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Abstract

This paper presents an incremental learning algorithm for the hybrid RBF-BP (ILRBF-BP) network classifier. A
potential function is introduced to the training sample space in space mapping stage, and an incremental learning
method for the construction of RBF hidden neurons is proposed. The proposed method can incrementally generate
RBF hidden neurons and effectively estimate the center and number of RBF hidden neurons by determining the
density of different regions in the training sample space. A hybrid RBF-BP network architecture is designed to train
the output weights. The output of the original RBF hidden layer is processed and connected with a multilayer
perceptron (MLP) network; then, a back propagation (BP) algorithm is used to update the MLP weights. The RBF
hidden neurons are used for nonlinear kernel mapping and the BP network is then used for nonlinear classification,
which improves classification performance further. The ILRBF-BP algorithm is compared with other algorithms in
artificial data sets and UCI data sets, and the experiments demonstrate the superiority of the proposed algorithm.
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1 Introduction

In the field of pattern recognition and data mining,
various methods and models are proposed to solve
different problems. Existing methods can be divided
into two levels including data level and algorithmic
level. The data levels are mainly concerned with vari-
ous sampling techniques [1]. The algorithmic level
tried to apply or improve varieties of existing trad-
itional learning algorithms such as fuzzy clustering
[2], Markovian jumping system [3-5], k-nearest
neighbors [6], and neural network, where single-layer
feed-forward networks (SLFNs) have been intensively
studied in the past several decades and applied to
solve various problems in different fields, such as
image recognition [7], signal processing [8], disease
prediction [9], and industrial fault diagnosis [10]; in
particular, radial basis function (RBF) neural networks
offer an effective mechanism for nonlinear mapping
and classification. In a typical RBF network, the num-
ber of hidden neurons is assigned a priori [11, 12],
which leads to poor adaptability for different sample
sets. Several sequential learning algorithms have been
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proposed to determine proper sizes of RBF network
architectures. A resource allocation network (RAN)
for constructing the RBF network is proposed in [13],
which uses the novelty of incoming data as the learn-
ing strategy. A RAN algorithm based on an extended
Kalman filter (RANEKF) is proposed in [14], which
uses the extended Kalman filter algorithm instead of
the least mean squares (LMS) algorithm. In [15], a
minimal resource allocation network (MRAN) is pro-
posed, which is allowed for the deletion of the previ-
ous center. The deletion strategy is based on the
overall contribution of each hidden unit to the net-
work output. A sequential learning algorithm for
growing and pruning the RBF (GAP-RBF) is proposed
in [16, 17]; this algorithm uses the significance of
neurons as the learning strategy. In [18], a Gaussian
mixture model (GMM) to approximate the general-
ized growing and pruning evaluation formula is pro-
posed; the GMM can be used for problems with a
high-dimensional probability density distribution. In
[19], an error correction (ErrCor) algorithm is used
for function approximation; this algorithm can
achieve a desired error rate with fewer RBF units.
Other methods have also been established to identify
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a proper architecture while maintaining a desired
accuracy [20-22].

Support vector machines (SVMs), which are max-
imal margin classifiers, can also be used to train
SLFNs. RBFs and SVMs differ in that at the output
layer, a SVM employs convex optimization to find an
optimal linear classifier, whereas the output weights
of RBF network are typically estimated by a linear
least squares algorithm, such as the LMS or recursive
least squares (RLS) algorithm. Regarding other train-
ing SLFNs, extreme learning machines (ELMs) are
proposed in [23]; ELMs choose random hidden
neuron parameters and calculate the output weights
with the least squares algorithm. This method can
achieve a fast training speed. Subsequently, an online
sequence extreme learning machine (OS-ELM) algo-
rithm that can learn one by one and data blocks of
the input samples is proposed in [24]. In ELMs, the
number of hidden nodes is assigned a priori, and
many nonoptimal nodes may exist; thus, in [25-28],
several types of growing and pruning techniques
based on ELMs are proposed to effectively estimate
the number of hidden neurons.

All of the algorithms for training SLENs consist of
two stages: (1) suitable feature mapping and (2) out-
put weight adjustment. To train SLFNs efficiently, in
this paper, a potential function is introduced in the
feature mapping stage to train the sample space, and
an incremental learning method of constructing RBF
hidden neurons is proposed. Note that although the
sequence learning RBF algorithms can also generate
RBF hidden neurons automatically, because of the
lack of global information in the sample space, the
adaptability of complex sample space may be poor. In
contrast to GAP-RBE, the proposed method does not
require an assumption that the input samples obey a
unified distribution. Furthermore, it does not need to
fit the input sample distribution, such as the algo-
rithm proposed in [18]. The proposed method utilizes
global information about each class of training sample
space and can generate RBF hidden neurons incre-
mentally to adapt the sample space. By using a poten-
tial function to measure the density in each class of
training sample space, the corresponding RBF hidden
neurons that cover different sample areas can be
established. The center of the Gaussian kernel func-
tion can be determined by learning the density of dif-
ferent regions in the training sample space. Once the
width is given, a hidden neuron is generated and in-
troduced into the RBF network, and a mechanism for
eliminating the potentials of original samples is pre-
sented. This mechanism is ready for the next learning
step, and thus, the RBF centers and number of hid-
den neurons can be effectively estimated. In this way,
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a suitable network size for RBF hidden layer that
matches the complexity of the sample space can be
built up. Thus, the proposed method solves the prob-
lem of dimension change from sample space mapping
to feature space, and it reduces the restrictions on
the sample sets, which is adaptable to more complex
sample sets.

