed three scenarios with three
targets mentioned in Table 2. The noise is assumed to be
AWGN for the first, colored Gaussian for the second and
non-Gaussian white for the third scenario.
Range and velocity detection are done for each case.

Since, the decision statistics and the threshold in dimen-
sion of range and velocity are completely different jointly
detection is impossible. The detection procedure is done
for both range and velocity separately. In the simulations
in every hypotheses testing procedure, a target detection
is considered as a correct detection if the detection of
both range and velocity are correct. Also, in the simula-
tions, a false alarm is considered if a false alarm detec-
tion happens in range or velocity and a miss detection
is considered if a target is missed in range or in veloc-
ity. The hypotheses testing procedure is performed in
every cell. In general scenarios in the application con-
sidered in this simulation and experimental results, the
length of the target is more than one meter in its dimen-
sion with maximum length and the distance between
two targets can not be less than three meters. Since, the
maximum length of target is more than one meter, in
the detection algorithm we use the time of range cell,
Tg = 10 ns, that causes 1.5 m range resolution. Also,
we consider 5 ns for time of overlap in the cells. Since,
the distance between two targets is not less than three
meters, in the implementation of detection algorithm,
when the energy of three adjacent cells or two adjacent
cells or one cell pass the threshold, we consider it as a one
target.
The range-velocity plot for SNR = 2 dB is shown

in Fig. 7a. The range and velocity views are shown in
Fig. 7b, c, respectively. The energy of the cell for each
range cell is computed in range domain, and ̂Sr

(
t; f

)
is

computed in a CPI time and time is averaged out in
velocity domain. In Fig. 7a, peaks which can be seen in
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(a)

(b)

Fig. 6 The Experimental setup. a Schematic b Setup in the laboratory

the zero velocity are related to non-stationary clutters.
In this figure, the robustness of the purposed algorithm
in presence of the non-Gaussian and colored noise can
be clearly perceived. In Fig. 7b, the peaks of energy hap-
pen just in the place of velocity of targets. These peaks,
happening in all three noise scenario, are good refer-
ences for the ability of proposed detection in extraction of
velocity.
The time-varying spectrum ̂Sr

(
t; f

)
for the target at the

velocity of −37 m/s, referring to −744 Hz, is depicted in
Fig. 8 as an example of time-varying spectrum. This figure
is to provide an evidence that time-varying coefficients
have finite band width around Doppler frequency. It is
seen that the bandwith of signal is around 350 Hz.
The new detector is compared to the IPCP in two

next simulations. In these simulations, the performance
of novel detector is surveyed in a single target as well

as three targets in the presence of (non)-Gaussian white
(colored) noise. on the other hand, IPCP detector is used
only for single target detection in the presence of white
Gaussian noise. In the first simulation, the priority of pro-
posed detector is shown by ROC plot for SNR = 2 dB in
Fig. 9. In this figure, it is seen the superiority of the pro-
posed detector over IPCP in both single and three targets
in the presence of AWGN. The probability of detection
in the proposed detector in single target is around 0.11
better than IPCP in false alarm rate 10−2. This amount
is 0.09 in three targets case. Assuming the probability of
detection 0.85 as the applicable performance, it can be
seen that the proposed detector is a applicable in all sce-
narios for noise, when false alarm rate is around 0.06 and
SNR = 2 dB. In the second simulation (Fig. 10), the
probability of detection for various SNR in Pfa = 10−2

has been regarded. According to this figure, the prob-



Hosseini et al. EURASIP Journal on Advances in Signal Processing  (2016) 2016:60 Page 12 of 15

NGWA )c( NGWA )b( NGWA )a(

deroloC )b( esion deroloC )a(  esion deroloC )c( esion 

 esion naissuaG -non )c( esion naissuaG -non )b( esion naissuaG -non )a(

-60 -40 -20 0 20 40 60
0

0.2

0.4

0.6

0.8

1
X: 15
Y: 1

Velocity [m/s]

N
or

m
li

ze
d 

A
m

pl
it

ud
e

X: -35
Y: 0.04421

X: -20
Y: 0.1378

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

X: 115.1
Y: 0.07832

Range [m]

N
or

m
al

iz
ed

 A
m

pl
it

ud
e

X: 95.55
Y: 0.1654

X: 70.05
Y: 0.9837

-60 -40 -20 0 20 40 60
0

0.2

0.4

0.6

0.8

1

X: -20
Y: 0.1727

Velocity [m/s]

N
or

m
al

iz
ed

 A
m

pl
it

ud
e

X: -35
Y: 0.05005

X: 15
Y: 1

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1
X: 70.05
Y: 1

Range [m]

N
or

m
al

iz
ed

 A
m

pl
it

ud
e

X: 96.45
Y: 0.2088

X: 115.5
Y: 0.06819

-60 -40 -20 0 20 40 60
0

0.2

0.4

0.6

0.8

1
X: 15
Y: 1

Velocity [m/s]

N
or

m
al

iz
ed

 A
m

pl
it

ud
e

X: -20
Y: 0.1963X: -35

Y: 0.08589

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1
X: 70.05
Y: 1

Range [m]
N

or
m

al
iz

ed
 A

m
pl

it
ud

e

X: 96.45
Y: 0.1588 X: 115.5

Y: 0.09648

Fig. 7 Range-velocity plot. This plot depicts range-velocity plot for three targets in SNR = 2 dB when noise is AWGN, Gaussian-colored and

non-Gaussian white. Energy of the cell for each range cell is computed in range domain, ̂Sr
(
t; f

