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Abstract

The problem of distributed tracking of multiple targets is tackled by exploiting sensor mobility and the presence of
sparsity in the sensor data covariance matrix. Sparse matrix decomposition relying on norm-one/two regularization is
integrated with a kinematic framework to identify informative sensors, associate them with the targets, and enable
them to follow closely the moving targets. Coordinate descent techniques are employed to determine in a distributed
way the target-informative sensors, while the modified barrier method is employed to minimize proper error
covariance matrices acquired by extended Kalman filtering. Different from existing approaches which force all sensors
to move, here, local updating recursive rules are obtained only for the target-informative sensors that can update their
location and follow closely the corresponding targets while staying connected. Simulations advocate that the
proposed scheme outperforms alternative tracking schemes while accurately tracks multiple targets by imposing
mobility only on the target-informative sensors.
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1 Introduction
In recent years, potential applications of sensor networks
(SN) have expanded due to the low cost of the sensing
units, their ability to cover large areas, and the robustness
distributed processing offers. One characteristic exploited
more and more in sensor networks is sensor mobility and
the design of kinematic rules that control sensor move-
ment. Sensor mobility adds extra flexibility to a sensor
network making it capable of covering larger areas, as
well as being more energy efficient and robust [1]. Mobile
sensors have been extensively utilized in target tracking
applications to enable sensors to closely follow the moving
target(s) and provide accurate target location estimates
[2–4]. The aforementioned approaches require all the sen-
sors to keep active [2–4], which may lead to excessive
resource consumption despite the targets’ locality and the
fact that in practice a small portion of sensors may pos-
sess useful information about the present targets. The aim
here is to design an adaptive scheme that exploits mobility
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and covariance sparsity to associate targets with sensors
and then properly determine kinematic strategies only for
the informative sensors which will closely follow the field
targets.
In the absence of sensor mobility, there has been a

plethora of approaches for tracking multiple targets while
associating targets with sensor measurements. Existing
works [5–8] associate measurements acquired at static
sensors with targets across time and rely heavily on prob-
ability models. A distributed Kalman filtering scheme is
proposed in [9] relying on information diffusion strate-
gies. In [9], only neighboring sensors collaborate, though
all sensors in the network are utilized to track a sin-
gle source while sensors have fixed locations. A different
approach is followed in [10], where consensus-averaging
is employed across the whole sensor network and all
the sensors are forced to be active irrespective of the
quality of their measurements. In [11], a related single-
target distributed tracking approach is proposed, in which
extended Kalman filtering is employed for tracking. A
probability model is assumed to determine informative
sensors which may lead to instability due to its depen-
dence on the tracking estimates. Different in this paper,
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distributed tracking of multiple targets will be considered,
while sensor mobility will be exploited and combined with
a sensor-to-target association scheme for selecting target-
informative sensors without the need of relying on model
parameters and state estimators that maybe inaccurate
and result divergence. It should be pointed out that the
distributed characterization here is referring to the fact
that (i) only neighboring sensors need to communicate
with each other and collaborate for multi-target tracking,
while (ii) processing will take place in a few head sen-
sors and will not involve all sensors in the network but
only those sensors that bear information about themoving
targets.
Single-target tracking using mobile sensor networks has

been studied for a variety of different scenarios [12–14].
Most of these approaches control the movement of all
sensors by minimizing the estimation error covariance,
[4, 13], while the approach in [12] manages sensor mobil-
ity based on a Bayesian estimation model and restricting
sensors to move only on a grid of locations. A path plan-
ning strategy for a setting involving a fixed-location target
and a single moving sensor is designed in [15] by maxi-
mizing the determinant of the Fisher information matrix
corresponding to the configuration. In [16], an approach is
proposed for controlling the trajectories of multiple UAVs
by minimizing the localization uncertainty for a fixed-
location target setting where the target is emitting a radio
signal. The work in [17] rigorously presents how sensor
mobility can increase spatial resolution when tracking a
target with mobile sensors.
When tracking multiple targets with mobile sensors,

the approach in [3] proposed an active sensing model,
whereas the target-sensor association is based on a near-
est neighbor rule which heavily relies on the accuracy of
the state estimator while a central processing center is
required. The scheme in [18] tackled the problem of mov-
ing sensors using a flock control law where all sensors are
utilized, while the targets are some of the moving sensors
whose position is known. The approach in [19] is utilizing
clustering and neural networks to move sensors under the
assumption that target locations are available. The scheme
in [20] designs a Kalman filtering approach with gradient
descent-based kinematic rules under the assumption that
it is known which targets every sensor observes bypassing
in that way the essential sensor-to-target association step.
These schemes involve movement of all sensors at every
time instant leading to resource-demanding algorithms
that do not exploit spatial locality of the field targets.
Measurements corresponding to sensors which are

close to the same target tend to be statistically correlated.
Given that targets are spatially localized and affect small
portions of the sensor network, an approximately sparse
sensor data covariance matrix is emerging. Sparsity (pres-
ence of a many zero entries in a vector or matrix) has

been exploited in a wide range of applications includ-
ing sparse regression and statistical inference, e.g., see
[21, 22]. The problem of associating targets to sensors, as
well as determining the sensors with target-informative
measurements, is formulated here as the task of decom-
posing a matrix into sparse factors. The sparse matrix
factorization techniques in [23, 24] are integrated here
with proper sensor kinematic strategies and tracking tech-
niques to exploit sensor mobility. Note that in [23, 24],
a stationary (immobile) sensor network is considered
where sensors have fixed locations. Tracking in [23, 24]
is performed by immobile sensors, whereas here track-
ing is generalized to a mobile network with the more
challenging task of designing and integrating with multi-
target tracking, sensor kinematic strategies that improve
tracking accuracy while preserving local sensor network
connectivity. Norm-one and norm-two regularization
mechanisms are employed to formulate a pertinent min-
imization framework that recovers sparse covariance fac-
tors, while estimates the number of targets on the field.
Coordinate descent techniques [25, 26] are employed to
derive local updating recursions that allow sensors to
associate with targets.
Different from the aforementioned tracking schemes

using sensor mobility, here, only the target-informative
sensors will be enabled to move at every time instant
and track closely the moving targets. Thus, only target-
affected portions of the sensor network will be used for
tracking the moving targets, potentially resulting better
resource consumption and prolongation of the network
lifetime. Kinematic rules will be designed by minimizing
proper error covariance matrices obtained by extended
Kalman filtering recursions [27] used to track each of the
targets. The minimization will be performed under con-
nectivity constraints that ensure the moving sensors stay
connected and are able to communicate. The modified
barrier method ([26], pg. 423) is employed to solve a per-
tinent constrained minimization problem and obtain dis-
tributed kinematic rules that the mobile sensors can apply
locally without the need of a central controller. In contrast
to existing approaches, the novel framework identifies and
controls the movement only of target-informative sensors
allowing for accurate tracking.
The novelties of the proposed framework with respect