In this paper, a hybrid RBF-BP network architecture
is designed for the output weight adjustment stage to
further improve the generalization and classification
performance. The output of the original RBF hidden
layer is processed and connected with a new hidden
layer, which means that the output of the original
RBF hidden layer, the new hidden layer, and the out-
put layer consists of a multilayer perceptrons (MLPs),
and the output of the original RBF hidden layer is
the input of the MLPs. Once the network architecture
is established, a back propagation (BP) algorithm is
used to update the weights of the MLPs. In the
hybrid RBE-BP network, the RBF hidden neurons are
used for nonlinear kernel mapping, the complexity of
sample space is mapped onto the dimension of the
BP network input layer, and the BP network is then
used for nonlinear classification. The nonlinear kernel
mapping can improve the separability of sample
spaces, and a nonlinear BP classifier can then supply
a better classification surface. In this manner, the im-
proved network architecture combines the local
response characteristics of the RBF network with the
global response characteristics of the BP network,
which simplifies the neuron number selection in the
BP network hidden layer while further reducing the
dependence on space mapping in the RBF hidden
layer.

The incremental learning algorithm for the hybrid
RBE-BP (ILRBF-BP), which is a batch learning algo-
rithm, is proposed by combining the proposed incre-
mental learning algorithm with the hybrid RBF-BP
network architecture. In this paper, the performance
of the ILRBE-BP algorithm is compared with other
well-known learning algorithms, such as back propa-
gation based on stochastic gradient descent (SGBP)
[29], the RBF algorithm based on k-means clustering
(KM-RBF) [12], GAP-RBF, SVM, and an ELM, on
artificial data sets. To measure the unique features of
the proposed method, the k-means clustering learning
algorithm based on the hybrid RBE-BP network
(KMRBEF-BP) is also compared with ILRBF-BP on arti-
ficial data sets. Because SGBP and KM-RBF are not
suitable for considering more complex problems, for
multi-class data sets, in addition to batch learning
algorithms, such as SVM and ELM, other well-known
sequential algorithms, such as MRAN, GAP-RBEFN,
and OS-ELM, are also compared with the ILRBF-BP
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algorithm. The results indicate that the ILRBF-BP al-
gorithm can provide a higher classification accuracy
with comparable complexity.

The remainder of this paper is organized as follows.
Section 2 describes the principal ideas of the ILRBF-
BP, followed by a summary of the algorithm. Section 3
presents the experimental results and performance
comparisons with other existing batch and sequential
algorithms. Section 4 provides the conclusions of this
study.

2 Main concepts of the ILRBF-BP algorithm

In this section, the main concepts of the ILRBF-BP
algorithm are described. First, we provide the problem
definition of the basic RBF network and then present
the incremental learning algorithm for constructing
RBF hidden neurons. Then, a hybrid RBF-BP network
architecture is designed, and the ILRBF-BP algorithm
is summarized. Finally, a method of adjusting the out-
put saturation for multi-class classification problem is
proposed.

2.1 Problem definition
For a RBF network, the output can be given by

F(x) =) oy (x) (1)
k=1
where

P(x) = exp (;Gk I-n ) )

where K is the number of RBF hidden neurons; ¢(x)
is the response of the kth hidden node for an input
vector X, where x € R’ wy is its connecting weight to
the output node, which determines the classification
surface; and y; and oy are the center and width of
the kth hidden node, respectively, where k=1,2,... K.

A RBF network can localize the input sample space,
which maps input samples to the interior of the
hypercube, and the localized area is near a vertex.
The dimension of the hypercube is the number of
RBF hidden neurons. Thus, when going through the
RBF network, an input vector x€ R’ can be denoted
as f:R'— (0,1]%. Figure 1 shows the results of map-
ping input samples going through the RBF hidden
neurons, where the number of RBF hidden neurons is
set as K=3. In Fig. 1, we assume that every input
sample vector is near the center of a RBF hidden
neuron and that there is no overlap area covered by
different RBF hidden neurons.

Figure 1 illustrates that in a RBF network, to
achieve good training algorithms, an effective method
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Fig. 1 Result of mapping input samples going through RBF
hidden neurons

of mapping the input sample space should be estab-
lished, which means completing the estimation of the
parameter set {K ,yk,ak}le. Then, an effective classi-
fication surface is needed, which depends on output
weight adjustment.

