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Abstract

A helper data scheme (HDS) is a cryptographic primitive that extracts a high-entropy noise-free string from noisy
data. Helper data schemes are used for preserving privacy in biometric databases and for physical unclonable
functions. HDSs are known for the guided quantization of continuous-valued sources as well as for repairing errors in
discrete-valued (digitized) sources. We refine the theory of helper data schemes with the zero leakage (ZL) property,
i.e., the mutual information between the helper data and the extracted secret is zero. We focus on quantization and
prove that ZL necessitates particular properties of the helper data generating function: (1) the existence of “sibling
points”, enrollment values that lead to the same helper data but different secrets and (2) quantile helper data.
We present an optimal reconstruction algorithm for our ZL scheme, that not only minimizes the reconstruction error
rate but also yields a very efficient implementation of the verification. We compare the error rate to schemes that do
not have the ZL property.
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1 Introduction
1.1 Biometric authentication: the noise problem
Biometrics have become a popular solution for authen-
tication or identification, mainly because of their conve-
nience. A biometric feature cannot be forgotten (like a
password) or lost (like a token). Nowadays identity docu-
ments such as passports nearly always include biometric
features extracted from fingerprints, faces, or irises. Gov-
ernments store biometric data for forensic investigations.
Some laptops and smart phones authenticate users by
means of biometrics.
Strictly speaking, biometrics are not secret. In fact,

fingerprints can be found on many objects. It is hard
to prevent one’s face or iris from being photographed.
However, storing biometric features in an unprotected,
open database. Introduces both security and privacy risks.
Security risks include the production of fake biometrics
from the stored data, e.g., rubber fingers [1, 2]. These fake
biometrics can be used to obtain unauthorized access to
services, to gain confidential information or to leave fake
evidence at crime scenes. We also mention two privacy
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risks. (1) Some biometrics are known to reveal diseases
and disorders of the user. (2) Unprotected storage allows
for cross-matching between databases.
These security and privacy problems cannot be solved

by simply encrypting the database. It would not prevent
insider attacks, i.e., attacks or misuse by people who are
authorized to access the database. As they legally possess
the decryption keys, database encryption does not stop
them.
The problem of storing biometrics is very similar to the

problem of storing passwords. The standard solution is
to store hashed passwords. Cryptographic hash functions
are one-way functions, i.e., inverting them to calculate a
secret password from a public hash value is computation-
ally infeasible. Even inside attackers who have access to all
the hashed passwords cannot deduce the user passwords
from them.
Straightforward application of this hashing method to

biometrics does not work for biometrics, however. Bio-
metric measurements are noisy, which causes (small)
differences between the digital representation of the
enrollment measurement and the digitized measurement
during verification. Particularly if the biometric value lies
near a quantization boundary, a small amount of noise can
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flip the discretized value and trigger an avalanche of bit
flips at the output of the hash.

1.2 Helper data schemes
The solution to the noise problem is to use a helper data
scheme (HDS) [3, 4]. A HDS consists of two algorithms,
Gen and Rep. In the enrollment phase, the Gen algorithm
takes a noisy (biometric) value as input and generates not
only a secret but also public data called helper data. The
Rep algorithm is used in the verification phase. It has two
inputs: the helper data and a fresh noisy (biometric) value
obtained from the same source. The Rep algorithm out-
puts an estimator for the secret that was generated by
Gen.
The helper data makes it possible to derive the (dis-

crete) secret reproducibly from noisy measurements, i.e.,
to perform error correction, while not revealing too much
information about the enrollment measurement. The
noise-resistant secret can be hashed as in the password
protection scheme.

1.3 A two-stage approach
We describe a commonly adopted two-stage approach
for real-valued sources, as for instance presented in ([5],
Chap. 16). The main idea is as follows. A first-stage HDS
performs quantization (discretization) of the real-valued
input. Helper data is applied in the “analog” domain, i.e.,
before quantization. Typically, the helper data consists of
a ‘pointer’ to the center of a quantization interval. The
quantization intervals can be chosen at will, which allows
for optimizations of various sorts [6–8].
After the first stage, there is typically still some noise

in the quantized output. A second-stage HDS employs
digital error correction techniques, for instance the code
offset method (also known as Fuzzy Commitment) [3, 9]
or a variant thereof [10, 11].
Such a two-stage approach is also common practice

in communication systems that suffer from unreliable
(wireless) channels: the signal conditioning prior to the
quantization involves optimization of signal constellations
and multidimensional transforms. The discrete mathe-
matical operations, such as error correction decoding,

are known to be effective only for sufficiently error-free
signals. According to the asymptotic Elias bound ([12],
Chap. 17), at bit error probabilities above 10 % one cannot
achieve code rates better than 0.5. Similarly, in biomet-
ric authentication, optimization of the first stage appears
essential to achieve adequate system performance. The
design of the first stage is the prime motivation, and key
contribution, of this paper.
Figure 1 shows the data flow and processing steps in

the two-stage helper data scheme. In a preparation phase
preceding all enrollments, the population’s biometrics are
studied and a transform is derived (using well known
techniques such as principal component analysis or lin-
ear discriminant analysis [13]). The transform splits the
biometric vector x into scalar components (xi)Mi=1. We
will refer to these components xi as features. The trans-
form ensures that they are mutually independent, or
nearly so.
At enrollment, a person’s biometric x is obtained. The

transform is applied, yielding features (xi)Mi=1. The Gen
algorithm of the first-stage HDS is applied to each feature
independently. This gives continuous helper data (wi)