to existing work involves the following: (i) utilization of
covariance sparsity and properly designed kinematic rules
to perform dynamic spatio-temporal sensor-to-target
association and tracking using mobile sensors not present
in [11, 23, 24]; (ii) different from existing approaches
[12–14], it enables only the sensors acquiring informa-
tive measurements about the targets to move instead of
moving all sensors to track a single target; (iii) differ-
ent from [11], it does not rely on probabilistic models or
state estimates to associate sensors with targets; (iv) it
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takes local sensor network connectivity into account to
ensure that the tracking process carries out continuously;
and (v) different from [15, 16] that consider fixed-location
target(s), here, kinematic strategies are developed for
trackingmultiple moving targets. The proposed approach
here achieves this task only by using the sensor data and
sparsity-imposing mechanisms.
The paper is structured as follows. The problem

formulation and setting are given in Section 2. The
sensor-to-target association scheme which provides the
target-informative sensors is delineated in Section 3.1 and
is combined with extended Kalman filtering techniques
in Section 3.2. Novel kinematic rules are developed in
Section 3.3 after minimizing a pertinent error covariance
matrix under connectivity constraints and employing the
modified barrier method to derive local kinematic rules
that enable the target-informative sensors to update their
location and follow closely to moving targets. The pro-
posed algorithmic framework is detailed in Section 4.1,
while the communication and computational costs are
discussed in Section 4.2. Extensive numerical tests are car-
ried out in Section 5 that corroborate the advantages of
the novel method over existing alternatives.

2 Problem setting
An ad hoc sensor network conformed by p mobile sen-
sors is considered here. The sensors monitor a field where
an unknown and possibly time-varying number of moving
targets is present. Each sensor communicates only with
its neighboring sensors which are within its communica-
tion range and are able to exchange information with a
single-hop of communication. The single-hop neighbor-
hood of sensor j is denoted as Nj(t), where t denotes the
time index.
In general, all targets are assumed to be moving in

a K-dimensional space. Then, every target, say the ρth,
is characterized by a 2K × 1 state vector which con-
tains both its position coordinates and velocity informa-
tion for each coordinate. The position coordinates for
the ρth target at time t are stacked in vector pρ(t) =[
pρ,x1(t), . . . , pρ,xK (t)

]T , while the velocity per coordinate
is in vector vρ(t) = [

vρ,x1(t), . . . , vρ,xK (t)
]T . So at time t,

the state vector can be written as sρ(t) = [
pTρ (t), vTρ (t)

]T ,
while it evolves according to a near constant veloc-
ity model [28]. Specifically, the ρth target’s state vec-
tor evolves according to the following constant velocity
model, see e.g., [28]:

sρ(t + 1) = Fsρ(t) + uρ(t), (1)

where F is the 2K × 2K state transition matrix and uρ(t)
the zero-mean Gaussian state noise with variance �u.
Matrices F and �u are given as follows:

F =

⎡
⎢⎢⎢⎢⎢⎣

1 0 . . . �T . . . 0
...
...

...
...

...
...

0 1 0 0 . . . �T
0 0 1 . . . 1 0
0 0 0 . . . 0 1

⎤
⎥⎥⎥⎥⎥⎦
,

�u = σ 2
u

[
(�T)3/3 · IK (�T)2/2 · IK
(�T)2/2 · IK �T · IK

]
,

(2)

where σ 2
u is the noise variance and IK denotes the iden-

tity matrix of size K × K , while �T denotes the sampling
period.
Sensor j senses the moving targets, by acquiring at time

t a scalar measurement depending on the target location
according to the following nonlinear model:

xj(t) =
∑R

ρ=1
aρ(t)d−2

j,ρ (t) + wj(t), j = 1, . . . , p, (3)

where aρ(t) denotes the intensity of a signal emitted from
the ρth target and dj,ρ(t) = ‖pj(t) − pρ(t)‖ is the distance
between sensor j and the ρth target at time t. The total
number of targets which move in the field through the
lifespan of the SN is indicated as R, whilewj(t) denotes the
white sensing noise with variance σ 2

w and zero-mean. The
following assumptions are introduced in the considered
setting:

• A1: In the measurement model in (3), it is assumed
that the targets act as transmitters and each sensor
will receive one reflection of the signal emitted from
the targets. Signals emitted from the targets
propagate via free space, explaining the d−2

j,ρ (t)
attenuation coefficients, and are superimposed as
shown in (3), see e.g., [29].

• A2: The signal amplitudes aρ(t) are considered to be
uncorrelated across the different targets.

• A3: Among the summands aρ(t)d−2
j,ρ (t) in (3), only

one has a large amplitude when sensor j is close to
the ρth target, whereas others are negligible due to
the square-law attenuation d−2

j,ρ (t) caused by the free
space propagation.

Note that assumption A3 corresponds to a setting where
at most, one target is present within the sensing range
of a sensor. Note that this is a more relaxed version of
the common assumption that one sensor just contains the
measurement of a specific target [6–8]. The signal ampli-
tudes aρ(t) will be nonzero for the interval in which the
corresponding target is active and moving while is kept at
zero when the target is inactive and disappears.
The emitted, from the targets, signals aρ(t) could cor-

respond to communication radio signals that possibly
the targets are transmitting, e.g., targets could corre-
spond to cell phone users moving in an area or unnamed
aerial/ground vehicles or military vehicles that move
within the monitored area and need to be tracked, see e.g.,
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[16]. The deployed sensors are listening for these signals
to track the moving entities. The targets could correspond
to independent entities; thus, it is expected that the infor-
mation bits they transmit are uncorrelated, giving rise to
uncorrelated transmission signals [30]. Thus, the commu-
nication radio signals that the targets may be emitting are
utilized to perform tracking and move the sensors appro-
priately. Applications include localization and tracking of
mobile users in wireless networks, as well as tracking of
vehicles in tactical environments [16].
Stacking all the sensor measurements in (3) on a p × 1

vector, it follows:

xt = Dtat + wt , where at := [a1(t) a2(t) . . . aR(t)]T ,
(4)

where Dt is a p × R matrix with entries Dt(j, ρ) = d−2
j,ρ (t)

with j = 1, . . . , p and ρ = 1, . . . ,R. The noise wt has
covariance �w = σ 2

wIp. Given that the entries of at are
uncorrelated, it follows readily that the data covariance
matrix is

�x,t = Dt�aDT
t + σ 2

wIp = D̄tD̄T
t + σ 2

wIp, (5)

where �a is the diagonal covariance matrix of at , while
D̄t := Dt�

1/2
a . Among the R entries in at , there will be r(t)

nonzero entries corresponding to the active targets mov-
ing at the sensed field at t. In the setting here, once a target
becomes inactive (i.e., aρ(t) = 0), it remains inactive for
the rest of time.
The goal is to enable the mobile sensors to track an

unknown number of targets present in the monitored
field. Novel target association and sensor mobility strate-
gies will be combined with tracking techniques to enable
sensors to accurately track the different target trajecto-
ries. Proper kinematic strategies will be developed to allow
only a small percentage of target-informative sensors to
move, different from existing approaches [12, 14] where
all sensors are moving at every time instant that may
be more resource demanding. Judiciously selecting and
moving sensors will enable target tracking even when the
targets move outside the area originally monitored by the
sensors.

