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Abstract

Tracking algorithms have important applications in detection of humans and vehicles for border security and
other areas. For large-scale deployment of such algorithms, it is critical to provide methods for their cost- and
energy-efficient realization. To this end, commodity mobile devices have significant potential for use as prototyping
and testing platforms due to their low cost, widespread availability, and integration of advanced communications,
sensing, and processing features. Prototypes developed on mobile platforms can be tested, fine-tuned, and
demonstrated in the field and then provide reference implementations for application-specific disposable
sensor node implementations that are targeted for deployment. In this paper, we develop a novel, adaptive
tracking system that is optimized for energy-efficient, real-time operation on off-the-shelf mobile platforms. Our
tracking system applies principles of dynamic data-driven application systems (DDDAS) to periodically monitor system
operating characteristics and apply these measurements to dynamically adapt the specific classifier configurations that
the system employs. Our resulting adaptive approach enables powerful optimization of trade-offs among energy
consumption, real-time performance, and tracking accuracy based on time-varying changes in operational characteristics.
Through experiments employing an Android-based tablet platform, we demonstrate the efficiency of our
proposed tracking system design for multimode detection of human and vehicle targets.
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1 Introduction
Distributed sensor networks for tracking the movement of
people and vehicles in wilderness environments are of
great relevance to border patrol applications (e.g., see [1]).
However, conventional methods for deploying such sensor
networks involve the use of complex, specialized, and ex-
pensive sensor node platforms. The specialized nature of
such platforms leads to significant development and verifi-
cation time, which slows down our ability to leverage the
latest advances in hardware and software technologies.
Moreover, the high cost of such specialized sensor nodes
limits the scale at which they can be deployed and poses
significant risk to soldiers or security personnel who need
to periodically maintain or move the nodes.
In this paper, we address these challenges by develop-

ing a novel tracking system that operates on commodity
mobile devices, specifically on Android-based tablet plat-
forms. Mobile devices are attractive for use as prototypes

and experimental environments for disposable sensor
node platforms due to their low cost, widespread avail-
ability, and integration of advanced communications,
sensing, and processing features. The concept of dispos-
able sensor nodes for defense- and security-related in-
trusion detection is important because such devices can
simply be discarded (“forgotten about”) when they are
no longer operational. Thus, human lives do not have to
be put at risk for their retrieval. However, application of
disposable devices in mission-critical tracking applica-
tions is challenging due to their limited resources for
processing and their limited battery capacity.
Extensive prototyping, testing, and iterative demon-

stration are needed to ensure that a developed tracking
system is sufficiently accurate and efficient before com-
mitting resources to application-specific sensor node
development. Adding customized hardware helps to
further improve the system performance. However, be-
fore migrating to such custom solutions, it is critical to
have a flexible prototyping environment so that a wide
variety of operational configurations, potential features,
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and constraints can be considered before committing
resources to developing an expensive, specialized hard-
ware system.
With this motivation, we develop methods in this

paper for optimized prototyping of human and vehicle
detection systems on mobile platforms. Mobile plat-
forms can easily be acquired and deployed in outdoor
environments to support prototyping and experimenta-
tion; however, significant challenges must be addressed
to provide levels of accuracy and efficiency in the pro-
totypes that can provide adequate confidence in a sys-
tem design before proceeding to specialized sensor
node development and deployment. We address these
challenges through novel system-level design optimizations
that are targeted to resource constrained mobile devices
and provide optimized trade-offs among energy consump-
tion, real-time performance, and tracking accuracy.
In previous works, it has been demonstrated that

acoustic sensors are effective for detection of people and
vehicles (e.g., see [2–4]). However, acoustic-sensor-based
tracking systems are sensitive to background noise. For
example, wind noise or large distances between the
target and the sensor can alter signal quality, and conse-
quently, classifier performance may decrease. Apart from
constraints on overall tracking system operation that are
related to environmental conditions, mobile platforms
have constraints related to limited memory, energy cap-
acity, and computational resources. Therefore, it is
important to optimize the use of available resources to
maximize system accuracy, while taking into account the
various platform constraints and environmental constraints.
Furthermore, in such an implementation context, where di-
verse, multidimensional constraints—including tracking ac-
curacy, real-time performance, energy consumption, and
resource utilization—must be considered, it is important to
develop multiobjective optimization analysis so that system
designers can understand system-level trade-offs and select
the most strategic deployment configurations.
Whereas existing approaches focus primarily on

achieving high detection accuracy and reducing the
false-positive rates of specific tracking algorithms, we
focus in this paper on building on such approaches and
developing a novel system-level solution that is geared
to the unique challenges of mobile-platform-based
tracking systems and provides powerful multiobjective
optimization capabilities to help designers navigate the
associated implementation design spaces.
Based on this motivation, we present in this work the