2.2 Incremental learning algorithm for constructing RBF
hidden neurons

In the fields of data mining and pattern recognition,
potential functions can be used for density clustering
and image segmentation (IS) [30]. Several methods of
constructing potential function are proposed in [31];
here, we choose the potential function

1

1+ T~d2(X1,X2) (3)

y(x1,%2) =

where y(xy,X,) represents the interaction potential of
two points Xj, X in the input sample space, d(xy, X3)
represents the distance measure, and T is a constant,
which can be regarded as the distance weighting
factor.

Given a training sample set S, where a specific label
vivi€iys i=1,2,... i} is attached to each sample vector x
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in S, & is the number of pattern class. Let S; denote the set
of feature vectors that are labeled y;, S; = {x},x}, ..., x§ },
where N; is the number of training samples in the ith pat-
tern class. Thus, S = Ulh:lSi, S§;nS;=@,Yi#j. For a pair of
samples (xi,xl) in S, its interaction potential can be de-
noted as

1

— (4)
L+ Td (xi,x)

Y(X:UX;) =

Let x! be the baseline sample; then, the interaction po-
tential of all other samples to x!, can be denoted as

y (X x) (5)

Therefore, the potentials of each sample in S; is
given by

o= o) o). (34 ©

The potentials can be used to measure the density
of different regions in the pattern class. Potentials are
relatively large in the dense region, whereas they are
relatively small in the sparse region. Once the poten-
tials of each sample in S; are given, the sample with
the maximum potential can be selected, where it is
assumed the sample is xi, that is,

p(Xi,) = maX{P(xil),p(X‘z%'--,P(x;i)} (7)

In a RBF network, the activation response of hidden
neurons has local characteristics. The sample space is
divided into different subspaces by establishing differ-
ent Gaussian kernel functions. To generate valid
Gaussian kernel functions, we find the most densely
region in the sample space and then establish a
Gaussian kernel to cover the region. For that purpose,
the sample with the maximum potential is chosen as
the center of Gauss kernel function, which is given
below.

Hie = x; (8)

where k refers to the number of RBF hidden neurons
generated. To simplify the calculation, the width is
fixed and selected by cross validation.

When a hidden neuron is established, it is necessary to
eliminate the potentials of the region to find the next
center in the remaining samples. This process can be
updated by
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i i i 1 i i
P () = () () exp g Iy ).

V= 1,2, N,
©)

where xi) is the center of the current hidden neuron.
For the potential value update process, Eq.(9) shows
when a sample x! is close to the center xi,, the poten-

tial value of xi is attenuated fast, whereas when a
sample xi is far away from the center, the potential
value of x! is attenuated slowly. When meeting the

inequality

e () P () e (54 ) } 56 (10

a new hidden neuron is introduced into the RBF net-
work and is ready to search for the next center; other-
wise, the algorithm of constructing RBF hidden neurons
in the current pattern class is over, where § is a
threshold.

The above process is called the incremental learning
algorithm of constructing RBF hidden neurons. Figure 2
shows a schematic diagram of generating RBF hidden
neurons incrementally, where the serial numbers in the
training sample space represent the regions covered by
different RBF hidden neurons. These covered regions
transition from dense to sparse. The incremental learn-
ing algorithm of constructing RBF hidden neurons is
summarized in Algorithm 1.
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Fig. 2 lllustrative diagram of incrementally generating RBF
hidden neurons
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Algorithm 1. Incremental learning algorithm of constructing RBF hidden neurons

Initialize the number of RBF hidden neurons & = 0. Given the width o and the distance weighting factor 7.

Given training samples S = U?:l S, S = {Xil, X;,...,X;A } . For each pattern class Sl., do

ok v =

Set iteration termination condition
If max {pm’w (X; )’ pnew (le )""’ pm’w(X]iVi )} > 5
Go to Step 2.
Else

Compute the potential value of each sample according to Eq.(5);
Determine the maximum potential value of each sample according to Eqs.(6) and (7);
The number of RBF hidden neurons k counts plus 1. Use Eq.(8) to allocate a new hidden neuron center;

Eliminate the sample potential value of the region according to Eq.(9);

The process of learning current pattern class is over. Go to learn other pattern classes.

EndlIf

2.3 Hybrid RBF-BP network architecture

As noted above, in a typical RBF network, the output
weights are typically estimated by a linear least squares
algorithm, such as the LMS or RLS algorithm. In this
section, we transform the linear least squares algorithm
into a nonlinear algorithm. When classifying a problem,
a nonlinear algorithm can supply a better classification
surface to adapt the sample space. For that purpose, a
hybrid RBF-BP network architecture is designed. The
output of the RBF hidden neurons is processed and con-
nected with a MLPs network, and then, the nonlinear
BP algorithm is used to update the weights of the MLPs.
The architecture of the hybrid RBE-BP network is shown
in Fig. 3, which consists of four components:

1. The input layer, which consists of ¢ source nodes,
where ¢ is the dimensionality of the input vector

TN
~ A Doublepolar —— /
N

N /¥ (0] Double polar /¥

<
> K \
Ja
¥ #()]=> Double polar -
> o
N / ‘
‘PK(X) » Double polar * L
Input layer RBF Hidden layer BP Hidden layer Output layer

Fig. 3 Hybrid RBF-BP network architecture

2. The RBF hidden layer, which consists of a group of
Gaussian kernel functions:

1
00 = exp(~ 51 lxmlP ), k=12 (1)
k

where p; and oy are the center and width of the hidden
neuron, respectively, and K is the number of hidden
neurons.