3 Distributed association, tracking, and sensor
kinematic strategies

3.1 Target-informative sensor selection
Due to the presence of multiple target in the moni-
tored field, the first goal is to determine sets of sensors,
namely Sρ,t , that acquire information bearing measure-
ments about the ρth target. From the observation model
in (4), note that the strong-amplitude entries of the ρ

column in Dt , namely {Dt,:ρ}Rρ=1, can reveal the sen-
sors within subset Sρ,t . Specifically, recall that Dt(j, ρ) =

d−2
j,ρ (t); thus, when sensor j and target ρ are close in dis-

tance then the corresponding entry is expected to have
large amplitude, while the further away they get from each
other the closer to zero the corresponding entry gets. The
matrixDt can be assumed approximately sparse. Thus, the
strong-amplitude entries (away from zero) in Dt,:ρ can be
used to determine the informative sensor members of Sρ,t
at time instant t. Thus, determining Sρ,t boils down to the
problem of recovering the support of the columns of Dt .
To recover the sparse matrix D̄t in (4), the data covari-

ance matrix will be decomposed into sparse factors. Due
to the fact that the targets and sensors may be moving
while the number of targets is changing, the sparse sensor
data covariance �x,t is also time-varying. In practice, the
ensemble covariance is not available and needs to be esti-
mated. To this end, exponential weighing is employed to
estimate the time-varying covariance entries. The notion
of exponential weighing in recursive least-squares used in
processing non-stationary signals, see e.g., ([31], Ch. 9),
is estimating the time-varying covariance matrix here as
follows:

�̂x,t = 1 − ω

1 − ωt+1
∑t

τ=0 ωt−τ (xτ − x̄t)(xτ − x̄t)T , (6)

where ω ∈ (0, 1) denotes a forgetting factor and

x̄t = 1 − ω

1 − ωt+1
∑t

τ=0 ωt−τxτ , (7)

corresponds to a real-time estimate for the ensemble
mean at time instant t. Note that ω in Eqs. (6) and (7) is
used in a way that puts more emphasis to the recent data
while it gradually forgets the past data, which is exactly
what an up-to-date estimator needs to do for the time-
varying setting considered here. The scaling (1 − ω)(1 −
ωt+1)−1 in (6) and (7) is to ensure that the two estimates
�̂x,t and x̄t for the ensemble quantities �x,t and E[ xt] will
be unbiased.
To account for the nearly sparse structure of D̄t , the

unknown number of targets and single-hop connectivity
of the sensor nodes the following formulation relying on
norm-one/norm-two regularization is utilized:

(
M̂t , {σ̂j}mj=1

)
:= arg min

Mt ,{σj}mj=1
‖E �

(
�̂x,t − MtMT

t

−diag
(
σ 2
1,t , . . . , σ 2

p,t

))
‖2F

+
L∑

�=1

(
λ�‖Mt,:�‖1 + φ‖Mt,:�‖2

)
,

(8)

where � denotes the Hadamard operator (entry-wise
matrix product), while σ 2

j is the noise variance estimate
at sensor j, and L is an upper bound for the number of
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active sensed targets r(t) (L ≥ r(t)) and Mt ∈ R
p×L con-

tains L columns that estimate the sparse columns of D̄t .
Mt,:� denotes the �th column of Mt . The formulation was
first proposed in [23, 24] to perform target-sensor associ-
ation in a network of stationary sensors that do not have
moving capabilities. Here, this formulation will be uti-
lized to determine the different sets of informative sensors
observing different targets before being integrated with
kinematic control rules.
The Hadamand operator � along with the adjacency

matrix E in (8) allows only the single-hop covariance
entries to be used since they can be calculated by direct
communication of the corresponding neighboring sen-
sors. The first term in (8) accounts for the structure in
(5). Sparsity is induced in the columns of Mt using the
norm-one term in (8), (see e.g., [22]), while λ� denotes
the nonnegative sparsity-controlling coefficient used to
adjust the number of zeros in M̂t,:�. The coefficient
φ ≥ 0 in the last term of (8) promotes group sparsity
among rows, [32], thus is introduced to adjust the num-
ber of nonzero columns of M̂t needed to approximate
�̂x,t . This is done to zero-out unnecessary columns in M̂
when the number of active targets in the field is smaller
than R. The number of nonzero columns in Mt indi-
rectly estimates the number of targets at time instant t,
namely r̂(t).
The cost in (8) is minimized by an iterative minimiza-

tion scheme based on coordinate descent [25, 26], where
sensor j is responsible for updating the jth row of Mt ,
namely Mt,j:. Specifically, the cost is minimized wrt one
entry of Mt or diag(σ 2

1 , . . . , σ 2
p ), while keeping the rest

fixed to their most up-to-date values. Sensor j updates the
entries {Mt(j, �)}L�=1 and variance σ 2

j,t . During one coordi-
nate cycle, all the entries ofMt and diag(σ 2

1,t , . . . , σ 2
p,t) will

be updated.
The updates for entries M̂k

t (j, �)will be formed by differ-
entiating (8) wrt Mt(j, �) and setting the derivative equal
to zero, while fixing the rest of the entries ofMt and σj,t to
their most recent updates in M̂k−1

t and {σ 2
j,t,k−1} evaluated

at cycle k − 1. It turns out (details in [23, 24]) that during
coordinate cycle k, the update M̂k

t (j, �) can be obtained as
the value that gets the minimum possible cost in (8) (while
fixing the rest of the variables) among the candidate val-
ues: (i) z = 0; (ii) the real positive roots of the third-degree
polynomial

z3 +
⎡
⎣∑
i∈Nj

[ M̂k−1
t (i, �)]2 −ψk

t,�(j, j, �) + φ

2

⎤
⎦ (9)

z −
⎡
⎣∑
i∈Nj

ψk
t,�(j,μ, �)M̂k−1

t (i, �)