design of a data-driven tracking system that integrates
computational and measurement processes for optimized
operation and reliability on mobile devices. Our design is
developed by integrating state-of-the-art acoustic-sensor-
based tracking algorithms—in particular, the algorithms
presented in [2, 5]—with principles of dynamic, data-

driven application systems (DDDAS) [6] and dataflow-
based design and implementation of signal processing sys-
tems [7]. We refer to our new tracking system design as
DDDAS-enabled Tracking System for Mobile Devices
(DTSMD). DTSMD incorporates measurements through-
out application operation to help the system adaptively
select tracking algorithm configurations that are most
strategic in terms of trade-offs among accuracy, energy ef-
ficiency, and real-time performance.

2 Related work
Various algorithms have been developed for acoustic-
sensor-based detection of people and vehicles (e.g., see
[4, 8–11]). In [8], a new method for the recognition of
vehicle acoustic signatures was introduced and compared
to conventional approaches that use Mel-frequency cepstral
coefficients (MFCC) for feature extraction associated with
hidden Markov models or Gaussian mixture models.
The approach uses a probabilistic subspace classifier
with features extracted based on the log magnitude of
the short-term Fourier transform. The approach ex-
hibits better performance than traditional algorithms
and is demonstrated to have an 11.7 % error rate for a
nine-class problem.
In [5], different extraction algorithms, including cepstral

coefficients, principal component analysis, and symbolic
dynamic filtering (symbolic DF), were tested with different
classification algorithms on acoustic signals for detec-
tion of mortar launchers. The classification algorithms
employed in this study included k-nearest neighbors,
support vector machine (SVM), and sparse representation
classification. Cepstral analysis and symbolic DF-based fea-
ture extraction together with SVM classification achieved
relatively high accuracy in exchange for being computa-
tionally intensive.
In [2], cadence analysis and fast Fourier transform

(FFT)-based human voice analysis were jointly applied
on acoustic signatures for detection of people and ani-
mals. The multivariate Gaussian (MVG) algorithm was
used for classification.
Compared to the approaches described above, distin-

guishing aspects of the DTSMD system developed in this
paper include the following. First, DTSMD is optimized
for energy-efficient, real-time operation on resource-
constrained mobile platforms. This facilitates prototyping
for large-scale, low-cost deployment, as motivated in Sec-
tion 1. Second, DTSMD provides data-driven adaptation
among different detection algorithms to optimize trade-
offs involving detection accuracy, energy efficiency, and
processing speed. The specific classifiers employed in our
data-driven, multimode tracking system include both lin-
ear classifiers (MVG and SVM with linear kernel) and
non-linear classifiers (SVM with Gaussian kernel). Differ-
ent frequency-analysis-based feature extraction methods
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are also employed to further enhance the dynamic reconfi-
gurability of the adaptation scheme in DTSMD. Specific-
ally, we employ feature extraction alternatives that employ
spectral analysis and cepstral analysis.

3 Tracking system design
In this section, we present the system design for DTSMD,
our adaptive, mobile-device-targeted tracking system. The
system distinguishes among vehicles, people, and a third
class, which corresponds to a designated “noise class.” De-
tections in the noise class are interpreted as detected ob-
jects that are neither people nor vehicles. Such use of a
noise class helps to reduce false alarms [11].

3.1 Design methodology
DTSMD is composed of four primary stages: signal pre-
processing, target detection, feature extraction, and clas-
sification. The signal pre-processing stage incorporates
filtering to remove noise. In the target detection stage,
peaks are detected and detection intervals are deter-
mined. During target detection, careful attention is given
to configuration of the detection interval, which is the
time duration across which individual detection events
are analyzed. Detection interval configuration involves a
trade-off that affects extraction of robust features. If the
interval is too large, interference between neighboring
detections may result. If it is too small, key characteris-
tics of the signal will not be included in the classification
process. We address this trade-off by testing system per-
formance in terms of accuracy for different interval
lengths and different system configurations. For each
configuration, we apply the interval length that is found
through such testing to yield the best accuracy. If the
configuration is changed dynamically, then the interval
length is changed accordingly.
Feature extraction involves determining a set of features

that facilitates the process of distinguishing among differ-
ent kinds of targets. Feature extraction helps to simplify
the classification problem by reducing the dimension of
the processed data. A feature selection step can be added
in order to further reduce the dimension of the feature set
by removing redundant information. Integration of feature
extraction and selection into DTSMD is done carefully to
avoid excessive computational overhead on the targeted
mobile device. The employed approaches for feature ex-
traction and selection are discussed further in Section 3.3.
The final step is classification. Its task is to determine the

category to which the detected target belongs. Here, we
employ classifiers that are based on supervised machine
leaning, where a training set is applied for each classifier.
Each classifier operates on the training parameters, which
are computed off-line, and the feature vectors, which are
derived from the input data. It outputs an estimate of the
class to which the detected target belongs. In this work, we

consider three possible output classes: (a) person, (b) ve-
hicle, and (c) noise (neither a person nor a vehicle).

