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Abstract

Big data, characterized by huge volumes of continuously varying streams of information, present formidable
challenges in terms of acquisition, processing, and transmission, especially when one considers novel technology
platforms such as the Internet-of-Things and Wireless Sensor Networks. Either by design or by physical limitations, a
large number of measurements never reach the central processing stations, making the task of data analytics even
more problematic. In this work, we propose Singular Spectrum Matrix Completion (55-MC), a novel approach for the
simultaneous recovery of missing data and the prediction of future behavior in the absence of complete
measurement sets. The goal is achieved via the solution of an efficient minimization problem which exploits the low

rank representation of the associated trajectory matrices when expressed in terms of appropriately designed
dictionaries obtained by leveraging the theory of Singular Spectrum Analysis. Experimental results in real datasets
demonstrate that the proposed scheme is well suited for the recovery and prediction of multiple time series,
achieving lower estimation error compared to state-of-the-art schemes.

1 Introduction

The dynamic nature of Big Data, a feature termed velocity,
is a critical aspect of massive data streams from a signal
processing viewpoint [1]. Due to the high velocity of the
input streams, measurements may be missing with a high
probability. This phenomenon can be attributed to three
factors, namely: (a) intentionally collecting a subset of the
measurements for efficiency purposes; (b) unintentional
subsampling due to desynchronization; and (c) missing
measurements due to communications errors including
packet drops, outages, and congestion. To elaborate on
these factors, we consider data streams associated with
the Internet-of-Things (IoT) paradigm and we focus on
Wireless Sensor Networks (WSNs) since WSNs can serve
as an enabling platform for IoT applications [2, 3]. In the
context of IoT/WSNs, one source of missing measure-
ments is attributed to intentional subsampling, a scenario
where the designer/operator reduces the sampling rate of
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the sensing infrastructure in order to increase the life-
time of the network. The relationship between sampling
rate and lifetime is governed by the limited energy avail-
ability that typically characterizes WSNs. While efficient
compression and aggregation schemes can be employed to
reduce power consumption, reducing the number of mea-
surements is the most efficient approach to achieve this
goal [4].

Even when a specific sampling rate is selected, desyn-
chronization between nodes inevitably leads to a reduc-
tion of the network-wide sampling rate, since nodes that
were supposed to sample at the same time instance end
up acquiring measurements at different instances [5]. This
issue is also closely related to the quantization of the
sampling time, as measurements that were collected in
succession can be mapped to different sampling instances,
introducing missing measurements for particular time
slots. In addition to energy consumption and desynchro-
nization, missing measurements can also be attributed
to network outages and packet losses, which are frequent
in WSNs deployed in harsh and cluttered environments,
causing a large number of packets to fail in reaching their
destination.
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In this work, we investigate a novel paradigm in dis-
tributed data acquisition and centralized reconstruction
and forecasting. The proposed sampling, reconstruction,
and prediction scheme assumes that only a small number
of randomly selected nodes acquire measurements dur-
ing each sampling instance, while nodes that are not in
the sampling group enter a low-power state. Because of
the sampling scheme, in addition to missing data due
to packet losses, the base station only observes a sub-
set of the entire collection of measurements. To address
this issue, we propose the so-called Singular Spectrum
Matrix Completion (SS-MC) scheme, a formal approach
for the recovery of missing values and the forecasting of
future ones from a single or multiple time series mea-
surements. The proposed SS-MC scheme builds upon
the recently proposed framework of Matrix Comple-
tion (MC) [6, 7] for the recovery of low-rank matrices
from a minimal set of measurements by extending the
low-rank matrix recovery framework to the estimation
of missing measurements from appropriately generated
trajectory matrices and combines it with the Singular
Spectrum Analysis framework for exploiting the infor-
mation encoded in training data. Figure 1 presents a
visual overview of the proposed reconstruction scheme,
where incomplete trajectory matrices are recovered, pro-
viding accurate estimations of past and future measure-
ments. In short, the key novelties of this work include the
following:

e A novel efficient paradigm for estimating missing
measurements which extents the recently developed
framework of low-rank matrix recovery by exploiting
inherent correlations without the need for explicit
models.
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e The proposed SS-MC scheme is an integrated approach
for accurately predicting future values even when
only a limited number of past measurements is
available. This is radical departure from traditional
time series forecasting schemes which assume the full
availability of historical data.

e The proposed scheme can naturally handle a single or
multiple time series sources extending traditional
estimation approaches that operate strictly on either
single or multi-source data.

e The performance of the proposed method against
state-of-the-art techniques is evaluated on real data
acquired by a distributed sensor network, which
serves as an illustrative example of a Big Data
application.

The rest of the paper is organized as follows: Section 2
presents an overview of state-of-the-art methods for
energy-efficient data collection. Sections 3 and 4 pro-
vide the description of the two theoretical models we
consider in this work, namely time series modeling
via Singular Spectrum Analysis and missing measure-
ment estimation via the Matrix Completion framework.
Section 5 introduces SS-MC, our proposed recovery and
prediction method, including the mathematical formula-
tion as well as an efficient optimization approach based
on Augmented Lagrange Multipliers. The performance of
the proposed scheme is experimentally validated against
state-of-the-art methods in Section 6 and the paper con-
cludes in Section 7.