⎤
⎦ + λ�

4
= 0

and (iii) the real negative roots of the third-degree
polynomial

z3 +
⎡
⎣∑
i∈Nj

[ M̂k−1
t (μ, �)]2 −ψk

t,�(j, j, �) + φ

2

⎤
⎦ (10)

z −
⎡
⎣∑
i∈Nj

ψk
t,�(j, i, �)M̂k−1

t (i, �)

⎤
⎦ − λ�

4
= 0

where

ψk
t,�(j, i, �) := �̂x,t(j, i) − δj,iσ̂

2
j,t,k−1 (11)

−
L∑

�′=1,�′ �=�

M̂k−1
t

(
j, �′) M̂k−1

t
(
i, �′) ,

while δj,i denotes the Kronecker delta function, i.e., δj,i = 1
if j = i, and δj,i = 0 if j �= i. The roots of the two aforemen-
tioned polynomials can be calculated using companion
matrices, see e.g., [33].
Furthermore, during cycle k at time instant t, the noise

variance estimates across sensors can be updated as

σ̂ 2
j,t,k = �̂x,t(j, j) − M̂k

t,j:

(
M̂k

t,j:

)T
, j = 1, . . . , p. (12)

Sensor j needs to communicate only with its single-hop
neighbors inNj, in order to evaluate the coefficients of the
polynomials in (9) and (10) and to update the noise vari-
ance estimates in (12). It can be shown that as k → ∞,
the updates M̂k−1

t converge at least to a stationary point
of (8). Further, the sparsity-controlling coefficients {λ�}L�=1
can be set using the strategy proposed in ([23], Sec. V.A).
Once the sparse columns {M̂t,:�} are estimated, their sup-
port (the indices of relatively strong-amplitude entries) is
used to determine which sensors sense a specific target at
time t.

3.2 Tracking via extended Kalman filtering
The target-informative sensor subsets Sρ�,t for � =
1, . . . , r̂(t), where r̂(t) corresponds to an estimate of the
number of targets at time instant t obtained from the
number of nonzero columns of M̂t := M̂K̄

t , after apply-
ing K̄ coordinate cycles. Extended Kalman filtering is
employed to process the nonlinear observations and track
each target’s location using the observations of the cor-
responding set Sρ�,t . For simplicity in exposition, the
specifics of extended Kalman filtering (EKF) will be delin-
eated here for K = 2 dimensions, but it can be readily
generalized to more dimensions. The target state estima-
tor and corresponding error covariance matrix, obtained
by the extended Kalman filter using the observations in
Sρ�,t for target ρ� are denoted as ŝρ�

(t|t) and Mρ�
(t|t),

respectively. The prediction step, see e.g., [27], involves
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the following updating recursions for the state estimator
and covariance at time instant t

ŝρ�
(t + 1|t) = Fŝρ�

(t|t), M̂ρ�
(t + 1|t) = FM̂ρ�

(t|t)FT + �u.
(13)

The measurements of the sensors within set Sρ�,t
will then be used to carry out the correction step of
the extended Kalman filter which involves the following
update recursions:

ŝρ�
(t + 1|t + 1) = ŝρ�

(t + 1|t) + K(t + 1) (14)

·
[
xt+1 − aρ(t)D̂Sρ� ,t

]

Mρ�
(t + 1|t + 1) = Mρ�

(t + 1|t) + DT∇ ,ρ�
(t + 1|t)

·σ 2
wI|Sρ� ,t | · D∇ ,ρ�

(t + 1|t), (15)

for � = 1, . . . , r̂(t), while thematrixKρ�
(t+1) corresponds

to the Kalman gain given as

Kρ�
(t+1) = Mρ�

(t+1|t+1) ·DT∇ ,ρ�
(t+1|t)·σ 2

wI|Sρ� ,t |,
(16)

where D̂Sρ� ,t
is a |Sρ�,t| × 1 vector whose entries are given

by
{||pj(t) − p̂ρ�

(t + 1|t)||−2}
j∈Sρ� ,t

, in which p̂ρ�
(t + 1|t)

is the ρ�th target position extracted from the state predic-
tion ŝρ�

(t + 1|t). Further, D∇ ,ρ�
(t + 1|t) is the |Sρ�,t| × 4

matrix whose rows constitute of gradient ∇Dt(j, ρ�) with
respect to the state vector sρ�

and evaluated at ŝρ�
(t + 1|t)

for j ∈ Sρ�,t , i.e.,

∇sρDt(j, ρ�)

∣∣∣sρ�
=ŝρ�

(t+1|t)

= 2 · [
pj,x(t) − p̂ρ� ,x(t + 1|t),pj,y(t) − p̂ρ� ,y(t + 1|t), 0, 0]T[

(pj,x(t) − p̂ρ� ,x(t + 1|t))2 + (pj,y(t) − p̂ρ� ,y(t + 1|t))2]2 .
(17)

Within each informative subset of sensors Sρ�,t , the sen-
sor closest in distance to the predicted position of the ρ�th
target, namely ŝρ�

(t + 1|t), is set as a the subset head sen-
sor that will gather the measurements of all other sensors
in Sρ�,t and perform the EKF tracking recursions.

3.3 Sensor kinematics
The focus in this section is to derive kinematic rules for
the target-informative sensors, which are selected accord-
ing to the scheme in Section 3.1, such that they follow
closely the moving targets and give accurate position esti-
mates. The benefit from having a few sensors moving is
that targets can be tracked even when they move away
from the original field monitored by the sensors. Having
sensors following closely, the moving targets can provide
more reliable measurements about the targets than just
using static sensors. Note that only informative sensors

close to the targets will be responsible for carrying out the
tracking procedure leading to resource savings. Toward
this end, the informative sensors in each subset Sρ�

will
be placed/move in locations that minimize the trace of
the error covariance associated with the estimator ŝρ�

(t|t).
This will ensure that the informative sensors associated
with each target move to a location that will provide mea-
surements that result good tracking accuracy. The idea of
minimizing a scalar function of the predicted error covari-
ance was also applied in moving all sensors in a network
for tracking a single target [2, 3, 12]. Here kinematic strate-
gies are derived in the presence of multiple targets, while
a judiciously selected small portion of target-informative
sensors will be moving instead of all sensors moving.
Among the two terms in the covariance matrix in

Eq. (15), only the second term is affected by the sensors’
location. The latter term, after using (17), can be written
as:

∑
j∈Sρ� ,t

4[
(pj,x(t + 1) − p̂ρ� ,x(t + 1|t))2 + (pj,y(t + 1) − p̂ρ� ,y(t + 1|t))2]3 .