3. The BP hidden layer, which consists of the neurons
between the RBF hidden layer and output layer. The
induced local field v/@ for neuron j in layer / of the
BP network is

! 0 (-1
e
where yEH) is the output signal of the neuron i in the pre-
vious layer /-1 of the BP network and w}il) is the synaptic
weight of neuron j in layer / that is fed from neuron i in
layer /-1. Assuming the use of a sigmoid function, the out-
put signal of neuron j in layer / is

(12)

!
y} ) = 9; (vj) = atanh(by)) (13)
where a and b are constants.

If neuron j is in the first BP network hidden layer, i.e.,
[=1, set

7" =g (14)

where gi(x) is the double polar output of ¢;(x) and can
be denoted as
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8(x) = 2-¢,(x)-1 (15)

4. The output layer. Set L is the depth of the BP network,
note the depth of the BP network is equal to the sum
of the BP network input layer, the hidden layer, and the
output layer, i.e, if /=1, then L = 3, and the output can
be given as

0 =y} (16)

In Fig. 3, the double polar processing can ensure the val-
idity of the BP network input. The hybrid RBE-BP net-
work architecture is designed such that the RBF network
has good stability, where the activation response in the
RBF hidden neurons has local characteristics and maps
the output value between 0 and 1. Thus, the original sam-
ples including outliers will be limited to a finite space.
When the results of mapping the RBF hidden neurons are
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processed and used for the input of the BP network, the
convergence rate of the BP algorithm can be increased
and local minima can be avoided. For a BP network, the
activation response in hidden neurons has global charac-
teristics, especially those regions not fully displayed in the
training set. Therefore, the hybrid RBF-BP network archi-
tecture is a reasonable model; it provides a new strategy
that combines the local characteristics of the RBF network
with the global characteristics of the BP network. In
addition, the hybrid network simplifies the number of
neurons in the BP hidden layer while further reducing the
dependence on space mapping in the RBF hidden layer.

A single hidden layer MLP neural network with an input-
output mapping can provide an approximate realization of
any continuous mapping [32]. Combined with the above
discussion, in the hybrid network, we set the number of BP
network hidden layers as / = 1.

Combining the proposed incremental learning algo-
rithm with the hybrid RBF-BP network architecture, the
incremental learning RBF-BP (ILRBF-BP) algorithm is
summarized in Algorithm 2.

Algorithm 2: The ILRBF-BP algorithm

1. Assign random initialized weights to each layer of the MLP network, initialize the BP iteration step m , set

a=1.716, b=2/3.

2. Use the incremental learning algorithm of constructing RBF hidden neurons proposed in Algorithm 1.

Use Egs.(11) and (15) to compute g/(x) ,let g(x) be the input of the BP network, where

g(®) = (g (X), gy (X), .0 g (X)) .

4.  Forward compute the BP network. Use Eqgs.(12)-(14) and Eq.(16). Compute the error signal

whered ; is the jth element of the desired response vector d.

5. Backward compute the BP network. Compute the local gradients of the network, which is denoted by

0 ¢;(4")

for neuron j in output layer L

s @ ("> 5!"a!™  for neuron j in MLP hidden |ayer /
k

where ¢j' () is the differentiation with respect to the argument. Adjust the synaptic weights of the network in layer

[ of MLP as shown below.

o) (m+1) = o) (m)+ | &) (m=1) |+ 75" (m) " (m)

where ¢ is the momentum constant and 77 is the learning rate.

6. Iteration. Iterate the forward and backward computations in Steps 4 and 5 by presenting new epochs of training

examples to the network until the chosen stopping criterion is met.
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2.4 Adjustment of the output label values

The ILRBE-BP algorithm can handle binary problems
and multi-class problems. For multi-class classifica-
tion problems, suppose that the observation data set
is given as {Xp,y,}\_,, where x,€R is an ¢-dimen-
sional observation features and y,eR" is its coded
class label. Here, % is the total number of classes,
which is equal to the number of output hidden neu-
rons. If the observation data x, is assigned to the
class label ¢, then the cth element of y,=[y1,...,y0
...yh]T is 1 and other elements are -1, which can be
denoted as follows:

(1 ifj=c .,
Yi= {—1 otherwise’ 1’2""’h} (17)

The output tags of the ILRBF-BP classier are ¥, = [,
v Jer o 9u] T, where

5’1‘ = sgn(oj), j=12, ..h (18)

According to the coding rules, only one output tag
value is 1 and the other value is -1. If this condition
is not met, the output tag is saturated and must be
adjusted. Therefore, we set an effective way to
correct the saturation problem in the learning
process, which can be denoted as the pseudo code
in Algorithm 3.
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3 Performance evaluation of the ILRBF-BP
algorithm

In this section, we evaluate the performance of the
ILRBE-BP algorithm using two artificial classification
problems from [33] and three classification problems
from the UCI machine learning repository [34]. The arti-
ficial binary data sets, including the Double-moon and
Twist problems are used to measure the unique features
of ILRBE-BP and the main advantages of the results over
others. Table 1 provides a description of the classifying
data sets, where Double-moon, Twist, and IS are well-
balanced data sets and Heart and vehicle classification
(VC) are imbalanced data sets. For balanced data sets,
the numbers of training samples in each class are identi-
cal. For the heart problem, the numbers of training sam-
ples in classes 1 and 2 are 33 and 40, respectively. For
the VC problem, the numbers of training samples in
classes 1—4 are 119, 118, 98, and 89, respectively.