2 Related work
Designing efficient techniques for minimizing the cost of
continuous data collection by exploiting data correlations
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Fig. 1 Overview of the proposed sampling, recovery, and prediction scheme. On the left, the three images correspond to the spatial field at three
different time instances, where the star symbols indicate the sensing nodes. During each sampling instance, red stars indicate sampling sensors
while black stars indicate non-sampling sensors. The figure in the center depicts the incomplete measurement matrix where rows correspond to
measurements from a specific sensor and columns to different sampling instances. The red square over the right part of the matrix highlights that in
addition to missing value estimation, our system can generate a number of instances (columns) corresponding to future predictions. Individual
sensor measurements are transformed to trajectory matrices that are introduced to the proposed SS-MC framework. The SS-MC algorithm produces
completed trajectory matrices that can be joined to generate a fully completed (past and future) measurement matrix

Matrix
Predicted
N

Completed

i




Tsagkatakis et al. EURASIP Journal on Advances in Signal Processing (2016) 2016:66

has been extensively studied from multiple aspects and
different perspectives in the context of WSNs [8]. Jindal
and Psounis [8] presented a method for inferring the spa-
tial correlation of WSN data and for generating synthetic
data using a statistical tool called variagriam. Estimating
the sampling field at a given location, based on the avail-
able sensor data at other additional locations is a common
approach for energy efficient sampling. Data imputation
and interpolation techniques, such as Nearest Neighbors
Imputation and Kriging, are two very efficient schemes
for estimating unavailable data [9]. While in interpolation,
one seeks the value of the field in a location where no sen-
sors are present, imputation approaches try to estimate
the value at the sensor location at a time instance where
sampling did not take place. Kriging relies on the semi-
variogram, a statistical tool developed by geo-statisticians
[10] in order to estimate the value of a field at a specific
location, given prior knowledge about the inherent cor-
relations of data from neighboring nodes. In k-Nearest
Neighbors, this objective is reached by using a weighted
nearest neighbor interpolation, where the weight corre-
sponding to each sample is based on statistical informa-
tion indicating the degree of spatial dependence in the
field [11].

Another line of work for data imputation exploits prob-
abilistic models for estimating the missing entries. In
[12], an Expectation Maximization (EM) algorithm is pre-
sented which estimates the parameters of the probability
distribution of the data by iteratively maximizing the like-
lihood of the available data as a function of these param-
eters. In order to increase the robustness of the process,
the authors proposed the regularized EM (RegEM) where
a regularization term is added during the inversion of
the correlation matrix in order to increase the robustness
of the algorithm when more variables are present than
data records. RegEM is currently one of the state-of-the-
art data imputation techniques, and its performance is
compared against the proposed and other schemes in the
experimental section.

Data compression has also been extensively explored in
the context of energy-efficient data collection in WSNs,
based on the premise that data processing is less demand-
ing in terms of energy consumption compared to trans-
mission; hence, energy reduction can be achieved. For
example, the recently proposed framework of Com-
pressed Sensing (CS), a state-of-the-art signal sampling
and compression scheme, was investigated for WSN data
acquisition and aggregation [13, 14] exploiting the spar-
sity of the sampled data when expressed in an appropriate
basis [15]. Distributed compression schemes such as Dis-
tributed Source Coding [16] have also been proposed
for compressing WSN measurements in densely deployed
networks, since utilizing side information from neighbor-
ing nodes can dramatically reduce communication cost.
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The sparse characteristics of correlated datasets have also
been recently considered for transmission of EEG signals
[17, 18]. Although sparsity and CS-based methods can
have a dramatic reduction in transmission power, typically
in these scenarios, the signals are first fully sampled and
then compressed.

While the CS framework requires a particular form of
sampling (incoherent sampling), the related paradigm of
low-rank matrix recovery (MC) assumes a random sam-
pling of the matrix entries. Due to the intuitive sampling,
the MC framework has been considered for a variety
of signal recovery problems including collaborative spec-
trum sensing [19], sensor localization [20, 21], and image
reconstruction problems [22, 23] among others. MC has
been recently explored as a sampling scheme for WSNs
[24-27]. In [24], the authors investigated the scenario
where sensors lie on a uniform rectangular grid and ran-
dom sub-sampling is taking place by each sensor. Our
work bares some similarities with this line of work; how-
ever, we do not pose specific deployment constraints and
we allow the sensors to occupy any location in the sensed
region. Furthermore, our work differs significantly in the
exploitation of prior knowledge in the form of a dictio-
nary, which is utilized during the reconstruction stage.
The utilization of the singular spectrum dictionary allows
for the incorporation of prior knowledge regarding the
data generation process which can significantly improve
the reconstruction performance [25]. Furthermore, the
proposed scheme is able to predict future measurements
in addition to estimating missing past ones.

Low-rank recovery was also recently considered in [28]
where the authors employ MC for the recovery of under-
sampled correlated EEG signals. Our work in this paper
investigates different extensions of MC-based recovery
by considering trajectory matrices and singular spectrum
dictionaries. We develop a generative model where the
sampled data can be jointly represented as a low-rank
linear combination of dictionary elements, spanning the
subspace where data is lying. A similar situation was
recently explored, leading to the low rank representations
(LRR) framework [29] where the objective is to identify a
low rank matrix which can accurately represent the source
data. LRR has been considered for subspace clustering
problems [30]; however, only fully populated matrices
were considered.