(18)

Clearly, (18) depends on the position of the sensors asso-
ciated with target ρ�, namely the sensors in subset Sρ�,t , at
time instant t. Letting pj(t+1) :=[pj,x(t+1) pj,y(t+1)]T
notice that the trace cost in (18) is separable with respect
to the position of each sensor j within subset Sρ�,t . Thus,
the position of sensor j ∈ Sρ�,t at time instant t + 1 is
determined by minimizing the corresponding summand
in (18), i.e., the updated location for sensors j ∈ Sρ�,t can
be found as

pj(t + 1) =argminpj,x ,pj,y
4([

pj,x − p̂ρ� ,x(t + 1|t)]2+ [
pj,y − p̂ρ,y(t + 1|t)]2)3

s. to
[
pj,x − p̂ρ� ,x(t + 1|t)]2 + [

pj,y − p̂ρ� ,y(t + 1|t)]2 < R2

(19)

Note that the inequality constraint in (19) ensures that
the new location of the moving sensors j ∈ Sρ�

will be
within distance Rj from the latest target location estimate
p̂ρ�

(t+1|t). This inequality further ensures that all sensors
in Sρ�

will move to new locations which are “close” to the
target. After applying the triangle inequality for the new
locations of two sensors j and j′ within Sρ�

and using the
constraint in (19), it turns out that the new location should
satisfy

‖pj(t + 1) − pj′(t + 1)‖2 ≤ √
2R, (20)

which ensures that each subset Sρ�
of moving sensors will

stay connected, as long as the communication range of
the sensing units is at least

√
2R. Thus, R can be set such

that the moving sensors stay connected. Connectivity is
necessary to elect a head sensor for each moving subset
of sensors that will acquire the measurements of all other
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sensors and perform clustering. Details of the algorithm
are given in Section 4.1. Note that existing approaches
do not entail mechanisms as the one introduced here to
ensure that sensors will be connected.
Next, the modified barrier method (MBM) is utilized

([26], pg. 423) to allow every sensor j ∈ Sρ�
to solve

(19) and determine its next location. To this end, let
f (pj) denote the cost in (19) and g(pj) denote the left
hand side function of the inequality constraint in (19).
MBM involves an iterative application of the following
unconstrained minimization problem (where κ denotes
the iteration index within time instant t + 1):

pκ
j (t + 1) ∈ arg min

pj,x,pj,y

{
f (pj) + μκ

cκ
φ

[
cκ · g(pj)

]}
,

(21)

where the Lagrange multiplier-like scalar μκ is updated as

μκ+1 = μκ · ∇φ
[
cκ · g(pκ

j (t + 1))
]
, (22)

while the barrier function φ[ τ ] is chosen as a logarith-
mic function having the form

φ(τ) = −ln(1 − τ) (23)

and cκ is a penalty parameter associated with the inequal-
ity constraint in (19) that is updated according to the
recursion

cκ = γ κ

μκ
(24)

where {γ k} is a positive monotonically increasing scalar
sequence [26].
For the logarithmic barrier function in (23) the updat-

ing recursion of the multipliers in (22) takes the following
form

μk+1 = μκ

1 − cκg(pκ
j (t + 1))

. (25)

Further, letting F(pj) := f (pj) + μκ

cκ φ
[
cκ · g(pj)

]
, the

coordinates of the new sensor location pj(t + 1) are
updated during iteration κ according to the following
gradient descent recursions

pκ+1
j,x (t + 1) = pκ

j,x(t + 1) − � · dF(pj)
dpj,x

∣∣∣pj,x=pκ
j,x(t+1)

(26)

pκ+1
j,y (t + 1) = pκ

j,y(t + 1) − � · dF(pj)
dpj,y

∣∣∣pj,y=pκ
j,y(t+1)

(27)

where � is the step size for the gradient descent method,
while the derivatives in (26) are given as

dF(pj)
dpj,x

∣∣∣pj,x=pκ
j,x(t+1)

=
24 ·

[
−pκ

j,x(t + 1) + p̂ρ,x(t + 1|t)
]

([
pκ
j,x(t + 1) − p̂ρ,x(t + 1|t)

]2 +
[
pκ
j,y − p̂ρ,y(t + 1|t)

]2)4

+ μκ

1 − cκg(pκ
j (t + 1))

· 2 · (pκ
j,x(t + 1) − p̂ρ,x(t + 1|t)),

dF(pj)
dpj,y

∣∣∣pj,y=pκ
j,y(t+1)

=
24 ·

[
−pκ

j,y(t + 1) + p̂ρ,y(t + 1|t)
]

([
pκ
j,x(t + 1) − p̂ρ,x(t + 1|t)

]2+ [
pκ
j,y(t + 1) − p̂ρ,y(t + 1|t)

]2)4

+ μκ

1 − cκg
(
pκ
j (t + 1)

) · 2 ·
(
pκ
j,y(t + 1) − p̂ρ,y(t + 1|t)

)
.

(28)

During time instant t + 1, each sensor j within the
subset Sρ�,t will keep updating their location until the
cost function in (19) is not reduced more than a prede-
fined threshold ε within two consecutive updating steps
κ , κ +1. The location pj(t+1)will be set to the last update
pK ′
j (t + 1) obtained after K ′ MBM iterations during time

instant t + 1. The following steps are carried out during
the determination of the sensor’s new location:
S1) The head sensor in each subset Sρ�,t sends the pre-

dicted position estimate of target ρ�, namely p̂ρ�
(t + 1|t),

to all sensors in Sρ�,t .
S2) Each sensor in j ∈ Sρ�,t , determines its new loca-

tion using the MBM scheme. Sensors in Sρ�,t check their
distances to other neighboring sensors, and if their future
location is too close, they adjust their coordinates to
avoid collision when moving. Similarly, each moving sen-
sor checks the distance between its updated location and
the position estimate of target ρ�, and if too close, adjust-
ments will be made to the sensor’s location such that a
minimum distance will be kept from the target. Specifi-
cally, if sensor j has an updated location pK ′

j (t + 1) which
is too close to the already updated location of sensor j′,
namely pj′(t + 1), i.e., ‖pK ′

j (t + 1) − pj′(t + 1)‖2 ≤ Rmin,a,
where Rmin,a is the smallest distance allowed that two sen-
sors can be separated from each other, then pK ′

j (t + 1) is
updated as follows:

pj(t+1) = pj′(t+1)+Rmin,a
pK ′
j (t + 1) − pj′(t + 1)

‖pK ′
j (t + 1) − pj′(t + 1)‖2

.