M
i=1

and short secret strings s1, . . . , sM which may or may
not have equal length, depending on the signal-to-noise
ratio of the features. All these secrets are combined into
one high-entropy secret k, e.g., by concatenating them
after Gray-coding. Biometric features are subject to noise,
which will lead to some errors in the reproduced secret
k̂; hence, a second stage of error correction is done with
another HDS. The output of the second-stage Gen algo-
rithm is discrete helper data r and a practically noiseless
string c. The hash h(c‖z) is stored in the enrollment
database, along with the helper data (wi)

M
i=1 and r. Here ,z

is salt, a random string to prevent easy cross-matching.
In the authentication phase, a fresh biometric measure-

ment y is obtained and split into components (yi)Mi=1.
For each i independently, the estimator ŝi is computed
from yi and wi. The ŝi are combined into an estima-
tor k̂, which is then input into the 2nd-stage HDS
reconstruction together with r. The result is an esti-
mator ĉ. Finally, h(ĉ‖z) is compared with the stored
hash h(c‖z).

Fig. 1 Common steps in a privacy-preserving biometric verification scheme
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1.4 Fuzzy extractors and secure sketches
Special algorithms have been developed for HDSs
[4, 6, 8, 9]: Fuzzy extractors (FE) and secure sketches
(SS). The FE and SS are special cases of the general HDS
concept. They have different requirements,

• Fuzzy extractor
The probability distribution of s given w has to be
(nearly) uniform.

• Secure sketch
s given w must have high entropy, but does not have
to be uniform. Typically, s is equal to (a discretized
version of) x.

The FE is typically used for the extraction of crypto-
graphic keys from noisy sources such as physical unclon-
able functions (PUFs) [14–16]. Some fixed quantization
schemes support the use of a fuzzy extractor, provided
that the quantization intervals can be chosen such that
each secret s is equiprobable, as in [17].
The SS is very well suited to the biometrics scenario

described above.

1.5 Security and privacy
In the HDS context, the main privacy question is how
much information, and which information, about the bio-
metric x is leaked by the helper data. Ideally, the helper
data would contain just enough information to enable the
error correction. Roughly speaking, this means that the
vector w = (wi)

M
i=1 consists of the noisy “least significant

bits” of x, which typically do not reveal sensitive informa-
tion since they are noisy anyway. In order to make this
kind of intuitive statement more precise, one studies the
information-theoretic properties of HDSs. In the system
as sketched in Fig. 1, the mutual information1 I(C;W,R)

is of particular interest: it measures the leakage about the
string c caused by the fact that the attacker observes w and
r. By properly separating the “most significant digits” of x
from the “least significant digits”, it is possible to achieve
I(C;W,R) = 0. We call this zero secrecy leakage or, more
compactly, zero leakage (ZL).2 HDSs with the ZL property
are very interesting for quantifying privacy guarantees: if a
privacy-sensitive piece of a biometric is fully contained in
c, and not in (w, r), then a ZL HDS based database reveals
absolutely nothing about that piece.3
We will focus in particular on schemes whose first

stage has the ZL property for each feature separately:
I(Si;Wi) = 0. If the transform in Fig. 1 yields independent
features, then automatically I(Sj;Wi) = 0 for all i, j, and
the whole first stage has the ZL property.

1.6 Contributions and organization of this paper
In this paper, we zoom in on the first-stage HDS and focus
on the ZL property in particular. Our aim is to minimize

reconstruction errors in ZL HDSs that have scalar input
x ∈ R. We treat the helper data as being real-valued,
w ∈ R, though of course w is in practice stored as a
finite-precision value.

• We show that the ZL constraint for continuous
helper data necessitates the existence of “Sibling
Points”, points x that correspond to different s but
give rise to the same helper data w.

• We prove that the ZL constraint for x ∈ R implies
“quantile” helper data. This holds for uniformly
distributed s as well as for non-uniform s. Thus, we
identify a simple quantile construction as being the
generic ZL scheme for all HDS types, including the
FE and SS as special cases. It turns out that the
continuum limit of a FE scheme of Verbitskiy et al.
[7] precisely corresponds to our quantile HDS.

• We derive a reconstruction algorithm for the quantile
ZL FE that minimizes the reconstruction errors. It
amounts to using a set of optimized threshold values,
and is very suitable for low-footprint implementation.

• We analyze, in an all-Gaussian example, the
performance (in terms of reconstruction error rate)
of our ZL FE combined with the optimal
reconstruction algorithm. We compare this scheme
to fixed quantization and a likelihood-based classifier.
It turns out that our error rate is better than that of
fixed quantization, and not much worse than that of
the likelihood-based classifier.

The organization of this paper is as follows. Section 2
discusses quantization techniques. After some preliminar-
ies (Section 3), the sibling points and the quantile helper
data are treated in Section 4. Section 5 discusses the opti-
mal reconstruction thresholds. The performance analysis
in the Gaussian model is presented in Section 6.

2 Related work on biometric quantization
Many biometric parameters can be converted by a
principal component analysis (PCA) into a vector of
(near)independent components [18]. For this reason,most
papers on helper data in the analog domain can restrict
themselves to a one-dimensional quantization, e.g.,
[4, 6, 18]. Yet, the quantization strategies differ, as we
will review below. Figure 2 shows the probability density
function (PDF) of the measurement y in the verifica-
tion phase and how the choice of quantization regions in
the verification phase affects the probability of erroneous
reconstruction (shaded area) in the various schemes.