In the context of Big Data, matrix and tensor data recov-
ery via an online rank minimization process [31] was
recently proposed for scalable imputation of missing data.
This was achieved by low-dimensional subspace track-
ing through the minimization of a weighted least squares
regression, regularized with a nuclear norm. While this
work bares resemblance to our work, our generative
model does not require a fixed bilinear factorization due
to a pre-specified rank, while it exploits the subspace
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identified by the SSA for simultaneous missing past mea-
surement imputation and future predictions.

3 Analysis of time series data

Singular Spectrum Analysis (SSA) is a model-free method
for time series analysis and forecasting which has been
widely exploited in the analysis of environmental, eco-
nomical, and computer network data [32, 33]. The basic
assumption underlying SSA is that one can approximate
a time series M; of length K from L lagged samples,
by considering the spectral analysis of specialized matri-
ces, called trajectory matrices. Embedding at sampling
instance 7, the first step of SSA, involves the process of
generating a trajectory matrix M; = {my/t = T — L :
T} € RE*L of lag L measurement vectors, where each vec-
torm;y = {m;y|t' = t—K : t} encodes the measurements
corresponding to a sampling window of length K for sen-
sor i. The length K of the time window and the lag L are
two critical parameters encoding important aspects of the
underlying data.

In SSA, once the trajectory matrix of the time series
has been generated, the subsequent step involves the
spectral analysis of the lag-covariance matrix. Formally,
given the matrix M;, the lag-covariance matrix defined as
C = ML'MiT can be used for extracting the eigenvectors
of C which define an L-dimensional subspace where the
time series M; resides, while the associated eigenvalues
encode the variance along the direction of the associated
eigenvector. Alternatively, one can apply the SVD decom-
position to the original trajectory matrix M; in which case
the outputs are two matrices containing the right and left
singular vectors U and V and a diagonal matrix X con-
taining the singular values. Given the SVD decomposition,
the trajectory matrix M; can be expressed as the sum of
rank-1 matrices given by M; = Zj \/Tjujvlr, where each
collection (A, w;, v)) is called eigentriple.

Given the eigenvectors extracted via the SSA, one can
project and reconstruct the time series or perform pre-
diction by employing two steps, eigentriple grouping and
diagonal averaging. Eigentriple grouping aims at arrang-
ing the eigentripes in sets in order to separate additive
components that are exactly or approximate separable,
facilitating the analysis of the eigenvectors. Diagonal aver-
aging aims at translating the recovered trajectory matrix
into a time series according to

K
% m*[m,k —m+1],
m=1

forT—-L—-K<k<L

L
mlkl={ + > m* lmk—m+1], forL <k <K (1)
=1
m T—K+1
1 2 MmMImk-m+1],
m=k—K+1

forK<k<T
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where m*[i,j1= ml[i,j] for L < K and m*[i,j]= ml},i]
otherwise.

It is worth noting that SSA has also been considered
in situations when a number of measurements are miss-
ing. A straightforward approach, also employed here, is to
estimate the eigenvectors and eigenvalues using only the
available measurements during the lag-covariance matrix
generation [34]. SSA has also been considered when miss-
ing measurements are present [35, 36]; however, the pro-
posed methods differ from our work in that we exploit
prior knowledge in the form of a dictionary. Further-
more, the proposed scheme is able to perform missing
value estimation, either past or future, while there is no
constraint associated with the structure of the missing
measurements.

In addition to the analysis of time series, SSA can also
be used as a forecasting mechanism. In recurrent fore-
casting SSA, the time series of known measurements and
unknown components is transformed to its Hankel form
and the linear recurrent relation coefficients are utilized
for forecasting the future values. While typical SSA con-
siders the trajectory matrices associated with a single
time series, the Multivariate Singular Spectrum Analysis
(MSSA) method has been proposed for handling multi-
ple time series [37-39]. In this work, we consider a simple
extension of SSA where instead of analyzing a single tra-
jectory matrix, we consider a compound trajectory matrix
generated by the concatenation of S individual matri-
ces, ie, M = [Mj,My,...,Mg] e RS&xD), Introducing
multiple sources of data can have a dramatic impact in
performance as will be shown in the experimental results,
with at most linear increase in computational complexity.

4 Low-rank matrix completion

The low-rank approximation of a given matrix is a fre-
quent problem in data analysis [40]. The rank of the matrix
indicates the number of linearly independent columns (or
rows), and thus it is a indicator of the degree of linear
correlation that exists within the data. There are mul-
tiple reasons that justify the need for such an analysis.
For example, prior knowledge regarding the linear corre-
lation of the data may suggest that the requested matrix
is low rank. In other situations, noise in the data artifi-
cially increases the rank of the matrix, so reducing the
rank effectively amounts to a denoising process. Assuming
without loss of generality that S = 1, given a noisy (K x L)
matrix M, the objective of low-rank approximation is to
identify a matrix X such that:

mini)znize rank(X)
subjectto | X — M| <€ (2)

where € is the approximation error, related to the noise
power. By utilizing the SVD decomposition M = USV7,
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a low-rank approximation matrix X can be found by X =
UT (S)VT, where D, (S) = diag([ o;(S) — t]4 ) is a thresh-
olding operator that selects only the elements with values
greater than t from the diagonal matrix S and sets the
rest to zero. The effect of this process is that only a
small number of singular values are kept for the low-rank
approximation X of M.