3.2 Dataflow-based design approach
To derive an efficient and reliable implementation of the
tracking system, we employ model-based design methods
using signal processing dataflow techniques. Dataflow
models are useful in the design and implementation of sig-
nal processing systems for a variety of important reasons,
including their ability to expose application structure that
facilitates hardware and software optimization [7]. Fur-
thermore, dataflow representations can be applied to guar-
antee useful implementation properties, such as bounded
memory requirements and deadlock-free operation [12].
For more details on the utility of dataflow methods in the
context of resource-constrained sensor networks, we refer
the reader to [13].
A dataflow graph model of an application consists of a

set of actors (graph vertices), which correspond to compu-
tational functions, and flowgraph connections (edges),
which correspond to FIFO buffers. These buffers provide
logical data communication channels between the actors.
On each execution (firing), an actor consumes data from
its input edges and produces data onto its output edges.
Each data item that is produced or consumed in this way is
referred to as a token. On each firing, the specific numbers
of tokens produced and consumed are referred to as
the production and consumption rates or dataflow rates
of the associated actor inputs and outputs. Dataflow
rates may in general be constant or time-varying (e.g.,
due to data-dependent production and consumption
behavior). The graphical structure of a properly con-
structed dataflow model along with information about
dataflow rates within the model is important to analyze
when mapping the model to an implementation [7].
For the design of DTSMD, we employ a specific form of

dataflow modeling, called core functional dataflow (CFDF)
[14]. In CFDF, the computation for each actor is decom-
posed into a set of modes, where each mode is required to
have constant production and consumption rates. How-
ever, different modes of the same actor can have different
dataflow rates, which allow designers to express actors
that have dynamic dataflow behavior. This provision for
dynamic behavior enhances the flexibility of the modeling
format, while the constant dataflow rates associated with
actor modes provide useful information that can be
exploited to coordinate execution of the actors and man-
age memory that implements the edges.
Examples of the use of CFDF modes in DTSMD are the

uses of different actor modes to implement alternative
strategies for classification and feature extraction. These
strategies are selected dynamically by activating the corre-
sponding modes. These modes in turn are determined
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based on certain measurement results that are derived
through instrumentation functionality that executes on
the targeted mobile device. More details on our use of
multimode classification, multimode feature extraction,
and instrumentation are discussed in Section 4.

3.3 Dataflow model for DTSMD system
Our dataflow model for the DTSMD system employs
the set Sp = {pr, ps, pd, pf, pc, po, pN} of global (system-
level) parameters. These parameters influence the system
performance in terms of accuracy, execution time, mem-
ory requirements, and power consumption. The mean-
ings of these parameters are described as follows.

� pr: record time, which corresponds to the size of a single
frame of acoustic data for processing by the system.

� ps: sampling rate, which is a characteristic of the
employed sensing interface.

� pd: detection interval, which corresponds to the
duration of time (within a data frame) over which
features are computed. The detection interval
therefore determines the amount of information
that is used for feature extraction.

� pf: the number of features employed for
classification. If feature selection is employed, then
pf represents the reduced number of features that is
available after feature selection.

� pc: the number of classifications to perform for
each detection. Since the acoustic signal is in
general non-stationary, it is useful to extract the
features over multiple overlapping windows that
are of relatively short duration. The signals in these
small frames can then be viewed as being stationary.

� po: window overlap, which specifies the amount of
overlap (in time units) in case multiple classifications
are performed for each detection. If each detection
corresponds to just one classification, then this
parameter is ignored.

� pN: the number of classes. This is fixed to 3 in
this system—corresponding to the vehicle, person,
and noise classes. This parameter can be used when
adapting the DTSMD system to other classification
problems with different numbers of classes.