2.1 Fixed quantization (FQ)
The simplest form of quantization applies a uniform, fixed
quantization grid during both enrollment and verification.
An example for N = 4 quantization regions is depicted
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a b c

Fig. 2 Examples of adaptating the genuine user PDF in the verification phase. FQ does not translate the PDF; QIM centers the PDF on a quantization
interval; LQ uses a likelihood ratio to adjust the quantization regions. a Fixed equiprobable quantization. b Quantization Index Modulation.
cMulti-bits based on likelihood ratio [6]

in Fig. 2a. An unfavorably located genuine user pdf, near
a quantization boundary, can cause a high reconstruction
error.
The inherently large error probability can be mitigated

by “reliable component” selection [17]. Only components
xi far away from a boundary are selected; the rest are
discarded. The indices of the reliable components consti-
tute the helper data. Such a scheme is very inefficient, as
it wastes resources: features that are unfavorably located
w.r.t. the quantization grid, but nonetheless carry infor-
mation, are eliminated. Furthermore, the helper data leaks
information about the biometric, since the intervals have
unequal width and therefore unequal probabilities of pro-
ducing reliable components [19].

2.2 Quantization index modulation (QIM)
QIM borrows principles from digital watermarking [20]
and writing on dirty paper [21]. QIM has quantization
intervals alternatingly labeled with ‘s‘0” and “1” as the val-
ues for the secret s. The helper data w is constructed as
the distance from x to the middle of a quantization inter-
val; adding w to y then offsets the pdf so that the pdf is
centered on the interval (Fig. 2b), yielding a significantly
lower reconstruction error probability than FQ.
The freedom to choose quantization step sizes allows

for a trade-off between reconstruction performance and
leakage [4]. The alternating labeling was adopted to
reduce leakage but sacrifices a large part of the source’s
entropy.

2.3 Likelihood-based quantization (LQ)
At enrollment, the LQ scheme [6] allocates N quanti-
zation regions as follows. The first two boundaries are
chosen such that they yield the same probability of y
given x, and at the same time enclose a probability mass
1/N on the background distribution (the whole popula-
tion’s distribution). Subsequent quantization intervals are

chosen contiguous to the first and again enclose a 1/N
probability mass. Finally, the probability mass in the tails
of the background distribution is added up as a wrap-
around interval, which also holds a probability mass of
1/N . Since the quantization boundaries are at fixed prob-
ability mass intervals, it suffices to communicate a single
boundary t as helper data to the verification phase.
In LQ, the secret s is not equiprobable. The error rates

are low, but the revealed t leaks information about s.

2.4 Dynamic detection-rate-based bit allocation
In [22], Lim et al. proposed dynamic genuine interval
search (DGIS) as an improvement of the bit allocation
scheme of Chen et al. [23]. The resulting scheme has some
similarity to our approach in that they both determine
discretization intervals per user and store these inter-
vals as helper data. However, their scheme is motivated
solely by optimization of the detection rate, whereas in
our scheme the optimization is subject to the zero leakage
restriction. Applying the DGIS method introduces some
additional leakage to the underlying bit allocation scheme.
Furthermore, DGIS performs its search for the optimal
discretization intervals using a sliding window algorithm,
which in general will not succeed in finding the exact opti-
mum. In contrast, in our scheme, we analytically derive
the optimal solution from the background distribution.

3 Preliminaries
3.1 Notation
Random variables are denoted with capital letters and
their realizations in lowercase. The notation E stands for
expectation. Sets are written in calligraphic font.We zoom
in on the one-dimensional first-stage HDS in Fig. 1. For
brevity of notation the index i ∈ {1, . . . ,M} on xi, wi, si, yi
and ŝi will be omitted.
The probability density function (PDF) or probability

mass function (PMF) of a random variable A is denoted
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as fA, and the cumulative distribution function (CDF) as
FA. We consider X ∈ R. The helper data is considered
continuous, W ∈ W ⊂ R. Without loss of generality
we fix W =[ 0, 1). The secret S is an integer in the range
S = {0, . . . ,N − 1}, where N is a system design choice,
typically chosen according to the signal to noise ratio of
the biometric feature. The helper data is computed from
X using a function g, i.e.,W = g(X). Similarly, we define a
quantization function Q such that S = Q(X). The enroll-
ment part of the HDS is given by the pair Q, g. We define
quantization regions as follows,

As = {x ∈ R : Q(x) = s}. (1)

The quantization regions are non-overlapping and cover
the complete feature space, hence form a partitioning:

As ∩ At = ∅ for s �= t ;
⋃
s∈S

As = R. (2)

We consider only quantization regions that are contigu-
ous, i.e., for all s it holds that As is a simple interval. In
Section 5.3, we will see that many other choices may work
equally well, but not better; our preference for contiguous
As regions is tantamount to choosing the simplest ele-
ment Q out of a whole equivalence class of quantization
functions that lead to the same HDS performance. We
define quantization boundaries qs = infAs. Without loss
of generality, we choose Q to be a monotonically increas-
ing function. This gives supAs = qs+1. An overview of the
quantization regions and boundaries is depicted in Fig. 3.
In a generic HDS, the probabilities P[ S = s] can be

different for each s. We will use shorthand notation

P[ S = s]= ps > 0. (3)

The quantization boundaries are given by

qs = F−1
X

( s−1∑
t=0

pt

)
, (4)

where F−1
X is the inverse CDF. For a Fuzzy extractor, one

requires ps = 1/N for all s, in which case (4) simplifies to

qFEs = F−1
X

( s
N

)
. (5)