The rank of the matrix is a key property in the recently
proposed framework of Matrix Completion (MC) where
one tries to estimate the (K x L) entries of the matrix M
from a smaller number of g entries, where g < (K x L).
According to MC, such a recovery is possible provided
the matrix is characterized by a small rank (compared
to its dimensions) and enough randomly selected entries
of the matrix are acquired [6, 41]. More specifically, one
can recover an accurate approximation X of the matrix M
from a small number of entries by solving the minimiza-
tion problem:

minimize rank(X)
X

subject to Pa(X) = Po(M) (3)

where Pg is a random sampling operator which records
only a small number of entries from the matrix M, i.e.,
mij, if ijeQ

0, otherwise

PoM) = { (4)
where @ is the sampling set. In the context of WSN
for example, the set Q2 specifies the collection of sensors
that are active at each specific sampling instance. In gen-
eral, to solve the MC problem, the sampling operator P
must satisfy the modified restricted isometry property,
which is the case when uniform random sparse sampling is
employed in both rows and columns of matrix M [42]. The
incoherence of sampling introduced by P with respect
to M guarantees that recovery is possible from a limited
number of measurements.

Although solving the above problem will generate a
low-rank matrix consistent with the observations, rank
minimization is an NP-hard problem. Fortunately, a relax-
ation of the above problem was shown to produce very
accurate approximations, by replacing the rank constraint
by the tractable nuclear norm, which represents the con-
vex envelope of the rank [6]. The minimization in Eq. (4)
can then be reformulated as:

minimize | X]||«
X

subject to P (X) = Po(M) (5)

where the nuclear norm is defined as ||X||x = Y_ |loill1,
i.e., the sum of absolute values of the singular values. Can-
dés and Tao showed that under certain conditions the
nuclear norm minimization in Eq. (5) can estimate the
same matrix as the rank minimization in Eq. (3) with high
probability provided ¢ > CK®/°rlog(K) randomly selected
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entries of the rank r matrix are acquired [7] (assuming
K>1).

To solve the nuclear norm minimization problem, var-
ious approaches have been proposed including Singular
Value Thresholding [43] and the Augmented Lagrange
Multipliers [44], among others. We review the technique
based on the ALM due to its exceptional performance in
terms of both processing complexity and reconstruction
accuracy and since it is used as a basis for the extended
scheme we discuss next.

To express the MC problem in Eq. (5) in the ALM form,
we reformulate it as:

minimize || X]||,
X.E

subjectto X+ E =M
Pa(E) =0 (6)

The additional variable E is introduced in order to
encode the unknown values in the trajectory matrix M,
by restricting the estimation error on the recorded val-
ues only. The optimization encoded in Eq. (6) can be
expressed in an augmented Lagrangian form by defining
the Lagrangian function:

LXEY, 1) = [ X]ls + tr(Y (X =M +E))
"
+§|IX—M+E||,2_~ 7)

where Y is the Lagrange multiplier matrix associated to
the first equality constraint and u is the penalty param-
eter. Minimization of the problem in Eq. (7) involves an
iterative process, where a sequential minimization over all
variables, i.e., X,E, and Y, takes place at each iteration.
This method of iteratively minimizing over each variable
is refereed to as the Alternating Directions Method of
Multipliers (ADMM) [45, 46].

One of the key characteristics of MC is the minimal con-
ditions that are imposed for successful recovery, namely
the incoherence of sampling and the low rank of the
recovered matrix. While a minimal set of requirements
is beneficial in situations where limited prior informa-
tion is available, when such information exists introducing
additional constraints can lead to a significantly better
recovery. In this section, we exploit the temporal dynamic
that time series exhibit in order to enhance typical MC
with an additional dictionary which encodes past behavior
in a proposed SS-MC framework.

5 The SS-MC algorithm

We consider the truncated trajectory matrices M formed
by concatenating the individual trajectory matrices
according to the MSSA approach. The objective of this
work is to consider a generative model that produces the
time series Hankel matrices M according to the factor-
ization M = DL where M may correspond to a single or
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multiple sources. In both cases, our key assumption is that
given a full rank dictionary matrix D obtained through
training data, the coefficient matrix L is approximately
low rank, i.e., the number of significant singular vectors is
much smaller than the ambient dimensions of the matrix.

To apply the low-rank representation scheme on matri-
ces with missing data, the introduction of the random
sub-sampling operator is necessary. Our proposed sam-
pling scheme is a combination of MC and reduced rank
multivariate linear regression and it seeks a low-rank pre-
sentation coefficient matrix L from a small number of
measurements Pg(M). Based on this generative model,
our proposed Singular Spectrum Matrix Completion (SS-
MC) formulation is given by:

miniLmize rank(L)
subject to Po(M) = Pq(DL) (8)

where D is a dictionary of elementary atoms that span
a low-rank data-induced subspace. Figure 2 presents an
example of a real trajectory matrix (left), the represen-
tations coefficients L (center), and the singular value
distribution of the coefficients (right).