Figure 2 shows the initial dataflow model that we devel-
oped when developing DTSMD. This is a relatively natural
mapping of the overall algorithm functionality into signal
flowgraph form. However, due to significant levels of dy-
namics in the dataflow rates, buffer management (imple-
mentation of the dataflow graph edges) becomes prone to
overhead, and the resulting implementation requires rela-
tive large amounts of memory. Moreover, edge e6 contains
the same data as edge e1 (i.e., a “broadcast” copy of the
data), which is inefficient, especially because the feature

extraction actor does not need all of the raw data for its
processing. The memory requirements for the individual
dataflow edges are summarized in Table 1.
The buffer sizes were computed based on the numbers

of tokens consumed and produced during each actor fir-
ing. Thus, these buffer sizes are in general dependent on
the specific algorithm employed in each actor. For ex-
ample, in Table 1, the buffer e1 reads the input data
recorded from the acoustic sensor. Therefore, the memory
allocated to buffer e1 corresponds to the length of the in-
put data frame, which is determined as pr × ps, where pr is
the recording time and ps is the sampling frequency. Buf-
fer e2 contains the filtered data. Since we apply a sliding
window, the maximum amount of data that needs to be
buffered on e2 at one time is given by

ðprps−pf wÞ=ðpf w−pf oÞ:

Peak detection identifies the peaks and valleys in the
smoothed signal, where each detected peak is paired with
the nearest valley, as shown in Fig. 1. Here, the output sig-
nal length Lo and input signal length Li are related by Lo
= (Li − 1). The target location actor outputs the starting
and ending points of the detected interval sent through e4
and e5. For other buffers, such as e8 and e10, the memory
size was not determined precisely in terms of the max-
imum number of tokens Tmax that need to be accommo-
dated at any given time. Instead, an estimated upper bound
on Tmax was employed because the output length is deter-
mined dynamically depending on the data, the number of
targets detected in the input signal, and the computed
number of classifications. This dynamics in the output
length (and corresponding loss in predictability) is a nega-
tive aspect of this initial design that is improved upon in
our optimized design. The size of e9 corresponds to the
number of generated training parameters. In this initial de-
sign, the naive Bayes classifier was employed. Edge e11
transfers the output class and, thus, has a size of 1 token.
To achieve better predictability and improve memory re-

quirements and execution speed, we optimize the dataflow
model for DTSMD by grouping together or “clustering”

Table 1 Buffer sizes for the initial dataflow model

Memory requirements (tokens)

e1, e6 pr ps

e2 (prps − pfw)/(pfw − pfo)

e3 (prps − pfw)/(pfw − pfo)–1

e8 prps

e9 2pNpf

e10 (prps)/(pd − po)

e7, e4, e5, e11 1

Edges that have identical buffer sizes are listed in the same row along with
their common buffer size. Here, pfw is the window size for the sliding window
filter, and pfo is the amount of overlap for the smoothing part
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selected actors. The resulting clusters are implemented as
monolithic blocks of optimized code—that is, they are
combined into individual actors of increased complexity,
while the overall dataflow graph is of somewhat reduced
complexity, as shown in Fig. 3. In this optimized dataflow
graph, production and consumption rates are of a more
predictable parametric synchronous dataflow (parametric
SDF) form, which means that for a given set of graph pa-
rameters, the dataflow rates are all constant. We distinguish
our use of parametric synchronous dataflow modeling here
from the parameterized dataflow meta-model [15], which
is a more specialized dataflow modeling technique that is
not employed in this work.
The use of parametric synchronous dataflow represen-

tations facilitates construction of efficient quasi-static
schedules (e.g., see [7]). Here, by a schedule, we mean
the body of embedded software that coordinates the exe-
cution of the actors in a dataflow graph. A quasi-static
schedule is a schedule in which a significant portion of
the schedule structure is fixed at design time, while
some amount of scheduling dynamics is provided
through limited use of run-time schedule adjustments.
Compared to dynamic schedules, which involve rela-
tively large execution time overhead and have poor pre-
dictability, quasi-static schedules can lead to significantly
more efficient and reliable implementations.
In the transformed graph, we also modify the function-

ality so that the number of classifications per detection
interval is statically fixed (using the parameter pc). In the
initial design, this number of classifications is computed

dynamically to provide more robust operation. This
dynamics, however, complicates buffer size analysis
(particularly for edges e8 and e10) in the dataflow graph and
leads to significantly larger buffer size requirements com-
pared to use of a statically determined number of classifica-
tions. At the same time, we found through experiments
that dynamically, determining the number of classifications
does not lead to significant improvement in overall system
accuracy. Based on this combination of dataflow graph
analysis and experimentation, we converted the number of
classifications to a statically fixed parameter (pc).
The transformed dataflow graph, after application of

clustering and after statically fixing the number of classifi-
cations, is illustrated in Fig. 3. The resulting profile of
memory requirements for the dataflow edges is shown in
Table 2. In addition to providing significant improvements