Fig. 3 Quantization regions As and boundaries qs . The locations of
the quantization boundaries are based on the distribution of x, such
that secret s occurs with probability ps

3.2 Zero leakage
We will work with a definition of the zeroleakage prop-
erty that is a bit stricter than the usual formulation [7],
which pertains to mutual information. This is necessary
in order to avoid problems caused by the fact that W is
a continuum variable (e.g., pathological cases where some
property does not hold on measure-zero subsets ofW),

Definition 3.1. We call a helper data scheme Zero Leak-
age if and only if

∀V⊆W P[ S = s|W ∈ V]= P[ S = s] . (6)

In words, we define the ZL property as independence
between S and W. Knowledge about W has no effect on
the adversary’s uncertainty about S. ZL implies I(S;W ) =
0 or, equivalently, H(S|W ) = H(S). Here H stands for
Shannon entropy, and I for mutual information (see, e.g.,
([24], Eq. (2.35)–(2.39)).

3.3 Noise model
It is common to assume a noise model in which the enroll-
ment measurement x and verification measurement y are
both derived from a hidden ‘true’ biometric value z, i.e.,
X = Z + Ne and Y = Z + Nv, where Ne stands for
the noise in the enrollment measurement and Nv for the
noise in the verification measurement. It is assumed that
Ne and Nv are mutually independent and independent of
X and Y. The Ne,Nv have zero mean and variance σ 2

e , σ 2
v

respectively. The variance of z is denoted as σ 2
Z . This is

a very generic model. It allows for various special cases
such as noiseless enrollment, equal noise at enrollment,
and verification, etc.
It is readily seen that the variance of X and Y is given

by σ 2
X = σ 2

Z + σ 2
e and σ 2

Y = σ 2
Z + σ 2

v . The correla-
tion coefficient ρ between X and Y is defined as ρ =
(E[XY ]−E[X]E[Y ] )/(σXσY ) and it can be expressed as
ρ = σ 2

Z/(σXσY ).
For zero-mean X,Y , it is possible to write

Y = λX + R, with λ = σY
σX

ρ and Var(R) = σ 2 def= σ 2
Y (1 − ρ2),

(7)

where R is zero-mean noise. This way of expressing Y is
motivated by the first and second order statistics, i.e., the
variance of Y is λ2σ 2

X + σ 2 = σ 2
Y , and the correlation

between X and Y is E[XY ] /(σXσY ) = λσ 2
X/(σXσY ) = ρ.

In the case of Gaussian Z,Ne,Nv, the X and Y are
Gaussian, and the noise R is Gaussian as well.
From (7), it follows that the PDF of y given x (i.e., the

noise between enrollment and verification) is centered on
λx and has variance σ 2. The parameter λ is called the
attenuation parameter. In the “identical conditions” case
σe = σv it holds that λ = ρ = σ 2

Z/
(
σ 2
Z + σ 2

v
)
. In the
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“noiseless enrollment” case σe = 0 we have λ = 1 and
ρ = σZ/

√
σ 2
Z + σ 2

v .
We will adopt expression (7) as our noise model.
In Section 5.1, we will be considering a class of noise

distributions that we call symmetric fading noise.

Definition 3.2. Let X be the enrollmentmeasurement and
let Y be the verification measurement, where we adopt be
model of Eq. (7). Let fY |X denote the probability density
function of Y given X. The noise is called symmetric fading
noise if for all x, y1, y2 it holds that

|y1 −λx| < |y2 −λx| =⇒ fY |X(y1|x) > fY |X(y2|x). (8)

Equation (8) reflects the property that small noise
excursions are more likely than large ones, and that the
sign of the noise is equally likely to be positive or neg-
ative. Gaussian noise is an example of symmetric fading
noise.

4 Zero leakage: quantile helper data
In Section 4.1, we present a chain of arguments from
which we conclude that, for ZL helper data, it is sufficient
to consider only functions g with the following properties:
(1) coveringW on each quantization interval (surjective);
(2) monotonically increasing on each quantization inter-
val. This is then used in Section 4.2 to derive the main
result, Theorem 4.8: Zero Leakage is equivalent to hav-
ing helper data obeying a specific quantile rule. This rule
makes it possible to construct a very simple ZL HDS
which is entirely generic.

4.1 Why it is sufficient to consider monotonically
increasing surjective functions g

The reasoning in this section is as follows. We define sib-
ling points as points x in different quantization intervals
but with equal w. We first show that for every w, there
must be at least one sibling point in each interval (surjec-
tivity); then, we demonstrate that having more than one
is bad for the reconstruction error rate. This establishes
that each interval must contain exactly one sibling point
for each w. Then, we show that the ordering of sibling
points must be the same in each interval, because oth-
erwise the error rate increases. Finally, assuming g to be
differentiable yields the monotonicity property.
The verifier has to reconstruct x based on y and w. In

general this is done by first identifying which points x ∈
R are compatible with w, and then selecting which one is
most likely, given y and w. For the first step, we introduce
the concept of sibling points.

Definition 4.1. (Sibling points): Two points x, x′ ∈ R,
with x �= x′, are called Sibling Points if g(x) = g(x′).

The verifier determines a set Xw = {x ∈ R|g(x) = w}
of sibling points that correspond to helper data value w.
We write Xw = ∪s∈SXsw, with Xsw = {x ∈ R|Q(x) =
s∧ g(x) = w}. We derive a number of requirements on the
sets Xsw.