5.1 Efficient optimization

Similarly to MC optimization, the problem in Eq. (8) is
NP-hard due to the rank in the objective function and thus
it cannot be solved efficiently for reasonably sized data. A
remedy to this problem is to replace the rank constraint
with the nuclear norm constraint, thus solving:

miniLmize IIL||«
subject to Po(M) = Pq(DL) 9)

A key novelty of our work is that in addition to the low
rank of the matrix, during the recovery, we employ a dic-
tionary for modeling the generative process that produces
the sensed data, as it can be seen in Eq. (9).
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The problem in Eq. (9) can be transformed to a semidef-
inite programming problem and solved using interior
point methods [47, 48]. However, utilizing such off-the-
shelf solvers introduces a very high algorithmic complex-
ity which renders them impractical, even for moderately
sized scenarios. Motivated by the requirements for a data
collection mechanism that is both accurate and efficient,
we reformulate the SS-MC problem in an Augmented
Lagrangian form. By utilizing the ALM formulation for
SS-MC, we can achieve efficient recovery, tailored to the
specific properties of the problem. Introducing the inter-
mediate dummy variables Z and E, Eq. (9) can be written
as:

minimize |L| .

1Ly,

subjectto M =DZ + E

Z=L

Pa(E) =0 (10)
where L,Z, and E are the minimization variables. The
extra variable Z is introduced in order to decouple the
minimization variables by separating the L variable in the
objective function with the Z variable in the first con-
straint. Similar to the ALM formulation for MC in Eq. (7),
E is introduced in order to account for the missing entries
in M. More specifically, the constraint on the error matrix
E is applied only on the available data via the sampling
operator P. The ALM form of Eq. (10) is an unconstrained
minimization given by:

L Z,E Y1, Yo, 1) = LI, + tr (Y] (Pa(M - D2)))
+tr (YZT (Z - L))

+ %(”PQ(M —DZ)| + IZ— L)
(11)
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Fig. 2 Example of the generative process of a real trajectory matrix from the Intel-Berkeley dataset. The matrix on the left is the Hankel matrix generated
by a sensor for a given set of window and lag values. By utilizing the SSA-based dictionary, the mapping of the Hankel matrix results in an extremely
low rank representation matrix shown in the middle, where a small number of singular values capture most of the signal energy, as shown in the
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where Y; and Y, are Lagrange multiplier matrices.
The solution can be found by iteratively minimizing
Eq. (11) with respect to each of the variables via an
ADMM approach. Formally, the minimization problem
with respect to L is given by:

Lk+D min £ (Luo’ z0 E®, y® y® M(k))

(I1Z - L|2)

— min [L|lx + ¢ (Yg(z _ L)) + %

1 1
= min ;nLn* +5IL—(Z + Yo /w2, (12)

The sub-problem in Eq. (12) is a nuclear norm minimiza-
tion problem and can be solved very efficiently by the Sin-
gular Value Thresholding operator [43]. The minimization
with respect to Z is given by:

Z0+D) min r (L(k+1)’ 20, g0 yh y®, M(k))
— min & (Y{ (Po(M) — PQ(DZ))) Tt (YZT (Z - L))
"
+ 5 (IPa(M = DZ)|I}: + | Z ~ LIIE) - (13)

Calculating the gradient of the expression in Eq. (13), we
obtain:

= =D Y1—Y2+M<D (M—E—DZ)—Z+L)
(14)

which after setting it equal to zero provides the update
equation for Eq. (14) given by:

2040 = (1+ DTD)_1 (D7 (M® —E®) 4+ L®
n (DTY<1/<> —ng)) /M(k)) .
(15)

Furthermore, the augmented Lagrangian in Eq. (11) has
to be minimized with respect to E, i.e.,

ECD = min £ (L(k+1), z &+ g Y1<k>, Y2<k>, M(k))
Pao(M)=0

= min Y;+ u(E-—M+DZ) (16)
Pa(M)=0

which provides the update equation for Eq. (16) that is
given by:

1
EFD = Py (M - pz&D 4 Yk) 17)

ptho 1
where the notation Pg is used to restrict the error esti-
mation only on the measurements that do not belong
to the sampling set. Last, we perform updates on the
two Lagrange multipliers Y; and Y. The steps at each
iteration of the optimization are shown in Algorithm 1.

Page 7 of 14

Algorithm 1: Singular Spectrum Matrix Completion
(SS-MCQ)

Input: The subsampled trajectory matrix

M,’j, (l,]) € Q,

The dictionary of examples D,

The error tolerance threshold,

The maximum number of iterations limit.
Output: The representation coefficients matrix L and
the estimated matrix X = DL.

1: initialization
L°=0,E9=0,Z9=0,k=0,a=1.1

2. while error > threshold or iterations < limit do

3. Minimize with respect to L to obtain L&+

(U,S,V) =SVD(Z + Yz /1)
L&D — yp, (S)VT

4 Minimize with respect to Z to obtain Z&+1
z®&) — 14+ DDy DT M - E) +L
+DY1 - Ya)/1)

5. Minimize with respect to E to obtain E*+1
1
(k+1) _ _
E = Pg <M DZ + M(k)Yl)

6:  Update the Lagrangian multipliers

ng+1) _ Y(lk) + “(k) (M — pz&+D _ E(k+1))
Y;k+1) — Y;k) + p®0(Z&+D _ g ktD)y

set k<«—k+1
7. end while

Due to its numerous applications, the ADMM method
has been extensively studied in the literature for the case
of two variables [45, 46] where it has been shown that
under mild conditions regarding the convexity of the
cost functions, the two-variables ADMM converges at
a rate O(1/r) [49]. Although extending the convergence
properties to a larger number of variables has not been
shown in general, recently the convergence properties
of ADMM for a sum of two or more non-smooth con-
vex separable functions subject to linear constraints were
examined [50].