Fig. 1 Localization steps to detect humans

Table 2 Buffer sizes for the optimized dataflow model

Memory requirements (tokens)

e1 ps pr

e2 pdps + (pd − po)(pc − 1)ps

e3 pf pc

e4, e7, e8, e9 pc

e5 Mode LDA: pf(pf + pN)

Mode SVM: (psv1 + psv2 + psv3)(pf + 1)

e6 1

Again, edges that have identical buffer sizes are listed in the same row
along with their common buffer size. Here, psv1, psv2, and psv3 are the
numbers of support vectors for the different types of binary classification
that are performed
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in the memory requirements for the graph edges, as seen
by comparing Tables 1 and 2, the total memory require-
ments for Fig. 2 (including graph edges and all other stor-
age requirements) are also significantly improved by the
transformed dataflow graph of Fig. 3. This impact on total
memory requirements is discussed further in Section 5.
The entries in Table 2 were computed using the same

kind of reasoning as what was used to derive the entries
in Table 1. We omit the details here for brevity.
The optimized dataflow model of Fig. 3 consists of the

following actors.

� Target detection: On each firing, this actor filters a
window of samples in the input signal, detects peaks in
the filtered signal window using an adaptive threshold,
and outputs a detection interval. The detection interval
indicates the range of time within the input window
across which one or more signal peaks are detected. If
no peaks are detected, then an empty (zero-duration)
interval is produced as output.

� Feature extraction: This actor operates on signal
windows analyzed by the target detection actor that
correspond to non-empty detection intervals. On
each firing, a single signal window is analyzed. From
this window, the feature extraction actor computes
features for classification and selects the most
significant features based on the current application
settings for feature selection. This actor has three
modes: spectral analysis, cepstral analysis, and
mutual-information-based feature extraction. In the
spectral analysis mode, the DC component is
removed from the input window; the data are
normalized to unit variance; and the FFT of the
resulting signal envelope is computed. Cadence
analysis is then applied to select the relevant
features [2]. In the cepstral analysis mode, the DC
component is also removed, and the cepstral
coefficients are computed using the algorithm
presented in [5], which can be viewed as a modified
version of the original cepstrum algorithm [16]. In
the third mode, the signal spectrum is computed

and the features are selected based on mutual
information using the algorithm described in [4].

� Classification: This actor takes as input an extracted
feature set and outputs an estimation of the output
class from the given feature values. The actor has
three modes that correspond to different
classification algorithms: linear discriminant analysis
(LDA), SVM with linear kernel, and SVM with
Gaussian kernel. When applying an SVM classifier
(i.e., in the second and third modes), we employ the
one-against-one approach described in [17] to
convert binary outputs from the SVM classifier into
the desired multiclass form where we must
discriminate among vehicles, people, and noise. In this
case, three different instances of the SVM classifier are
executed to perform binary classifications between
pairs of candidate classes (vehicle vs. person, vehicle
vs. noise, and person vs. noise). These three instances
are executed concurrently using the multiple
processing cores on the targeted Android device
(discussed further in Section 5). The three binary
classification results are then processed by a voting
operation to determine the estimated multiclass result.
If the application is executed in the LDA mode, then
only one classification instance is executed, and no
voting is applied.

� Results actor: computes the mean value of the output
classes in case pc ≥ 1. If pc = 1, then the results actor
performs no computation and simply propagates the
received (single) output class to its output edge.

The feature extraction algorithms employed in our
system apply FFT computations. For this purpose, we
use the fftw3 library in our implementation, which in turn
employs an algorithm that has a runtime complexity
of O(nlog(n)) for an input vector of length n [18].
The feature extraction algorithms that we use have
O(n) complexity, while the cepstral coefficients algo-
rithm performs more operations than in the case of
spectral analysis. For classification, the prediction part
of the SVM algorithm implemented in LIDE-C has
O(n) complexity, where n is the size of the input feature
vector. The employed LDA approach has a complexity
of O(n2).
Algorithm 1 shows a pseudocode representation of the

quasi-static schedule employed to coordinate execution of
the DTSMD system. Here, the File Writer actor is added
to write the output results to a text file for convenience in
interpretation and validation of the results.
In Algorithm 1, the syntax “fire X in mode Y” represents

the execution of actor X using the CFDF mode Y of the
actor; “mode cepstral” represents the cepstral analysis
mode; and “mode mutual” represents the mode that em-
ploys mutual-information-based feature extraction.