(29)

Similarly, if sensor j has an updated location pK ′
j (t + 1)

which is too close to the ρ� target location estimate, i.e.,
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‖pK ′
j (t + 1) − p̂ρ�

(t + 1|t)|2 ≤ Rmin,b where Rmin,b is the
smallest distance that a sensor can be placed from a target,
then location pK ′

j (t + 1) is updated as follows:

pj(t + 1)= p̂ρ�
(t + 1|t) + Rmin,b

pK ′
j (t + 1) − p̂ρ�

(t + 1|t)
‖pK ′

j (t + 1) − p̂ρ�
(t + 1|t)‖2

.

(30)

The collision-avoidance position modifications in (30)
were proposed in [34] to prevent collision of unmanned
aerial vehicles with a stationary target. The position
updates in (29) and (30) ensure that the updated locations
are at distance Rmin,a and Rmin,b from anothermoving sen-
sor or moving target, respectively, satisfying the minimum
distance required to prevent collision.
The actual movement can be achieved using for example

robotic sensors, see e.g., [35, 36]. Each sensor j ∈ Sρ�,t
updates its location pj(t+1), in a coordinate fashion while
the remaining sensors in Sρ�,t are kept stationary waiting
for their turn to update their location.

4 Algorithmic summary
4.1 Implementation
At the start-up stage, fast sampling is used to acquire Q
measurements fast enough that the initial number of tar-
gets r(0) can be assumed stationary. By utilizing the Q
acquired data, the subsets of target-informative sensors
{Sρ�,0} are initialized, where � = 1, . . . , r̂(0) and r̂(0) is
the estimated number of r(0) sensed targets at time t = 0
(number of nonzero columns in the sparse matrix M̂0).
One sensor within each Sρ�,0 will be randomly selected
as the head sensor, which will collect the measurements
xj(0) and their positions pj(0) from all the other sensors
j ∈ Sρ�,0. Each head sensor Cρ�,0 averages the positions
of the informative sensors in subset Sρ�,0 to be the ini-
tial estimate of the corresponding target ρ�. The latter
target location estimate along with the informative mea-
surements xj(0), for j ∈ Sρ�,0 are utilized to initialize the
recursions of the extended Kalman filtering carrying out
the target tracking in Section 3.2.
At time instant t, every head sensor Cρ�,t has available

the state estimates for active target ρ�, namely ∫̂ρ�
(t|t),

obtained from EKF in Section 3.2. The target’s estimated
position p̂ρ�

(t|t) is then used to select a group of “can-
didate informative” sensors, which are denoted as Jρ�,t
for target ρ� at time instant t. This set is formed by hav-
ing the head sensor transmit the estimated state ∫̂ρ�

(t|t)
to its single-hop neighboring sensors which then trans-
mit the same information to their own neighbors. Every
sensor j who receives ∫̂ρ�

(t|t), from a neighboring sensor,
subsequently forwards this estimate only to those sensors
j′ ∈ Nj whose present position is within radius Rs from
the estimated target location, i.e., ‖pj′(t)−p̂ρ�

(t|t)‖2 ≤ Rs.
The parameter Rs can be set to be sufficiently large in

order for all ρ�-target-informative sensors to be incorpo-
rated in subset Jρ�,t . The sensor subset Jρ�,t by construc-
tion is connected.
Since not all sensors within the candidate subsets

Jρ�,t maybe informative, the scheme in Section 3.1 is
employed among the sensors inJρ�,t to find out the target-
informative sensor subset Sρ�,t+1 ⊆ Jρ�,t for all the active
targets. Rather than running the target-sensor association
scheme in Section 3.1 in the whole sensor network, it is
performed independently in the different sensor subsets
Jρ�,t associated with each target.
Once subsets Sρ�,t+1 are found, the head sensor in each

of these subsets is chosen to be the sensor whose distance
is the closest to the estimated position of the correspond-
ing target ρ�, i.e.,

Cρ�,t+1 = arg min
j∈Sρ� ,t+1

‖pj(t) − p̂ρ�
(t|t)‖2.

The head sensor Cρ�,t+1 gathers the sensor measure-
ments xj(t + 1) from the informative sensors j ∈ Sρ�,t+1
to carry out the extended Kalman filtering recursions at
time instant t + 1 as outlined in Section 3.2. Then, steps
S1 and S2 in Section 3.3 are employed to allow all sensors
in Sρ�,t+1 to determine and move to their new positions
pj(t + 1). Note that connectivity of the sensors in Sρ�,t+1
is preserved as explained in Section 3.3. The head sen-
sor Cρ�,t+1 broadcasts the latest state estimate ŝρ�

(t +
1|t + 1) to its single-hop neighbors and repeats the pro-
cess described earlier to update the candidate informative
sensor subsets Jρ�,t+1.
It is worth mentioning that the kinematic rules imple-

mented in Section 3.3 at each sensor are fully distributed
since each sensor requires knowledge only of its location
and the estimated target position obtained from the head
sensor in Sρ�,t+1. Connectivity of the candidate informa-
tive subsetsJρ�,t+1 is ensured by construction irrespective
of the sensor movement. This way the sensor-to-target
association scheme in Section 3.1 can still be applied in
Jρ�,t+1 and determine the informative sensors.
The target-informative sensor selection scheme in

Section 3.1 may also need to be reapplied across the whole
sensor network since moving targets may disappear and
not being sensed anymore, while new targets may appear
at different regions of the sensor network. The following
conditions are checked to determine such events: (i) If any
of the sensor subsets Sρ�,t+1 becomes empty, this implies
that some of the targets previously sensed are not present
anymore; (ii) If at t + 1, the energy of a sensor, not previ-
ously selected, exceeds a certain threshold, this indicates
that most likely a new target enters the sensed field. The
two aforementioned conditions signify that the target con-
figuration has changed and the sensor selection scheme in
Section 3.1 needs to be reapplied in the sensor network to
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update the sensor-informative subsets. The novel tracking
scheme is summarized as Algorithm 1.

Algorithm 1 Multi-target tracking using sensor mobility
and informative sensor selection
1: Start-up stage (t = 0)/Reconfiguration (t �= 0): Every

sensor j collects Q measurements xj(t) and the sensors-
targets association scheme in Section 3.1 is applied in the
network to determine the subsets Sρ� ,t with � = 1, . . . , r̂(t),
and r̂(t) is the estimated number of targets.

2: for τ = t, . . . , do
3: Determine the head sensor Cρ� ,τ in each Sρ� ,τ for � =

1, . . . , r̂(t).
4: Each head sensor Cρ� ,τ receives measurements xj(τ )

from j ∈ Sρ� ,τ to perform tracking for targets ρ� =
1, . . . , r̂(t) via the EKF recursions in Section 3.2.

5: Informative sensors j ∈ Sρ� ,τ relocate themselves
according to the sensor kinematics introduced in
Section 3.3.