The proposed minimization scheme in Eq. (11) satisfies
a large number of the constraints suggested in [50] such
as the convexity of each sub-problem, the strict convex-
ity and continuous differentiability of the nuclear norm,
the full rank of the dictionary, and the size of the step for
the dual update o, while empirical evidence suggests that
the closed form solution of each sub-problem allows the
SS-MC algorithm to converge to an accurate solution in a
small number of iterations.
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5.2 Singular spectrum dictionary

In this work, we investigate the utilization of prior knowl-
edge for the efficient reconstruction of severely under-
sampled time series data. To model the data, we follow
a generative scheme where the full collection of acquired
measurements is encoded in the trajectory matrix M €
REXL M is assumed to be generated from a combina-
tion of a dictionary D € RX*K and a coefficient matrix
L € RKxL according to M = DL, where we assume that
K < L. This particular factorization is related to SVD
by M = DL = U(SVT) where the orthonormal matrix
D = U is a basis for the subspace associated with the
column space of M, while L = SV is a low-rank repre-
sentation matrix encoding the projection of the trajectory
matrix onto this subspace.

This particular choice of dictionary D implies a spe-
cific relationship between the spectral characteristics of
the trajectory matrix M and the low-rank representation
matrix L. To understand this relationship, we consider
the spectral decomposition of each individual matrix in
the form D = UG;R™! and L = RGyV* The matri-
ces U,Rand V are unitary while G; and G; are diag-
onal matrices containing the singular values of the D
and L, respectively. The particular factorization permits
us to utilize the product SVD [51, 52] and expresses
the singular value decomposition of the product accord-
ing to the expression DL = U(G;Gy)V*, where the
singular values of the matrix product are given by the
product of the singular values of the corresponding
matrices.

In this work, we consider orthogonal dictionaries,
as opposed to overcomplete ones. Orthogonality of
the dictionary guarantees that the vectors encoded
in the dictionary span the low-dimensional subspace
and therefore the representation of the measurements
is possible. Furthermore, an orthonormal dictionary,
such as the one considered in this work, is char-
acterized by G; = I, leaving Gy responsible for
the representation. We target exactly Gy in our prob-
lem formulation by seeking a low-rank representation
matrix L.

In our experimental results, we consider sets of train-
ing data associated with fully sampled time series from the
first days of each experiment for generating the dictionar-
ies. The subspace identified by the fully sampled data is
used for the subsequent recovery of past measurements
and prediction of future ones. Alternatively, the dictio-
nary could be updated during the course of the SS-MC
application via an incremental subspace learning method
[53, 54]. We opted out from an incremental subspace
learning since although it can potentially lead to better
estimation, it is also associated with increased computa-
tional load and the higher probability of estimation drift
and lower performance.
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5.3 Networking aspects of SS-MC

In the context of IoT applications utilizing WSN infras-
tructures, communication can take place among nodes,
but most typically between the nodes and the base station
where data analytics are extracted. This communication
can be supported (a) by a direct wireless link between the
nodes and the sink/base station; (b) via appropriate paths
that allow multi-hop communications; or (c) via more
powerful cluster heads what forward the measurements to
the base station.

For the multi-hop scheme, equal weight of each sam-
ple (democratic sampling) implies that no complicated
processing needs to take place by the resource limited
forwarding nodes. Furthermore, for high-performance
WSNs, where point-to-point communication between
nodes is available and processing capabilities are suf-
ficient, nodes could perform reconstruction of a local
neighborhood thus offering advantages similar to other
distributed estimation schemes [55].

From a practical point-of-view, we argue that recov-
ery and prediction of measurements from low sampling
rates offer numerous advantages. First, it saves energy by
reducing the number of samples that have to be acquired,
processed, and communicated thus increasing the life-
time of the network. The proposed sampling scheme also
reduces the frequency of sensor re-calibrations for sen-
sors that perform complex signal acquisition, including
chemical and biological sampling. As a result, higher qual-
ity measurements and therefore more reliable estimation
of the field samples can be achieved. Furthermore, the
method increases robustness to communication errors
by estimating measurements included in lost or dropped
packets, without the need for retransmission. Last, our
scheme does not require explicit knowledge of node loca-
tions for the estimation of the missing measurements,
since the incomplete measurement matrices and the cor-
responding trajectory matrices are indexed by the sensor
id, thus allowing greater flexibility during deployment.

6 Experimental results

To evaluate the performance of the proposed low-rank
reconstruction and prediction scheme, we consider real
data from the Intel Berkeley Research Lab dataset! [56]
and the SensorScope Grand St-Bernard dataset® [57]. The
former dataset contains the recordings of 54 multimodal
sensors located in an indoor environment over a 1-month
period, while the latter contains multimodal measure-
ments from 23 stations deployed at the Grand-St-Bernard
pass between Switzerland and Italy.

In both cases, we analyze temperature measurements
as an exemplary modality, while we exclude failed sen-
sors from the recovery process. Unless stated otherwise,
in all cases, we fix the SSA parameters, K = 50 and
L = 100, and we train using a single day’s worth of data
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while testing on the five consecutive ones. The threshold
7 for the singular value thresholding operator is set to pre-
serve 90 % of the signals’ energy, while the parameter
was set to 0.01 through a validation process, although the
specific value had a minimal impact in performance.