Fig. 2 Initial dataflow graph
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4 Adaptation approach
Since our tracking application is targeted to mobile plat-
forms, which have limited resources, it is important that
we view it comprehensively as a multiobjective design
problem (e.g., see [19]). Apart from developing a track-
ing application with good output accuracy, it is import-
ant that we also optimize memory requirements, power
consumption, and execution time. Therefore, we apply
design methods and optimization techniques that take
all of these metrics into account.
On the one hand, mobile devices have limited battery

capacity. Therefore, it is important to consider battery
capacity as a constraint and to employ algorithms that do
not take excessive amounts of computing time and are
energy-efficient. On the other hand, acoustic signals are
highly sensitive to noise, and therefore, we consider the
signal to noise ratio (SNR) as a key operational metric, as
it influences overall system accuracy. Various factors influ-
ence SNR, such as the distance between the sensor and
the target, and environmental noise (e.g., from wind).
Therefore, it is important in our application to choose
classifiers and feature extraction algorithms that have
good performance when processing noisy signals.
We propose here a tracking system design that adapts

itself based on operating conditions and environmental
constraints in order to effectively target the optimization
objectives of energy efficiency and detection accuracy.
Our adaptive system design is developed by providing

a set of four alternative execution modes in which the
tracking engine can operate. These modes provide dif-
ferent trade-offs that can be selected and switched
among at run-time to align system operation with
current operating conditions and constraints. These
modes and the coordination among them are illustrated
in Fig. 4. The four modes are represented in Fig. 4 by
four distinct states: S1, S2, S3, and S4. The states S1, S2,

and S3 are executed when the SNR level of the detec-
tion signal (the signal at the output of peak detection)
is relatively high, while the state S4 is assigned to the
low-SNR scenario.
In case of high SNR, the default state in which the sys-

tem executes is S1, while the states S2 and S3 can be
viewed as energy-saving modes. When the battery level
is low, the system shuts down gradually by first switch-
ing to S2 and then to S3 to reduce power consumption
in exchange for a lower accuracy. We do not implement
a separate energy-saving mode for the low-SNR case.
This is because the low-SNR state S4 already has rela-
tively low energy consumption. Furthermore, reducing
power consumption in this situation would lead to un-
acceptably low tracking accuracy. The transitions be-
tween the states depend on the threshold values Ts, Tb1,
and Tb2, which correspond, respectively, to thresholds
on the SNR level and the remaining battery capacity.
These thresholds can be fixed by the designer and, if de-
sired, changed in the field by the user.
In the low-SNR state S4, the signal spectrum is com-

puted and a feature selection algorithm based on mutual
information is applied in order to identify key features.
Detecting human cadence in low-SNR scenarios is chal-
lenging because steps in the detection segments may be
hidden by noise, which makes fewer steps available for
the detection analysis.
In tracking applications, the choice of a robust fea-

ture extraction method is as important as the choice of
a good classification algorithm [20]. The interval length
is also an important parameter that has influence on
the classification accuracy [9]. Therefore, we consider
three parameters for configuring the states in Fig. 4:
the classifier mode, feature extraction mode, and detec-
tion interval. Note that the “modes” referenced in these
parameter names are different from the “application

Fig. 3 Optimized dataflow graph after clustering. The structure shown within the classification actor—with three concurrently executing binary
classifiers connected to a voting function—corresponds to the second and third modes of the classification actor
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modes” that correspond to the four states illustrated in
Fig. 4.
Table 3 summarizes the parameter values for each of

the application modes in our adaptive tracking system.
We tested application performance in terms of detection
accuracy for different values of these parameters. Based
on this experimentation, we chose the parameter combi-
nations that provided the best recognition performance.
In the case of low SNR, we chose a small interval length
compared to the other states. This is because under low
SNR, each detection interval contains a relatively smaller
amount of acoustic information. In order to compute
the SNR, the noise energy is measured first since this
value strongly depends on the environment where the
recordings are performed. For example, a recording
without any detection can be performed in order to
measure the environmental noise energy.
The FSM shown in Fig. 4 is implemented as a separate

actor that we call the decision actor. The decision actor

is executed after the target detection actor to compute
the SNR level of the detected signal. It also reads the
current battery level. Based on the measured SNR and
battery levels, the decision actor determines whether to
stay in the current application mode (FSM state) or to
transition to a different state that is more effective in
terms of the current SNR and battery conditions. Upon
making a state transition, the decision actor computes
the values of the classifier mode, feature extraction
mode, and detection interval parameters to employ in
the new state.