6: Each head sensor Cρ� ,τ propagates the state estimates
ŝρ�

(τ ) to every sensor j that can be reached fromCρ� ,τ by
a multi-hop path and satisfies ‖pj(τ ) − p̂ρ�

(τ |τ)‖2 < Rs.
Then, the candidate informative sets {Jρ� ,τ+1}r̂(t)�=1 are
formed.

7: The sensor selection scheme in Section 3.1 is carried out
in each subset Jρ� ,τ+1 to identify the target-informative
sets Sρ� ,τ+1.

8: If target configuration has changed then go to step 1,
otherwise go to step 2.

9: end for

4.2 Communication and computational expenses
The communication cost of the proposed algorithm is
studied next. Note that inter-sensor communication takes
place during (i) the sensor-to-target association scheme
in Section 3.1; (ii) carrying out the EKF tracking steps in
Section 3.2; and (iii) when applying the kinematic strategy
in Section 3.3 to move the informative sensors. In detail,
at time instant t, sensor j has to receive |Nj| scalar mea-
surements from its neighbors, namely {xj′(t + 1)}j′∈Nj , to
update �̂x,t+1(j, j′). Furthermore, to implement the asso-
ciation scheme in Section 3.1, each sensor j receives the
updates {M̂k−1

t+1 (j′, �)}L�=1 from neighborhood Nj, corre-
sponding to L|Nj| scalars in total, to form its local updates
{M̂k

t+1(j, �)}L�=1. Thus, sensor j receives (L+ 1)|Nj| scalars
in total. Similarly, sensor j has to transmit xj(t + 1) and
{M̂k−1

t+1 (j, �)}L�=1, a total of L+1 scalars to its neighbors, per
iteration k.
After the target-informative sensors are determined,

each head sensor has to carry out the estimation process
about the corresponding target’s states. Thus, the head
sensor {Cρ�,t} will collect the measurements xj(t) from
the sensors within Sρ�,t+1. This involves |Sρ�,t+1| scalar
exchanges. Further, all sensors in the subset Sρ�,t+1 will

receive four scalars corresponding to the current state
estimate. Once the state estimation process (Section 3.2)
is carried out by the head sensors, sensor communica-
tion also occurs among the informative sensors when
adjusting their new location to avoid collision with closely
located sensors (Section 3.3). Specifically, sensor j receives
2|Nj| scalars from its neighbors, corresponding to their
two location coordinates, while it sends out its own loca-
tion. It is worth mentioning that the communication
complexity for each sensor is linear with respect to its
neighborhood size |Nj|, and the upper bound number of
present targets L. The latter linear cost advocates that
the proposed framework is a communication-affordable
distributed approach.
When applying the scheme in Section 3.1 during each

coordinate cycle k and time instant t, each sensor j has
to form the coefficients in (10), (9) with a computa-
tional complexity of the order O(|Nj|), while determin-
ing the roots of the two third-order polynomial in (10),
(9) involves determining the eigenvalues of two 3 × 3
companion matrices whose complexity is fixed and non-
dependent on any algorithmic parameters. The EKF in
Section 3.2 can be carried out at a complexity of the order
O(K2 + |Sρ |), where K = 4 here and |Sρ | corresponds
to the size of the target-informative subsets. The kine-
matic rules implemented at the target-informative sensors
in Section 3.3 have a computational complexityO(K).

5 Simulations
The tracking performance of the novel scheme is tested
in a network with p = 80 sensors, which are deployed
randomly in the region of [ 0, 15]×[ 0, 15]m2. The track-
ing root mean-square error (RMSE) is studied and com-
pared with the RMSE attained by the tracking schemes in
[2, 12]. The comparison is done using one target since the
aforementioned existing approaches can handle one tar-
get. Target ρ = 1 is initialized at location [ 1.5, 11.5] and
moves with velocities of [ 0.15, 0.1]m/s respectively along
the x-axis and y-axis. The tracking process is carried out
for a total of 30 s, with the state noise and observation
noise variances set to be σ 2

u = 0.08 and σ 2
w = 0.08 (cor-

responding to a sensing SNR of 11 dB). Figure 1 depicts
in logarithmic scale the tracking RMSE (for better dis-
play) of (i) the novel approach proposed here; (ii) the
tracking scheme in [12]; and (iii) the tracking approach
in [2]. Note that for all the three tracking schemes, the
initial position of the target is found by applying the spar-
sity matrix decomposition scheme in Section 3.1, ensuring
the same initial error for all the three different track-
ing approaches. As corroborated by Fig. 1, our tracking
scheme exhibits the lowest tracking RMSE. The approach
in [12] attains the worst performance since the sensors can
only move on a grid which reduces accuracy. The scheme
in [2] performs worse than our approach since it does
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Fig. 1 Tracking RMSE versus time for a single-target setting

not have an informative sensor selection scheme, which
results all sensors to move and participate in the tracking
process which may reduce accuracy when noisy sensors
are utilized.
Figure 2 depicts the distance (in meters) between two

moving sensors and the correspondingmoving target dur-
ing the 30-s tracking period. It can be seen that the
distance is decreasing with timewhich further implies that
the proposed approach allows the informative sensors to
closely follow the target.

Next, the performance of our novel tracking scheme is
tested in a setting where the number of targets is chang-
ing. Specifically, targets ρ = 1, 2 start moving at positions
[1.5, 11.5], [ 5, 7] and follow the dynamics in (1), with
velocities of [ 0.15, 0.1] and [ 0.4, 0.13] m/s along the x-axis
and y-axis, respectively. Targets ρ = 1, 2 move in the field
for the time interval [1, 30] s and then are not sensed any-
more. In the interval [15, 17] s, no targets are present in
the field. Then, targets ρ = 3, 4 start at positions [6.1, 4.8],
[9.0, 4.0] and move according to same state model
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Fig. 3 Original sensor network topology (before applying kinematic rules to the sensors)

followed by the first two for the time interval [32, 50] s but
with velocities [0.03, 0.35] and [0.25,−0.25] m/s. Again,
no targets are present during the interval [50, 52] s.
Then, three targets ρ = 5, 6, 7 start moving at positions
[15, 1.1], [13, 13.5], and [12, 6], according to (1), for the

time interval [52, 70] s and velocities [−0.1, 0] m/s for
target ρ = 5, and [0.12,−0.03] for both ρ = 6, 7
along the x-axis and y-axis, respectively. Figure 3 depicts
the original positions of the sensors represented by blue
circles.