The performance of ILRBF-BP is compared with
other well-known batch and sequential learning algo-
rithms, such as SGBP, KM-RBF, KMRBF-BP, SVM
and ELM, MRAN, GAP-RBF, and OS-ELM on differ-
ent data sets. Note that the number of SGBP, KM-
RBF, KMRBE-BP, ELM, and OS-ELM hidden neurons
is selected manually. When changing the number of
hidden neurons several times, the one with the low-
est overall testing error is selected as the suitable
number of hidden neurons. For multi-class problems,
the method of adjusting output saturation problems
is used. All simulations in each algorithm are per-
formed ten times and are conducted in the MATLAB
2013 environment on an Intel(R) Core(TM) i5, 3.2
GHZ CPU with 4G of RAM. The simulations for the
SVM are carried out using the popular LIBSVM
package in C [35].

Algorithm 3 Method of adjusting the output saturation problem

for every input vector X,

Given an observation data set {X,,y, },,
While j £ h
If the number of f/j == - lisequalto &
Set max(o;)=1 and hold other output values fixed.
EndIf
If the number of )71, ==1 ismore than 1

Set max(o;)= 1 and the other output values are - 1.

Endlf
Endwhile
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Table 1 Descriptions of the classifying data sets
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Data sets No. of features No. of classes No. of training No. of testing Attribute Sources
Double-moon 2 2 200~2000 4000 Balance Artificial
Twist 2 2 200~2000 4000 Balance Artificial
Heart 13 2 73 230 Imbalance udl
IS 19 7 210 2100 Balance ucl
VC 18 4 424 422 Imbalance udl

3.1 Performance measures

In this paper, the overall and average per-class classifica-
tion accuracies are used to measure performance. The
confusion matrix Q is used to obtain the class-level per-
formance and global performance of the various classi-
fiers. Class-level performance is measured by the
percentage classification (7;), which is defined as

q,,
= ]\TlllT (19)
where ¢g;; is the number of correctly classified samples
and N is the number of samples for the class y; in the
training/testing data set. The overall (y,) and average

per-class (7,,) classification accuracies are defined as

1
1, = 100 x quii (20)
=1
L
7, = 100 x EZm (21)

where % is the number of classes and N7 is the number
of training/testing samples.

3.2 Performance comparison

3.2.1 Atrtificial binary data sets: Double-moon problem

The prototype and data set of the Double-moon classifi-
cation problem are shown in Fig. 4a, b, respectively,

where r=10, w =6 and d =-6. The main parameters
of distance weighting factor, width, incremental
learning threshold, number of BP hidden neurons,
and momentum constant in ILRBF-BP are set as T =
1, 0=3, §=0.01, M=5, and a =0, respectively. Fig-
ure 4c shows the classification results for the testing
samples under these parameters. The classification
results illustrate that the proposed algorithm can
provide a superior classification surface. Figure 5
shows using different width parameters to cover the
training sample space, where each cover generates a
RBF hidden neuron and the number of RBF hidden
neurons is increased incrementally, the bold lines
represent the first coverage region in each pattern
class. In Fig. 5, with the increase of the width param-
eter, the corresponding region covered each RBF hid-
den neuron is increased accordingly, which will affect
the location of the next center, thus generates differ-
ent RBF hidden neurons. Though the number of RBF
hidden neurons has changed, ILRBF-BP still can
effectively cover each class of training samples. Thus,
the incremental learning algorithm based on potential
function clustering is feasible. ILRBF-BP can be well
adapted to the sample space, which is an effective
algorithm to incrementally generate RBF hidden neu-
rons for the Double-moon problem.

Figure 6a, b demonstrates that when the number of
training samples has changed, KMRBEF-BP needs less

Fig. 4 a Double-moon classification problem. b Double-moon data set. ¢ Classification result of the ILRBF-BP algorithm
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(a)

(b)

Fig. 5 Using different width parameters to cover the training sample space for Double-moon classification problem.a c=2.b 0=3.co=4

(©)

number of RBF hidden neurons than KM-RBF. When
the number of training samples is more than 500,
KMRBF-BP can get a higher classifying accuracy than
KM-RBEF. These results show that the hybrid RBF-BP
network architecture is effective, which can improve the
classifying accuracy and reduce the dependence on the
original sample space mapping. In GAP-RBF and ILRBE-
BP, the number of RBF hidden neurons is generated
automatically. ILRBF-BP needs less number of RBF hid-
den neurons than GAP-RBEF, and the overall testing ac-
curacy outperforms GAP-RBF. The classifying accuracy
of ILRBF-BP is comparable with SVM and KMRBE-BP
and outperforms ELM and KM-RBEF. Note that the num-
ber of KM-RBF and KMRBEF-BP is selected manually.
When changing the number of hidden neurons several
times, the one with the highest overall testing accuracy
is selected as the suitable number of hidden neurons. As
ILRBE-BP utilizes global information about each class of
training sample space, it can generate RBF hidden neu-
rons incrementally to adapt the sample space, and the
hybrid RBE-BP network architecture improves the net-
work performance further.