5 Experiments
5.1 Implementation details
In order to test and experiment with our tracking applica-
tion design, we implement the actors in LIDE-C, which is
the C-language version of the DSPCAD Lightweight Data-
flow Environment [21, 22]. LIDE is a software tool that fa-
cilitates model-based design and implementation of signal
processing systems in terms of dataflow graphs. Our
experiments are performed on an Android-based de-
vice (Nexus 7 tablet, 2012) that is equipped with a
quad-core Tegra 3 processor. We use the tablet’s
microphone as the acoustic sensor. In our tests, the re-
corded data is saved as.pcm files, and we use a file
reader actor to read the acoustic data. A file reader is
an actor in LIDE that injects tokens into a dataflow
graph based on data read from an input file. The train-
ing of the classifiers that we use is performed offline in
MATLAB. The classifier parameters that are generated
from training are stored in a text file. This text file is
then read by the associated classifier actor to configure
the classifier before execution.
With one possible exception, the actors are executed

sequentially following a quasi-static schedule, as de-
scribed in Section 3. The exception occurs in case the
SVM classifier is selected. In this case, three binary clas-
sification actors are executed concurrently to carry out
different parts of the required multiclass classification
task. To implement these concurrent SVM executions,
we use the pthreads library [23] to schedule each binary
classification actor on a separate thread.

5.2 Data collection
In order to test our approach, we collected data at the
University of Maryland campus during different days

Fig. 4 Finite state machine for multimode control of the
tracking application

Table 3 Parameter specifications for states in the tracking system FSM

Classifier mode Feature extraction mode Interval length (s)

S1 SVM-rbf Cepstral analysis 6

S2 SVM-linear Spectral analysis 4

S3 MVG Spectral analysis 4

S4 SVM-rbf Mutual information-based feature extraction 3
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and, consequently, for different weather conditions. We
considered distinct scenarios when recording the data,
including (a) a single walking person, (b) a group of
walking people, (c) a running person, and (d) a moving
vehicle. For case (d), both heavy and light vehicles were
considered. We recorded data from various persons in-
cluding both males and females. The distance between
the tablet and the people varied from 15 cm to 1 m and
between the tablet and vehicles varied from 1 to 3 m.
These limited-distance ranges in our experimentation

are due to the relatively low-cost sensor subsystems
that are incorporated into commodity mobile devices.
The ranges can be extended considerably with more ad-
vanced sensor technology when migrating the proto-
type design to the final implementation. However, for
prototyping-stage experimentation, the limited-distance
operation supported by the targeted commodity mobile
devices is sufficient to assess and experiment with a
wide range of system design trade-offs.
Our collected dataset contains in total 143 acoustic

files, which we used to generate 539 training data signals
and 209 testing data signals. The SNR level of the data
varies. For these experiments, we set the SNR threshold
Ts value to 6 dB.

5.3 Comparison between the developed designs
We measure the memory footprint of the two designs
that we presented in Section 3—the original functional
prototype design and the transformed design that is op-
timized for efficient implementation. Since the majority
of the memory space the application is accessing is dy-
namically allocated (heap memory), we present here the
heap allocation, which is the total amount of heap
memory reserved by the application through memory
allocation requests, and the heap size, which corre-
sponds to the total heap size allocated for the applica-
tion. These results are summarized in Table 4. These
results include the effects of memory allocation re-
quests that are involved in setting up data structures
associated with the dataflow graph, including the FIFO
buffers and actors, when the graph is constructed dur-
ing the application initialization phase. The FIFOs use
about 80 % of the heap allocation in the initial design,
while they only use about 39 % of the heap allocation
in the second, optimized design.

5.4 Evaluation of the adaptive tracking application
We used the following parameter values in our
experiments:

� pr = 28 s
� ps = 8 kHz
� pf = 50 tokens
� pc = 1 token
� pN = 3
� pfw = 1000 tokens
� pfo = 800 tokens

For state S1, we extract the first pf features. For states
S2 and S3, we extract the first (lowest frequency) pf FFT
points, which corresponds to a resolution up to 12.5 Hz.
This level of resolution is sufficient for detecting human
cadence. For state S4, we extract pf features using the
mutual-information-based feature selection algorithm.
We measure the energy consumption of our tracking

system implementation in each operating mode. We also
measure the accuracy, and the area under the curve
(AUC), which is the area under the receiver operating
characteristic. Additionally, we analyze the confusion
matrices for following three situations:

� The system operates in a static configuration based
on the settings of state S1 (MFCC, SVM rbf, 6 s).

� The system operates in a static configuration based
on the settings of state S4 (mutual information, SVM
rbf, 3 s).

� The system operates using the adaptive approach
described in Section 4, except that the energy saving
modes described in Section 4 are not used. Figure 5
illustrates the reduced-functionality version of the
adaptive approach that we evaluate in these experi-
ments. The energy saving modes are defined for
graceful shutdown of the system as battery capacity
expires; thus, we do not consider these modes in
these experiments, which focus on steady state
(“fully powered”) operation of the tracking system.