)
is computed in a CPI time and time is averaged out

in velocity domain. a Range-velocity plot. b Velocity view. c Range view

ability of detection 0.9 is achieved in the SNR = −2
dB in single target detection and SNR = −0.5 dB in
three targets detection. This performance is achieved in
IPCP in SNR = 3.2 dB which is around 5.2 dB worse
than the performance of novel detector for single target

detection and 3.7 dB worse than for three targets detec-
tion. Assuming the probability of detection 0.85 as the
applicable performance, it is seen that in SNR = 5
dB the novel detector is applicable in all scenarios for
noise.
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Fig. 8 ̂Sr
(
t; f

)
for the target. the velocity of target is −37 m/s. It can be seen that Sr

(
t; f

)
is band-limited around Doppler frequency



Hosseini et al. EURASIP Journal on Advances in Signal Processing  (2016) 2016:60 Page 13 of 15

0.02 0.04 0.06 0.08 0.1
0.75

0.8

0.85

0.9

0.95

Probability of False Alarm (PFA)

P
ro

ab
il

it
y 

of
 D

et
ec

ti
on

 (
P

D
)

 non-Gaussian colored colored non-Gaussian colored

Gaussian Gaussian IPCP non-Gaussian

Fig. 9 Receiver operation characteristics (ROC). In this plot SNR = 2 dB. Solid line shows ROC for single target and dashed line shows ROC for three
targets

8 Conclusion
In this paper, we have demonstrated that the receivers
in ultra-wideband impulse radar based on IPCP use
the received signal as the reference in their correla-
tor which leads to remove Doppler frequency. Also,
the Fourier series model with time-varying coefficients
is perceived as a convenient model for non-stationary
received signal in UWB impulse radar. Accordingly, the
innovative MMSE estimator is introduced to evaluate

the coefficients. Utilization of the time-varying weights
in the estimator makes the blind noise-suppression
from non-stationary signals without correlation, con-
ceivable. The robust detection is proposed to extract
the range and velocity in accordance with the esti-
mator. Versatile results in comparison to IPCP and
robustness to the alteration of noise features do verify
the ability of our novel detector to be used in future
applications.
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Fig. 10 Probability of detection versus SNR in Pfa = 10−2. Solid line for single target and dashed line for three targets
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9 Appendix A: Autocorrelation of time-varying
coefficients

In this section, we have computed the correlation function
and the spectrum of the time-varying coefficients an(t)

Rn1n2a (t; τ)=E
{
an1 (t) a∗

n2 (t + τ)
}

=P2cn1c∗n2e−j2πFdτ
M∑

m=1

K∑
k=1

M∑
m̂=1

K∑
k̂=1

E
{
gmn1 (t) g

∗
m̂n2 (

t+τ)

ej
(
ϕk+φm+θn1km

)
e
−j

(
ϕk̂+φm̂+θn2 k̂m̂

)⎫⎬⎭ ,

(49)

where

gmn = αmn (t) e−j2π fc(2κm(t)).

Since, we do not have any information about εk and δm,
we can suppose uniform distribution in [−Lr/2c Lr/2c]
and [−Lt/2c Lt/2c] for εk and δm, respectively. This
assumption would cause uniform distribution in [−π ,π ]
for Uk = 2π fcεk and Vm = 2π fcδm. By this, for k 	= k̂ and
m 	= m̂ the expectation in Eq. (49) can be written as

E
{
gmn1 (t) g∗

m̂n2 (t + τ)ej
(
ϕk+φm+θn1km

)
e−j

(
ϕk̂+φm̂+θn2 k̂m̂

)}
= 1

(2π)4

∫
2π

∫
2π

∫
2π

∫
2π

E
{
gmn1 (t) g∗

m̂n2(t+τ ) ej
(
θn1km−θn2 k̂m̂

)}

ej
(
Uk−Uk̂−Vm−Vm̂

)
dUkdUk̂dVmdVm̂ =

E
{
gmn1 (t) g∗

m̂n2(t+τ ) ej
(
θn1km−θn2 k̂m̂

)}
δ
(
k−k̂

)
δ
(
m−m̂

)
.

(50)

For k = k̂ and m = m̂ the correlation function can be
expressed as

Rn1n2
a (t; τ) =

P2cn1c∗n2e−j2πFdτ
M∑

m=1

K∑
k=1

E
{
gmn1 (t) g∗

mn2 (t + τ)
}

2c
Lr

2c
Lt

ej
(
ωn1−ωn2

)( d cos(φ)−2R
c

)

∫ Lt/2c

−Lt/2c

∫ Lr/2c

−Lr/2c
ej
(
ωn1−ωn2

)
(εk−2δm)dεkdδm

= KP2cn1c∗n2e−j2πFdτ sin (υr)

υr

sin (υt)

υt
Rn1n2
g (t; τ) ,

(51)

where υr = (
ωn1 − ωn2

)
Lr/2c, υt = (

ωn1 − ωn2
)
Lt/2c

and

Rn1n2
g (t; τ) =

M∑
m=1

E
{
gmn1 (t) g∗

mn2 (t + τ)
}
. (52)

Let us consider gmn(t) = bngm(t), where bn are samples
of frequency response of the targets and strongly depend
on shape and material of the target. Therefore, we have
Rn1n2
g (t; τ) = bn1b∗

n2Rg (t; τ). In [27], for a typical example,
it has been proved that gm (t) is a band-limited process for
long time observations and its bandwidth mostly depends
on the rotational speed around the axis which is orthogo-
nal to the plane containing Lt , and also on the bandwidth
of transmitted signal.
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