3.2.2 Artificial binary data sets: Twist problem

The prototype and data set for the twist classification
problem are shown in Fig. 7a, b, respectively, where d;
=0.2, d,=0.5 and d3=0.8. Compared to the Double-
moon problem, the twist classification problem is more
complex and can thus be used to evaluate the classifica-
tion performance of the different algorithms. The main
parameters of distance weighting factor, width, incre-
mental learning threshold, number of BP hidden neu-
rons, and momentum constant in ILRBF-BP are set as T’
=200, 0=0.15, §=0.01, M =5, and a =0, respectively.
Figure 7c shows the classification results for the testing
samples under these parameters. The classification re-
sults illustrate that the proposed algorithm still provides
a superior classification surface for the Twist classifica-
tion problem. Figure 8 shows using different width pa-
rameters to cover the training sample space, where each
cover generates a RBF hidden neuron. In Fig. 8, the bold
lines represent the first coverage region, which denote
the most dense region in each pattern class. Although
there are some overlap in different coverage regions,
ILRBE-BP still can effectively cover each class of training
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() (b)

Fig. 7 a Twist classification problem. b Twist data set. ¢ Classification result of the ILRBF-BP algorithm

samples and generate corresponding RBF hidden neu-
rons incrementally.

Figure 9a, b demonstrates that when the number of
training samples has changed, KMRBEF-BP needs less
number of RBF hidden neurons than KM-RBF and can
get a higher classifying accuracy. Thus, the hybrid RBF-BP
network architecture improves the classifying accuracy
and reduces the dependence on the original sample space
mapping. Note that in KM-RBF and KMRBF-BP, when the
number of training samples is changed, the number of
RBF hidden neurons has to be adjusted manually; other-
wise, it will lead to a poor classification accuracy. Com-
pared to KM-RBF and KMRBE-BP, ILRBE-BP can adapt
the training sample space well; when the number of train-
ing samples is changed, the number of RBF hidden neu-
rons in ILRBF-BP is changed accordingly and can get a
higher classifying accuracy. Compared to GAP-RBE
ILRBE-BP can better adapt to the change of sample space.
The classifying accuracy of ILRBF-BP outperforms GAP-
RBF as well as SVM and ELM. Thus, the incremental
learning algorithm based on potential function is effective,
which utilizes global information about each class of

training sample space to construct RBF hidden neurons
incrementally, and the hybrid RBF-BP network architec-
ture improves the network performance further.

3.2.3 UC] binary data set: Heart problem

In this section, the Heart problem in the UCI binary
data set is used to evaluate the performance of the
ILRBEF-BP algorithm. In the Heart problem, the sample
distribution values of each dimension are between 0 and
1, and the main parameters of distance weighting factor,
width, incremental learning threshold, number of BP
hidden neurons, and momentum constant in ILRBF-BP
are set as T=1, =12, §=0.001, M =5, and a=0.1,
respectively. As noted above, the Heart problem is an
imbalanced classification problem. This, in addition to
the overall testing 7,, the average testing 7, is also used
to measure the performance of each algorithm.

The performance comparisons between ILRBF-BP and
the other batch learning algorithms are shown in Table 2.
For the Heart problem, the overall and average testing
accuracy of ILRBF-BP are clearly higher than those of
SGBP, and the proposed algorithm outperforms ELM

(a)

(b) (c)

Fig. 8 Using different width parameters to cover the training sample space for the twist classification problem.a 0=0.1.b 0=0.15.c 0=0.2
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and KM-RBF by approximately 2.5-5 %. The average
testing accuracy of ILRBF-BP is 1.74 % lower than that
of the SVM; however, the overall testing accuracy is ap-
proximately 3 % higher than that of the SVM, and fewer
hidden neurons are needed.

3.2.4 UCI multi-class data sets: IS and VC problems

In this section, the IS and VC problems are used to
evaluate the performance of the ILRBE-BP algorithm.
The output saturation is adjusted for the multi-class
classifying problem in the ILRBF-BP algorithm. For
the IS problem, the sample distribution range in each
dimension is different, so the inputs of each algo-
rithm are scaled appropriately between 0 and +1. The
main parameters of distance weighting factor, width,
incremental learning threshold, number of BP hidden
neurons, and momentum constant in ILRBF-BP are
set as T=1, 0=03, §=0.001, M=8, and a=02,
respectively. The IS problem is a well-balanced data
set; the number of training samples in each class is
30, and the overall testing 7, is used to measure the
performance of each algorithm. For the VC problem,
the sample distribution values of each dimension are
between -1 and +1, and the main parameters of
distance weighting factor, width, incremental learning
threshold, number of BP hidden neurons, and

Table 2 Performance comparison for the Heart problem

momentum constant in ILRBF-BP are set as T=1, o=
0.4, §=0.001, M=9, and a=0.1, respectively. The
number of training samples in each class is 119, 118,
98, and 89. The VC problem is a highly imbalanced
data set, where the strong overlap between the classes
influences the performance of each algorithm. The
overall testing 7, and average testing 7, are used to
measure the performance of each algorithm.