To evaluate the performance, we consider three state-
of-the-art methods and we compare them to the proposed
SS-MC. More specifically, we evaluate the performance of
the ADMM version of MC [44], the Knn-imputation [58],
and the RegEM [12]. The reconstruction error is mea-
sured by the normalized mean squared error between the
true M and the estimated X trajectory matrices given by
Y IM-X|?

Mz -

6.1 Recovery with respect to measurement availability
The objective of this subsection is to present the recovery
capabilities of the proposed SS-MC and state-of-the-art
methods with respect to the availability of measurements,
i.e., the sampling rate.

The two plots shown in Fig. 3 present the reconstruction
error for the Intel-Berkeley data at 20 % (top) and 50 %
(bottom) sampling rates, averaged over all sensing nodes.
Naturally, one can see that increasing the sampling rate
has a positive effect on all methods. Nevertheless, we also
observe that not all sampling instances are equally difficult
to estimate and that the reconstruction error exhibits a
periodic trend across sampling instances. These variations
are attributed to the significant changes in the environ-
mental conditions due to the transition from nighttime to
daytime.

Comparing the four methods, we observe that under
all measurement availability scenarios, the proposed SS-
MC scheme typically achieves the lowest reconstruction
error and exhibits the most stable performance. The per-
formance of SS-MC is closely followed, especially in low
sampling rates, by RegEM which also exhibits a very
stable performance, while on the other hand, MC and
Knn-impute are more sensitive to the sampling instance,
exhibiting a more erratic behavior.

To further illuminate the behavior of each method, we
consider a large set of sampling instances and present
the averaged recovery performance as a function of the
sampling rate in Fig. 4 for Intel-Berkeley (top) and Sen-
sorScope (bottom) data. Regarding the performance on
the Intel-Berkeley dataset, we observe that the proposed
SS-MC and RegEM achieve comparable performance,
much better than typical MC and Knn-impute. An inter-
esting observation is that while SS-MC, RegEM, and
Knn-impute all exhibit a monotonic reduction in recon-
struction error at higher sampling rates, MC reaches a
performance plateau around a 25 % sampling rate. This
phenomenon is attributed to the rank constrains of MC
leading to a low rank estimation which causes an incorrect
estimation of missing measurements.
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Fig. 3 Reconstruction error at 20 % (top) and 50 % (bottom) sampling
rates for the Intel-Berkeley dataset

Regarding the performance on the SensorScope data,
one can observe that in this case RegEM achieves a
significantly better performance compared to the other
methods, followed by MC at low sampling rates and SS-
MC at large ones. Similar to the behavior observed for
the Intel-Berkeley data, MC again reaches a performance
plateau while the other methods achieve a monotonically
reducing reconstruction error. Note that although RegEM
achieves the lowest reconstruction error, it is also the most
computationally demanding of the four methods.

6.2 Recovery from multiple sources

In this subsection, we investigate the recovery capabilities
of the SS-MC and state-of-the-art method as a function
of the number of sensors/sources that are simultane-
ously considered. Figure 5 presents the reconstruction
error for the multiple source/sensor cases, where 2 (top),
and 5 (bottom) sources from the Intel-Berkeley dataset
are simultaneously considered. Comparing these results
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with the results shown Fig. 4 (top), one can observe that
increasing the number of sources that a method consid-
ers simultaneously can have a different effect for each
method, although no method appears to be able to exploit
the additional sources of data.

State-of-the-art methods, like Knn-impute and RegEM,
not only appear to be unable to exploit the additional
sources of data, but introducing the additional sources
leads to an increase in reconstruction error for a given
sampling rate. On the other hand, typical MC is unaf-
fected by the different scenarios, exhibiting the same
plateau in behavior regardless of the number of sources
under consideration. Unlike the other methods, the pro-
posed SS-MC is able to better handle the additional data.
Although applying SS-MC with multiple sources of data
does not lead to better performance, the proposed method
is better in handling such complex data streams, offer-
ing the lowest reconstruction error among all methods
considered.
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Fig. 4 Average reconstruction error for the Intel-Berkeley (top) and Fig. 5 Reconstruction error using 2 (top), and 5 (bottom) sources of
the SensorScope (bottom) platforms the Intel-Berkeley dataset

The situation differs however for the SensorScope data
shown in Fig. 6 for 2 (top) and 5 (bottom) sources,
respectively. In this case, Knn-input appears to suffer a
significant reduction in reconstruction quality due to the
additional data sources, leading to a notable increase in
reconstruction error compared to the single stream case.
RegEM and typical MC also do not appear to benefit from
the additional sources. In contrast to these methods, the
proposed SS-MC achieves a more robust behavior leading
to a significantly better behavior compared to the single
source case. The improvement is more dramatic when
moving from the single to two sources; however, intro-
ducing additional sources has a positive effect on recovery
performance.

In general, for the state-of-the-art methods we consider,
experimental results suggest that introducing multiple
correlated sources does not necessarily aid in the recov-
ery performance, while under different scenarios, the
aggregation of multiple sources may also introduce pro-
hibitively large communication overheads. On the other
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Fig. 6 Reconstruction error using 2 (top) and 5 (bottom) sources of
the SensorScope dataset

hand, the proposed SS-MC can smoothly transition from
the single sensor/source case to multiple sensors/sources
achieving compelling gains in certain scenarios.