Lemma 4.2. ZL implies that

∀w∈W ,s∈S Xsw �= ∅. (9)

Proof: see Appendix A1. Lemma 4.2 tells us that there is
significant leakage if there is not at least one sibling point
compatible withw in each intervalAs, for allw ∈ W . Since
we are interested in zero leakage, we will from this point
onward consider only functions g such that Xsw �= ∅ for
all s,w.
Next, we look at the requirement of low reconstruc-

tion error probability. We focus on theminimum distance
between sibling points that belong to different quantiza-
tion intervals.

Definition 4.3. The minimum distance between sibling
points in different quantization intervals is defined as

Dmin(w) = min
s,t∈S: s<t

|minXtw − maxXsw|, (10)

Dmin = min
w∈W Dmin(w). (11)

We take the approach of maximizing Dmin. It is intu-
itively clear that such an approach yields low error
rates given the noise model introduced in Section 3.3.
The following lemma gives a constraint that improves
the Dmin.

Lemma 4.4. Let w ∈ W and Xsw �= ∅ for all s ∈ S . The
Dmin(w) is maximized by setting |Xsw| = 1 for all s ∈ S .

Proof: see Appendix A.2. Lemma 4.4 states that each
quantization interval As should contain exactly one point
x compatible with w. From here onward we will only
consider functions g with this property.
The set Xsw consists of a single point which we will

denote as xsw. Note that g is then an invertible func-
tion on each interval As. For given w ∈ W , we now
have a set Xw = ∪s∈Sxsw that consists of one sib-
ling point per quantization interval. This vastly simplifies
the analysis. Our next step is to put further constraints
on g.

Lemma 4.5. Let x1, x2 ∈ As and x3, x4 ∈ At, s �= t, with
x1 < x2 < x3 < x4 and g(x1) = w1, g(x2) = w2. Consider
two cases,
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1. g(x3) = w1; g(x4) = w2
2. g(x4) = w1; g(x3) = w2.

Then it holds that

min
w∈{w1,w2}

Dcase 2
min (w) ≤ min

w∈{w1,w2}
Dcase 1
min (w). (12)

Proof: see Appendix A.3. Lemma 4.5 tells us that the
ordering of sibling points should be the same in each
quantization interval, for otherwise the overall minimum
distance Dmin suffers. If, for some s, a point x with helper
data w2 is higher than a point with helper data w1, then
this order has to be the same for all intervals.
The combination of having a preserved order

(Lemma 4.5) together with g being invertible on each
interval (Lemma 4.4) points us in the direction of
“smooth” functions. If g is piecewise differentiable, then
we can formulate a simple constraint as follows.

Theorem 4.6. (sign of g’ equal on each As) : Let xs ∈
As, xt ∈ At be sibling points as defined in Def. 4.1. Let g
be differentiable in xs and xt. Then having sign g′(xs) =
sign g′(xt) leads to a higher Dmin than sign g′(xs) �=
sign g′(xt).

Proof: see Appendix A.4.
If we consider a function g that is differentiable on

each quantization interval, then (1) its piecewise invert-
ibility implies that it has to be either monotonously
increasing or monotonously decreasing on each inter-
val, and (2) Theorem 4.6 then implies that it has to be
either increasing on all intervals or decreasing on all
intervals.
Of course there is no reason to assume that g is piece-

wise differentiable. For instance, take a piecewise differ-
entiable g and apply a permutation to the w-axis. This
procedure yields a function g2 which, in terms of error
probabilities, has exactly the same performance as g, but
is not differentiable (nor even continuous). Thus, there
exist huge equivalence classes of helper data generating
functions that satisfy invertibility (Lemma 4.4) and proper
ordering (Lemma 4.5). This brings us to the following con-
jecture, which allows us to concentrate on functions that
are easy to analyze.

Conjecture 4.7. Without loss of generality we can choose
the function g to be differentiable on each quantization
interval As, s ∈ S .

Based on Conjecture 4.7, we will consider only functions
g that are monotonically increasing on each interval. This
assumption is in line with all (first stage) HDSs [4, 6, 8]
known to us.

4.2 Quantile helper data
We state our main result in the theorem below.

Theorem 4.8. (ZL is equivalent to quantile relation-
ship between sibling points): Let g be monotonously
increasing on each interval As, with g(A0) = · · · =
g(AN−1) = W . Let s, t ∈ S . Let xs ∈ As, xt ∈ At be sib-
ling points as defined in Def. 4.1. In order to satisfy Zero
Leakage we have the following necessary and sufficient
condition on the sibling points,

FX(xs) − FX(qs)
ps

= FX(xt) − FX(qt)
pt

. (13)

Proof: see Appendix A.5.

Corollary 4.9. (ZL FE sibling point relation): Let g be
monotonously increasing on each interval As, with g(A0) =
· · · = g(AN−1) = W . Let s, t ∈ S . Let xs ∈ As, xt ∈ At
be sibling points as defined in Def. 4.1. Then for a Fuzzy
Extractor we have the following necessary and sufficient
condition on the sibling points in order to satisfy Zero
Leakage,

FX(xs) − s
N

= FX(xt) − t
N
. (14)

Proof. Immediately follows by combining Eq. (13) with
the fact that ps = 1/N ∀s ∈ S in a FE scheme, and with
the FE quantization boundaries given in Eq. (5).