For these experiments, two parameters have been
tuned for the SVM classifier: σ, which corresponds to
the width of the radial basis and C, which represents the
penalty for misclassification.
The energy consumption results from our experiments

are summarized in Table 5. We see from these results
that states S2 and S3 consume less power than S1, and
thus can be used to save energy, and are suitable for use
as intermediate states between (a) fully powered oper-
ation and (b) system shutdown due to battery expiration.
From Table 5, we also notice that the detection interval
has a strong influence on energy consumption. In states
S2 and S3, the interval length is the same (4 s) and the

Table 4 Comparison of dataflow graphs for the tracking
application in terms of memory requirements

Initial design Optimized design

Heap allocation (MB) 14.88 5.74

Heap size (MB) 16.62 6.18
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difference in the energy consumption is small compared
to, for example, the difference between states S1 and S2,
where the interval length in S1 is 6 s.
Since we consider here a multiclass classification prob-

lem, we compute a composite, multiclass AUC metric,
which we denote as MAUC (multiclass AUC). MAUC is
a commonly used metric for assessing multiclass ap-
proaches. To compute the MAUC, we first compute the
AUC for each binary classification task performed (ve-
hicle vs. noise, vehicle vs. person, and person vs. noise).
MAUC is then computed using Eq. 1 (shown below),
which is discussed in [24], and is based on an approach
introduced in [25].

MAUC ¼ 2
NcðNc−1Þ

X

ðci;cjÞ∈C
AUCðci; cjÞ: ð1Þ

Here, Nc is the number of classes, C is the set of out-
put classes, and AUC(ci,cj) is the AUC for the binary
classification task defined by the classes ci and cj.
Results on accuracy and MAUC are summarized in

Table 6. The adaptive approach has a better accuracy
compared to the fixed-mode (statically configured)
approaches in which only one classifier and one feature
extraction method are employed. From Table 6, we see
that our proposed adaptive solution has the highest
MAUC value.
In Table 7, the confusion matrices of the three possible

solutions are presented. The columns correspond to the
estimated class, and the rows correspond to the actual
class. We see that the adaptive approach yielded 191

correct detections, while the states S1 and S4 have given,
respectively, 176 and 167 correct outputs.

6 Conclusions
In this paper, we have presented the design and imple-
mentation of an adaptive system for detecting and track-
ing human footsteps and vehicles from mobile devices.
Such a mobile-device-based system is motivated by im-
portant uses in the prototyping, testing, and demonstra-
tion of disposable sensor nodes that are targeted for
deployment in border security and other kinds of out-
door intrusion detection applications. Developing and
experimenting with flexible prototypes allows signal pro-
cessing system designers to perform in-the-field valid-
ation and to evaluate alternative features, parameter
configurations, and trade-offs before committing re-
sources to finalize the implementation on custom hard-
ware sensor nodes. These are important capabilities
given the complexity of practical tracking systems and
the high costs of developing application-specific sensor
node solutions.
We have presented a model-based design approach for

our proposed tracking system using signal processing-
oriented dataflow techniques. We have shown how ana-
lysis and transformations using the resulting dataflow
model help to understand characteristics of and optimize
the targeted implementation. We have performed exten-
sive experiments on an Android-based implementation of
our tracking system and presented a multiobjective ana-
lysis of the experimental results. This analysis has focused

Table 7 Confusion matrices obtained for different system
configurations

Noise Person Vehicle

State S1 Noise 38 5 5

Person 16 81 1

Vehicle 5 1 57

State S4 Noise 40 5 3

Person 22 73 4

Vehicle 6 2 54

Adaptive approach Noise 43 2 3

Person 8 89 1

Vehicle 3 1 59

Table 6 Comparison between the single-mode solutions and
the adaptive solution in terms of accuracy and area under curve
(AUC)

Average accuracy MAUC

S1 84.21 % 0.9523

S4 79.90 % 0.8536

Adaptive solution 91.39 % 0.9678

Table 5 Battery discharge levels and energy consumption
measurements for each state of the tracking system FSM

Initial design Optimized design

Heap allocation (MB) 14.88 5.74

Heap size (MB) 16.62 6.18

Fig. 5 FSM for the steady state or fully powered part of the
tracking application
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on assessing design optimization quality in terms of track-
ing accuracy and energy efficiency. Unlike conventional
approaches for related tracking problems that are based
on single-classifier implementations, our proposed sys-
tem adapts among different classification and feature
extraction algorithms depending on existing operational
conditions. Interesting directions for future work include
investigating and integrating feature extraction methods
that are more robust against noise and extending our
adaptive, mobile-device-based tracking system to apply
multiple sensing modalities (e.g., seismic sensor data in
conjunction with acoustic data).
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