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

14

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

Sensor network at t=30s

x

y

Fig. 4 Snapshot of the trajectories of targets and moving sensors at time instant t = 30 s. Red solid curves correspond to the true target trajectories;
blue dashed curves represent the estimated track. Blue stars indicate the starting locations of the targets, while the red crosses denote the initial
locations of some moving sensors. The black dashed curves show the trajectories of some of the moving sensors during the tracking process
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Fig. 5 Snapshot of the trajectories of targets and moving sensors at time instant t = 50 s. Red solid curves correspond to the true target trajectories;
blue dashed curves represent the estimated track. Blue stars indicate the starting locations of the targets, while the red crosses denote the initial
locations of some moving sensors. The black dashed curves show the trajectories of some of the moving sensors during the tracking process

Figures 4, 5 and 6 show snapshots of the configura-
tion of the targets and the moving sensors at different
time instances. Details for the different curves and col-
oring on those figures is given in the caption below the
figures. From Fig. 4, it is clear that for the first two tar-
gets, even though the targets move out of the original

[0, 15]×[0, 15] region, both targets are still tracked well as
some of the sensors follow them closely. Note that only
informative sensors, on average around 10 % of the total
number of sensors, move according to the proposed kine-
matic rules in Section 3.3, while the majority of other
sensors which are not close to the moving targets are
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Fig. 6 Snapshot of the trajectories of targets and moving sensors at time instant t = 70 s. Red solid curves correspond to the true target trajectories;
blue dashed lines represent the estimated track. Blue stars indicate the starting locations of the targets, while the red crosses denote the initial
locations of some moving sensors. The black dashed curves show the trajectories of some of the moving sensors during the tracking process
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not moving and maintain their original positions. Simi-
lar conclusions can be extracted from Figs. 5 and 6, where
different sets of targets are moving on the field. It should
be emphasized that it is not known that at t = 30 and
t = 50, the target configuration is changing. As dis-
cussed in Section 4, such changes can be determined
by having all sensors self-checking the energy level of
their measurements, while the head sensors monitor the
informative sensor subsets whether they are empty or
not.
The tracking RMSE for the above tracking setting is

plotted in Fig. 7 in logarithmic scale. The proposed track-
ing framework exploiting sensor mobility is compared
with a tracking scheme where sensors are stationary and
not moving. In the immobile sensor network, when the
targets are moving away from the sensed field, the sensors
will acquire less and less reliable measurements leading to
the dramatic increase of the tracking RMSE (blue dashed
curves). In contrast, the proposed framework here enables
sensors to follows closely the targets and achieve a much
lower tracking RMSE. So even though the targets move
out of the original sensed field, there is always a group of
sensors keeping adjacent to it and can be selected again to
provide accurate measurements. Note that in Fig. 7, there
are three discontinued curves which corresponds to the
error of tracking the three different groups of targets that
appear and cease to exist in themonitored field at different
time periods. This leads to the RMSE discontinuity at time
t = 31 s and t = 51 s since there are no targets moving
during that time interval and no need for tracking.
Next, a tracking setting is considered with two targets

where one of targets splits into two targets at a cer-
tain time. Similarly to the previous tracking scenario,

two targets ρ = 1, 2 initialized at positions [1.6, 11.5],
[ 5.4, 7] (indicated by the blue stars) start moving
according to the dynamics in (1), with velocities of
v1 =[ v1,x, v1,y]=[ 0.15, 0.1]m/s and v2 =[ v2,x, v2,y]=
[ 0.4, 0.13]m/s, respectively. As t = 30, the second target
stops moving while the first one splits into two targets.
Target ρ = 3 continues to move according to the dynam-
ics of target ρ = 1, while target ρ = 4 moves with
velocities vx = 0.4m/s and vy = −0.5m/s along the x-axis
and y-axis. The two new targets move for the time interval
[ 31, 42] s. The splitting point is indicated by the green star
in Fig. 8. Figure 8 shows the trajectories of the targets and
some moving sensors; details on the coloring and curve
types used can be found in the caption of Fig. 8 . The target
trajectories in Fig. 8 are depicted by blue dashed lines for
the time interval [ 1, 30] s and by blue crossed lines after
t = 30 s. When sensors do not move, the violet estimated
trajectories indicate that the split of targets cannot be fol-
lowed, while target ρ = 1 cannot be tracked after a while
since is moving away from the immobile sensors. When
the kinematic rules in Section 3.3 are employed, infor-
mative sensors follow closely the targets as depicted by
the black dashed sensor trajectories. Note that the corre-
sponding estimated red trajectories accurately follow the
multiple targets present in the field. As before, the track-
ing RMSE (logarithm) is compared for the cases where
sensors cannot move with the case where the approach in
Section 3.3 is applied. As Fig. 9 shows, our active track-
ing scheme outperforms in terms of tracking accuracy the
utilization of stationary sensors. Notice that in Fig. 9, after
the target splits, tracking using stationary sensors per-
formsmuch better than before splitting. The reason is that
when using stationary sensors, for the second tracking
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Fig. 7 Tracking RMSE versus time for tracking the multiple objects in the setting depicted in Figs. 4, 5, and 6. Two different cases are studied where
sensor mobility is utilized (red curves) and when sensors are immobile (blue curves)
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Fig. 8 Tracking multiple objects; target trajectories and mobile sensor trajectories. Blue dashed curves and blue crossed curves correspond to the true
target trajectories; red dashed curves represent the estimated track using our novel framework. Blue stars indicate the starting locations of the targets,
while the red crosses represent the initial locations of some moving sensors. The black dashed curves show the trajectories of some of the moving
sensors during the tracking process using the kinematic rules in Section 3.3. Violet colored curves correspond to estimated trajectories using
immobile sensors, while the green star points to the position where the splitting of the targets takes place

phase (t =[31, 42] s), there are more sensors originally
located close to the trajectories of the targets, compared
to the first tracking phase (t =[1, 30] s) which makes the
tracking error much smaller than the first 30 s, though the
performance when using stationary sensors is still worse
than tracking using our sensor mobility-based tracking
scheme.

6 Conclusions
A novel framework combining sparse matrix factoriza-
tion with proper kinematic rules enables multiple mobile

sensors to track multiple targets. A norm-one/norm-
two regularized matrix decomposition formulation is uti-
lized to perform sensor-to-target association and select
the target-informative sensors. Optimal kinematic rules
are obtained by minimizing the covariances of parallel
extended Kalman filters that track multiple targets using
only target-informative sensors. The modified barrier
method is utilized to obtain the sensors’ location updates
while ensuring that themoving sensors remain connected.
Numerical tests in multi-sensor networks corroborate
that our novel scheme outperforms related approaches
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Fig. 9 Tracking RMSE versus time in the setting in Fig. 8 when sensor mobility is utilized (blue curves) and when sensors are immobile (red curves)
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and accurately tracks multiple targets utilizing only a
small percentage of moving sensors that closely follow the
targets.
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