Theorem 4.8 allows us to define the enrollment steps in
a ZL HDS in a very simple way,

s = Q(x)

w = g(x) = FX(x) − FX(qs)
ps

. (15)

Note that w ∈[ 0, 1), and FX(qs) = ∑s−1
t=0 pt . The helper

data can be interpreted as a quantile distance between
x and the quantization boundary qs, normalized with
respect to the probability mass ps in the interval As. An
example of such a function is depicted in Fig. 4. For a spe-
cific distribution, e.g., a standard Gaussian distribution,
the helper data generation function is depicted in Fig. 5.
In the FE case, Eq. (15) simplifies to

FX(x) = s + w
N

; w ∈ [ 0, 1) (16)

and the helper data generation function becomes

w = gFE(x) = N · FX(x) − s. (17)

Equation (16) coincides with the continuum limit of
the Fuzzy extractor construction by Verbitskiy et al. [7].
A similar equation was later independently proposed for
uniform key generation from a noisy channel by Ye et
al. [25]. Equation (15) is the simplest way to implement
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Fig. 4 Example of helper data generating function g for N = 4 on
quantile x, i.e., FX (x). The probabilities of the secrets do not have to be
equal; in this case, we have used (p0, . . . , p3) = (0.4, 0.2, 0.3, 0.1)

an enrollment that satisfies the sibling point relation of
Theorem 4.8. However, it is not the onlyway. For instance,
by applying any invertible function to w, a new helper data
scheme is obtained that also satisfies the sibling point rela-
tion (13) and hence is ZL. Another example is to store the
whole set of sibling points {xtw}t∈S ; this contains exactly
the same information as w. The transformed scheme can
be seen as merely a different representation of the “basic”
ZL HDS (15). Such a representation may have various
advantages over (15), e.g., allowing for a faster recon-
struction procedure, while being completely equivalent
in terms of the ZL property. We will see such a case in
Section 5.3.

Fig. 5 Example of a helper data generating function g for a standard
Gaussian distribution, i.e., x ∼ N (0, 1), and N = 4. Sibling points xsw
are given for s ∈ {0, . . . , 3} and w = 0.3

5 Optimal reconstruction
5.1 Maximum likelihood and thresholds
The goal of the HDS reconstruction algorithm Rep(y,w)

is to reliably reproduce the secret s. The best way to
achieve this is to choose themost probable ŝ given y andw,
i.e., a maximum likelihood algorithm. We derive optimal
decision intervals for the reconstruction phase in a Zero
Leakage Fuzzy Extractor.

Lemma 5.1. Let Rep(y,w) be the reproduction algorithm
of a ZL FE system. Let g−1

s be the inverse of the helper
data generation function for a given secret s. Then optimal
reconstruction is achieved by

Rep(y,w) = argmax
s∈S

fY |X
(
y|g−1

s (w)
)
. (18)

Proof: see Appendix A.6. To simplify the verification
phase we can identify thresholds τs that denote the lower
boundary of a decision region. If τs ≤ y < τs+1, we recon-
struct ŝ = s. The τ0 = −∞ and τN = ∞ are fixed, which
implies we have to find optimal values only for the N − 1
variables τ1, . . . , τN−1 as a function of w.

Theorem 5.2. Let fY |X represent symmetric fading noise.
Then optimal reconstruction in a FE scheme is obtained by
the following choice of thresholds

τs = λ
g−1
s (w) + g−1

s−1(w)

2
. (19)

Proof. In case of symmetric fading noise we know that

fY |X(y|x) = ϕ(|y − λx|), (20)

with ϕ some monotonic decreasing function. Combining
this notion with that of Eq. (18) to find a point y = τs that
gives equal probability for s and s − 1 yields

ϕ
(
|τs − λg−1

s−1(w)|
)

= ϕ
(|τs − λg−1

s (w)|) . (21)

The left and right hand side of this equation can only be
equal for equal arguments, and hence

τs − λg−1
s−1(w) = ± (

τs − λg−1
s (w)

)
. (22)

Since g−1
s (w) �= g−1

s−1(w) the only viable solution is
Eq. (19).

Instead of storing the ZL helper data w according to
(15), one can also store the set of thresholds τ1, . . . , τN−1.
This contains precisely the same information, and allows
for quicker reconstruction of s: just a thresholding opera-
tion on y and the τs values, which can be implemented on
computationally limited devices.
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5.2 Special case: 1-bit secret
In the case of a one-bit secret s, i.e., N = 2, the
above ZL FE scheme is reduced to storing a single
threshold τ1.
It is interesting and somewhat counterintuitive that this

yields a threshold for verification that does not leak infor-
mation about the secret. In case the average of X is zero,
one might assume that a positive threshold value implies
s = 0. However, both s = 0 and s = 1 allow positive as
well as negative τ1, dependent on the relative location of x
in the quantization interval.

5.3 FE: equivalent choices for the quantization
Let us reconsider the quantization function Q(x) in the
case of a Fuzzy extractor. Let us fix N and take the g(x)
as specified in Eq. (16). Then, it is possible to find an infi-
nite number of different functionsQ that will conserve the
ZL property and lead to exactly the same error rate as the
original scheme. This is seen as follows. For any w ∈[ 0, 1),
there is an N-tuplet of sibling points. Without any impact
on the reconstruction performance, we can permute the
s-values of these points; the error rate of the reconstruc-
tion procedure depends only on the x-values of the sibling
points, not on the s-label they carry. It is allowed to do
this permutation for every w independently, resulting in
an infinite equivalence class of Q-functions. The choice
we made in Section 3 yields the simplest function in an
equivalence class.