Table 3 shows the performance comparisons for the IS
and VC problems. For the IS problem, the overall testing
accuracy of ILRBF-BP is approximately 5-6 % higher
than those of MRAN and GAP-RBF and approximately
0.9-1.3 % higher than those of OS-ELM, SVM, and
ELM. For the VC problem, the overall and average test-
ing accuracies of ILRBF-BP are approximately 9-11 %
higher than those of MRAN and GAP-RBF and approxi-
mately 1.2-2.5 % higher than those of the SVM, ELM,
and OS-ELM. The number of RBF hidden neurons and
training time of ILRBF-BP are the greatest because the
strong overlap of sample space increases the number of
RBF hidden neurons and learning time, which yields a
higher classification accuracy.

3.3 Analysis of the parameters in the ILRBF-BP algorithm
In this section, the parameter selection for the ILRBF-BP
algorithm is discussed, which mainly refers to the

Method Ny neurons Training time(s) Training n, Testing ne Testing n,
SGBP 7 0.95 95.01 46.09 4842
KM-RBF 7 0.78 82.19 75.22 75.30
SVM 39° 0.08 100 77.39 81.81
ELM 10 0 87.67 77.83 77.66
ILRBF-BP 11 and 5° 0.66 91.78 80.43 80.07

2Support vectors
PRBF and BP hidden neurons
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Table 3 Performance comparisons for the IS and VC problems

Page 12 of 15

Data sets Method Ny neurons Training time(s) Testing n, Testing n,

IS SVM 96" 11.61 90.62 -
MRAN 78 11.68 85.82 -
GAP-RBF 87 577 86.34. -
ELM 49 0 90.23 -
OS-ELM 100 0.01 90.67 -
ILRBF-8P 77 and 8° 209 91.57 -

VC SVM 234° 10.74 68.72 67.99
MRAN 105 10.38 60.24 60.02
GAP-RBF 81 9.87 5894 58.17
ELM 300 0.09 68.01 67.39
OS-ELM 300 0.12 68.95 67.56
ILRBF-BP 258 and 9° 1153 70.17 6943

2Support vectors
PRBF and BP hidden neurons

distance weighting factor 7, width o and number of BP
hidden neurons.

3.3.1 Selection of distance weighting factor T
In this paper, parameter 7T is used for distance weighting,
which can be used to control the interaction potential
between two samples. By changing 7, the nonlinear
mapping of the potential y can be achieved.

To determine a proper choice of 7, in this paper, the
standard deviation is considered to measure the impact
on T. Here, the Twist classification problem is used in
the experiment. Given the number of training samples is
500 and testing samples is 4000; other parameters are
given as follows:

1) Twist 1: Set d; =0.2, d, =0.5, and d5 = 0.8,the
standard deviation in each dimension is 0.3281
and 0.3196, respectively. The width parameter is
set as 0=0.1.

2) Twist 2: Set dy = 2, dy =5, and d5 = 8,the standard
deviation in each dimension is 3.2744 and 3.2689,
respectively. The width parameter is set as o=1

Figure 10a shows that when the samples are not nor-
malized, for the Twist 2 sample set, the standard devi-
ation of each dimension is relatively large; with the
increase of T, the classification performance is reduced.
For the Twist 1 sample set, the standard deviation of
each dimension is relatively small and the sensitivity of
classifying accuracy on T is reduced; however, when the T’
is selected as 200, the maximum classification accuracy is
achieved. Thus, the choice of T should be inversely propor-
tional to the standard deviation of each dimension, that is,
T/ maxi = 1,2...t{a;}, where a; is the standard deviation
of ith dimension and ¢ is the sample dimension. Figure 10b
further indicates that when the samples are normalized to
[-1, 1], the dependence on T is reduced and a relatively
stable classification accuracy can be achieved.

T
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In this paper, for the Double-moon data set, the max-
imum standard deviation of two dimensions is 8.6448,
so a small T should be provided and T is set as T=1.
For the Twist data set, the maximum standard deviation
of two dimensions is 0.3281, and T is set as T = 200.

In high-dimensional space, the sample distribution is
often relatively sparse. The sample dimension is consid-
ered to be inversely proportional to 7, thus 7'« 1/t. In this
paper, for the IS classification problem, the input values in
each dimension are scaled appropriately between 0 and
+1. For the Heart and VC classification problems, the
values in each dimension are between -1 and 1. Thus, the
impact of standard deviation on T is eliminated. Taken
into account the dimension information, for the IS, Heart,
and VC classification problems, a small 7 should be pro-
vided and T'is set as T'= 1.