6 Example: Gaussian features and BCH codes
To benchmark the reproduction performance of our
scheme, we give an example based on Gaussian-
distributed variables. In this example, we will assume all
variables to be Gaussian distributed, though we remind

the reader that our scheme specifies optimal reconstruc-
tion thresholds even for non-Gaussian distributions.
We compare the reproduction performance of our ZL

quantization scheme with Likelihood-based reproduction
(ZLQ-LR) to a scheme with (1) fixed quantization (FQ),
see Section 2.1, and (2) likelihood classification (LC). The
former is, to our knowledge, the only other scheme shar-
ing the zero secrecy leakage property, since it does not
use any helper data. An example with N = 4 intervals
is depicted in Fig. 6a. LC is not an actual quantization
scheme since it requires the enrollment sample to be
stored in-the-clear. However, a likelihood based classifier
provides an optimal trade-off between false acceptance
and false rejection according to communication theory
[24] and should therefore yield the lowest possible error
rate. Instead of quantization boundaries, the classifier
is characterized by decision boundaries as depicted in
Fig. 6b.
A comparison with QIM cannot be made since there the

probability for an impostor to guess the enrolled secret
cannot be made equal to 1/N . This would result in an
unfair comparison since the other schemes are designed to
possess this property. Moreover, the QIM scheme allows
the reproduction error probability to be made arbitrary
small by increasing the quantization width at the cost of
leakage.
Also, the likelihood based classification can be tuned by

setting the decision threshold. However, for this scheme,
it is possible to choose a threshold such that an impostor
will have a probability of 1/N to be accepted, which cor-
responds to the 1/N probability of guessing the enrolled
secret in a FE scheme. Note that for a likelihood classifier,
there is no enrolled secret since this is not a quantization
scheme.

a b c

Fig. 6 Quantization and decision patterns based on the genuine user and impostor PDFs. Ideally the genuine user PDF should be contained in the
authentic zone and the impostor PDF should have a large mass outside the authentic zone. Fifty percent probability mass is contained in the
genuine user and impostor PDF ellipse and circle. The genuine user PDF is based on a 10 dB SNR. a Fixed equiprobable quantization (FQ).
b Likelihood classification (LC). c Zero leakage quantization scheme with likelihood based reproduction (ZLQ-LR)
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As can be seen from Fig. 7, the reproduction perfor-
mance for a ZL scheme with likelihood based reproduc-
tion is always better than that of a fixed quantization
scheme. However, it is outperformed by the likelihood
classifier. Differences are especially apparent for features
with a higher signal-to-noise ratio. In these regions, the
fixed quantization struggles with a inherent high error
probability, while the ZL scheme follows the LC.
In a good quantization scheme, the gap between I(X;Y )

and I(S; Ŝ) must be small. For a Gaussian channel,
standard expressions are known from ([24], Eq. (9.16)).
Figure 8 shows that a fixed quantization requires a higher
SNR on order to converge to the maximum number of
bits, whereas the ZLQ-LR scheme directly reaches this
value.
Finally, we consider the vector case of the two quanti-

zation schemes discussed above. We concluded that FQ
has a larger error probability, but we now show how
this relates to either false rejection or secret length when
combined with a code offset method [3].
We assume i.i.d. features and therefore we can calculate

false acceptance rate (FAR) and false rejection rate (FRR)
based on a binomial distribution. In practice, features can
be made (nearly) independent, but they will in general not
be identically distributed. However, results will be simi-
lar. Furthermore we assume the error correcting code can
be applied such that its error correcting properties can be
fully exploited. This implies that we have to use a Gray
code to label the extracted secrets before concatenation.
We used 64 i.i.d. features, each having a SNR of 17 dB,

which is a typical average value for biometric features

[8, 17]. From these features, we extract 2 bits per feature
on which we apply BCH codes with a code length of 127.
(We omit one bit). For analysis, we have also included
the code (127, 127, 0), which is not an actual code, but
represents the case in which no error correction is applied.
Suppose we want to achieve a target FRR of 1 · 10−3,

the topmost dotted line in Fig. 9, then we require a
BCH (127, 92, 5) code for the ZLQ-LR scheme, while a
BCH (127, 15, 27) code is required for the FQ scheme.
This implies that we would have a secret key size
of 92 bits versus 15 bits. Clearly, the latter is not
sufficient for any security application. At the same
time, due to the small key size, FQ has an increased
FAR.

7 Conclusions
In this paper, we have studied a generic helper data
scheme (HDS) which comprises the Fuzzy extractor (FE)
and the secure sketch (SS) as special cases. In particular,
we have looked at the zero leakage (ZL) property of HDSs
in the case of a one-dimensional continuous source X and
continuous helper dataW.
We make minimal assumptions, justified by Conjecture

4.7: we consider only monotonic g(x). We have shown that
the ZL property implies the existence of sibling points
{xsw}s∈S for every w. These are values of x that have the
same helper data w. Furthermore, the ZL requirement
is equivalent to a quantile relationship (Theorem 4.8)
between the sibling points. This directly leads to Eq. (15)
for computing w from x. (Applying any reversible func-
tion to this w yields a completely equivalent helper data

Fig. 7 Reconstruction error probability for Gaussian-distributed features and Gaussian noise for N = 4



de Groot et al. EURASIP Journal on Advances in Signal Processing  (2016) 2016:54 Page 11 of 13

Fig. 8Mutual information between S and Ŝ for Gaussian-distributed features and Gaussian noise

system.) The special case of a FE (ps = 1/N) yields the
m → ∞ limit of the Verbitskiy et al. [7] construction.
We have derived reconstruction thresholds τs for a

ZL FE that minimize the error rate in the reconstruc-
tion of s (Theorem 5.2). This result holds under very
mild assumptions on the noise: symmetric and fad-
ing. Equation (19) contains the attenuation parameter
λ, which follows from the noise model as specified in
Section 3.3.