3.3.2 Impact of the width ¢ on ILRBF-BP

The width parameter ¢ can be used to control the classi-
fication accuracy and generalization performance in a
RBF network. In the ILRBF-BP algorithm, the width is
fixed and selected by cross validation. To reduce the
range of the width parameter value selection, we con-
duct preprocessing for the sample space. If the sample
distribution values of each dimension vary considerably,
such as in the IS data set, the inputs to each algorithm
are scaled appropriately between 0 and +1, whereas the
inputs to each algorithm remain unchanged in the Heart
and VC data sets.

In the proposed incremental learning algorithm, using a
potential function approach to construct RBF hidden neu-
rons incrementally has to complete the effective coverage
of the training sample space. As the samples in high-
dimensional space are relatively sparse, if the width is too
small, it may lead to establish the corresponding Gaussian
kernel at each sample, and the proposed incremental
learning algorithm is invalid. The reason is that although
the potential value of each sample in the training sample
space is measured, in the process of eliminating the
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potential value of the sample, the generated RBF hidden
neurons do not cover other samples, which will lead to a
failure of Eq. (9), and excessive RBF hidden neurons will
lead to the redundancy of the network architecture, which
affects the classification performance of the BP network.
Thus, in the proposed ILRBF-BP algorithm, an effective
kernel width parameter should be provided, which can
generate proper RBF hidden neurons to cover the sample
space. Note that the number of generated RBF hidden
neurons should not be close to the number of the training
samples; otherwise, the proposed algorithm is invalid.

Figure 11a, b shows the impact of width on the overall
classification accuracy and the number of RBF hidden
neurons, respectively. Figure 11 illustrates that for the
Heart and VC data sets, when the width parameter is
small, such as 0=0.1 and 0=0.2, the overall classifica-
tion accuracy is poor, and effective coverage of the input
sample space is not achieved.

When the value of the width parameter is in a suitable
range, the number of generated RBF hidden neurons will
change, but a relatively stable classification accuracy can
be achieved. For the proposed ILRBF-BP algorithm, once
the width is given, it can learn the sample space auto-
matically, and the changes in the width parameter will
affect the coverage of RBF hidden neurons and generate
different RBF hidden neurons. Thus, the incremental
learning strategy can counteract the effect of the width
to some extent.

4 Impact of the number of BP hidden neurons on
ILRBF-BP

In the hybrid RBE-BP network architecture, the nonlin-
ear BP algorithm is used to adjust the weights of the
MLPs, which further improves the classification result.
However, this method results in an increase in the num-
ber of parameters to be selected, especially the selection
of the number of BP hidden neurons. For this problem,
we conduct experiments on the UCI data sets and dis-
cuss the results.
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Figure 12 shows the impact of the number of BP hid-
den neurons on ILRBF-BP. For the Heart, IS, and VC
problems, when the number of BP hidden neurons is
greater or equal to 4, the overall classification accuracy
does not change considerably. For the hybrid RBF-BP
network, the mapping results of RBF hidden neurons are
processed and used for the input of BP network, which
improves the stability of the BP network and effectively
avoids falling into local minima for the BP algorithm.
Thus, the dependence on the number of BP hidden neu-
rons is reduced. When the sample set is more complex,
the momentum term can be used to improve the BP
algorithm further.

5 Conclusions

In this paper, an incremental learning algorithm for
the hybrid RBP-BP (ILRBF-BP) network classifier is
proposed. The ILRBEF-BP algorithm uses a potential
function to measure the density of the training sam-
ple space and incrementally generates RBF hidden
neurons, enabling the effective estimation of the cen-
ter and number of RBF hidden neurons. In this way,
a suitable network size for RBF hidden layer that
matches the complexity of the sample space can be
built up. A hybrid RBF-BP network architecture is
designed to improve classification performance fur-
ther, which shows good stability and generalization
performance. The hybrid network simplifies the selec-
tion of the number of neurons in the BP hidden layer
while further reducing the dependence on space map-
ping in the RBF hidden layer.

The performance of the ILRBF-BP algorithm has been
compared with other batch learning algorithms, such as
SGBP, KM-RBE, SVM, and ELM, and sequential learning
algorithms, such as MRAN, GAP-RBF, and OS-ELM, in
artificial data sets and UCI data sets. The method of
adjusting output label values is used to prevent the

output saturation problem for multi-class classification.
Experiments demonstrate the superiority of the ILRBF-
BP algorithm.

In the future, we will focus on the optimization of
kernel width and imbalanced data classification prob-
lems. In the ILRBF-BP algorithm, the width is fixed and
selected by cross validation and the adjustment of width
parameter will affect the location of next center, as well
as the network size. Therefore, it is necessary to design
an adaptive width adjustment to adapt to the different
regions of the sample space. In addition, for the imbal-
anced data classification problem, the samples in the
boundary regions contain more classification informa-
tion, thus how to measure and select these samples is
particularly important. Further studies are needed to
address these concerns.
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