Finally, we have analyzed reproduction performance
in an all-Gaussian example. Fixed quantization struggles
with inherent high error probability, while the ZL FE
with optimal reproduction follows the performance of the
optimal classification algorithm. This results in a larger
key size in the protected template compared to the fixed
quantization scheme, since an ECC with a larger message
length can be applied in the second stage HDS to achieve
the same FRR.

Fig. 9 System performance of ZLQ-LR and FQ
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In this paper, we have focused on arbitrary but known
probability densities. Experiments with real data are
beyond the scope of this paper, but have been reported
in [26, 27]. A key finding there was that modeling the
distributions can be problematic, especially due to sta-
tistical outliers. Even so, improvements were obtained
with respect to earlier ZL schemes. We see modeling
refinements as a topic for future research.

Endnotes
1For information-theoretic concepts such as Shannon

entropy and mutual information we refer to e.g. [24].
2This concept is not new. Achieving zero mutual

information has always been a (sometimes achievable)
desideratum in the literature on fuzzy vaults/fuzzy
extractors/secure sketches for discrete and continuous
sources.

3An overall Zero-Leakage scheme can be obtained in
the final HDS stage even from a leaky HDS by applying
privacy amplification as a post-processing step. However,
this procedure discards substantial amounts of source
entropy, while in many practical applications it is already
a challenge to achieve reasonable security levels from
biometrics without privacy protection.

Appendix
Appendix A: Proofs
A.1 Proof of Lemma 4.2
Pick any w ∈ W . The statement w ∈ W means that there
exists at least one s′ ∈ S such that Xs′w �= ∅. Now suppose
there exists some s′′ ∈ S with Xs′′w = ∅. Then knowledge
of w reveals information about S, i.e. P[ S = s|W = w] �=
P[ S = s], which contradicts ZL.

A.2 Proof of Lemma 4.4
Let g be such that |Xsw| > 1 for some s,w. Then choose a
point x̄ ∈ Xsw. Construct a function g2 such that

g2(x)
{ = g(x) if x = x̄ or x /∈ Xsw

�= g(x) otherwise . (23)

The Dmin(w) for g2 cannot be smaller than Dmin(w)

for g.

A.3 Proof of Lemma 4.5
We tabulate the Dmin(w) values for case 1 and 2,

case 1 case 2
w1 x3 − x1 x4 − x1
w2 x4 − x2 x3 − x2

The smallest of these distances is x3 − x2.

A.4 Proof of Theorem 4.6
Let 0 < ε � 1 and 0 < δ � 1. Without loss of generality
we consider s < t. We invoke Lemma 4.5 with x1 = xs,

x2 = xs + ε, x3 = xt , x4 = xt + δ. According to Lemma 4.5
we have to take g(x2) = g(x4) in order to obtain a large
Dmin. Applying a first order Taylor expansion, this gives

g(xs)+εg′(xs)+O(ε2) = g(xt)+δg′(xt)+O(δ2). (24)

We use the fact that g(xs) = g(xt), and that ε and δ are
positive. Taking the sign of both sides of (24) and neglect-
ing second order contributions, we get sign g′(xs) =
sign g′(xt).

A.5 Proof of Theorem 4.8
The ZL property is equivalent to fW = fW |S, which gives
for all s ∈ S

fW (w) = fW |S(w|s) = fW ,S(w, s)
ps

, (25)

where fW ,S is the joint distribution for W and S. We work
under the assumption that w = g(x) is a monotonous
function on each interval As, fully spanning W . Then for
given s and w there exists exactly one point xsw that satis-
fies Q(x) = s and g(x) = w. Furthermore, conservation of
probability then gives fW ,S(w, s) dw = fX(xsw) dxsw. Since
the right hand side of (25) is independent of s, we can write
fW (w)dw = p−1

s fX(xsw)dxsw for any s ∈ S . Hence for any
s, t ∈ S , w ∈ W it holds that

fX(xsw)dxsw
ps

= fX(xtw)dxtw
pt

, (26)

which can be rewritten as

dFX(xsw)

ps
= dFX(xtw)

pt
. (27)

The result (13) follows by integration, using the fact that
As has lower boundary qs.

A.6 Proof of Lemma 5.1
Optimal reconstruction can be done by selecting the most
likely secret given y,w,

Rep(y,w) = argmax
s∈S

fS|Y ,W (s|y,w) = argmax
s∈S

fY ,S,W (y, s,w)

fY ,W (y,w)
.

(28)

The denominator does not depend on s, and can hence
be omitted. This gives

Rep(y,w) = argmax
s∈S

fS,Y ,W (s, y,w) (29)

= argmax
s∈S

fY |S,W (y|s,w)fW |S(w|s)ps. (30)

We constructed the scheme to be a FE with ZL, and
therefore ps = 1/N and fW |S(w|s) = fW (w). We see that
both ps and fW |S(w|s) do not depend on s, which implies
they can be omitted from Eq. (30), yielding Rep(y,w) =
argmaxs∈S fY |S,W (y|s,w). Finally, knowing S and W is
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equivalent to knowing X. Hence fY |S,W (y|s,w) can be
replaced by fY |X(y|x)with x satisfyingQ(x) = s and g(x) =
w. The unique x value that satisfies these constraints is
g−1
s (w).
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