6.3 Joint recovery and prediction

In this set of results, we consider the more challenging
scenario where the method must simultaneously recover
and predict future measurements. The results for the
SensorScope data shown in Fig. 7 demonstrate the com-
petitive performance of the proposed SS-MC method
compared to state-of-the-art methods for both 10 (top)
and 20 (bottom) look-ahead steps. The benefits of our
method are more clearly shown for the short-term pre-
diction (top) while for the long term, we observe a similar
behavior for all methods. Naturally, the performance is
significantly better for the short term compared to the
long term; however, we observe that both the MC and
the SS-MC approaches achieve a very stable performance

L —»—MC i
012 —&—Sss-MC
RegEM
—— Knn-impute
§ 01 b
G
c
2
ki
2
b7
c
o
(3]
(]
©
0.02 . L . . . . .
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sampling rate
1\ —%—MC |
012 —&—SS-MC
RegEM
—— Knn-impute
s
G
c
.0
B
2
@
=
o
(4]
(]
4
0.04 b
0.02 L . . . . L

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sampling rate

Fig. 7 Joint recovery and prediction for 10 (top) and 20 (bottom)
look-ahead steps on SensorScope data

in both cases, suggesting that the low-rank regularization
can provide strong benefits in this challenging scenario.

Figure 8 illustrates the recovery/estimation perfor-
mance on the Intel-Berkeley data where we observe that
the proposed SS-MC method achieves a dramatic reduc-
tion in reconstruction error, clearly surpassing the other
methods in both short-term and long-term predictions.
Similar to the SensorScope data, both MC and SS-MC
achieve a very stable performance while SS-MC is much
less affected by the increase in prediction horizon. Con-
sidering the results for both cases, we can conclude that
SS-MC is an excellent choice for the challenging problem,
achieving a very low prediction error even when only a
small subset of measurements is available.

6.4 Performance with respect to computational resources
The results reported in the previous subsections assume
that a single day’s worth of data is utilized during the train-
ing phase where the dictionary D is obtained. Here, we
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investigate the recovery capability of the proposed SS-MC
method as a function of the amount of training data, i.e.,
the number of days used for training.

Figure 9 presents the reconstruction error for the Intel-
Berkeley data using 1, 2, and 3 days of training data. The
results clearly indicate that introducing more data from
training has limited impact on the reconstruction perfor-
mance. When one considers that the process of collecting
fully sampled data can have a dramatic impact on the life-
time of the network, we can conclude that given a limited
set of representative data suffices for SS-MC.

This aspect is critical since we assume that the training
data is fully populated without any missing measure-
ments. To achieve the acquisition of such training data
requires extra care in terms of communication robust-
ness as well as a larger energy consumption due to full
sampling.

In addition to the amount of the training data that is
required for a given performance, we also investigated the
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Fig. 9 Reconstruction error for different training set sizes on the
Intel-Berkeley dataset

SS-MC recovery as a function of the number of itera-
tions and the sampling rate. The results shown in Fig. 10
demonstrate that the quality of the recovery is affected
by the availability of the measurements where for larger
sampling rates, a smaller number of iterations is required.
Despite this relationship, however, we also observe that
there is a clear limit on the performance gain above
50 iterations. This is the number of iterations we have
assumed in our experiments unless the approximation
error drops below 1074,

The requirements of Big Data processing mandate algo-
rithm that can achieve high quality performance with
minimal processing requirements. To better illustrate the
computational requirements for each method, Table 1
presents the processing time (in seconds) for the proposed
(SS-MC) and the three state-of-the-art methods under
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Fig. 10 Reconstruction error as a function of sampling rate and
iteration number
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Table 1 Computational time for different number of sensors and
measurement availability

25% 50 % 75 %
1 5 1 5 1 5
SS-MC 0.188 0.950 0.137 0.719 0.087 0.358
MC 0.101 0.140 0.101 0.146 0.103 0.152
RegEM 0.092 0.137 0.098 0.407 0.154 1.194
Knn 0.153 0.866 0.102 0.632 0.051 0.275

different sampling rates when considering a single (1) or
multiple (5) sources.

Table 1 clearly demonstrates the relationships of each
method with respect to the sampling rate where we
observe that for the proposed SS-MC method, increas-
ing the sampling rate leads to lower processing time for
both the single and the multiple source cases. On the
other hand, MC requires a fixed processing time indepen-
dently of the number of available measurements, while
the effect of the number of sources is minimal. RegEM’s
processing time is increasing as the number of available
measurements increase due to the inner mechanics of the
algorithm which require multiple regression to take place.
Last, the Knn-impute method exhibits a decrease in pro-
cessing time with respect to the measurement availability
and an increase associated with multiple sources. Over-
all, the proposed SS-MC exhibits a stable and predicable
performance, achieving a very good trade-off between
processing requirements and reconstruction quality.

7 Conclusions

Acquiring, transmitting, and processing Big Data presents
numerous challenges due to the complexity and volume
issues among others. The situation becomes even more
complicated when one considers data sources associated
with the Internet-of-Things paradigm, where component
and architecture limitations, including processing capa-
bilities, energy availability, and communication failures,
must also be considered. In this work, we proposed a dis-
tributed sampling-centralized recovery scheme where due
to various design choices and physical constraints, only a
small subset of the entire set of measurements is collected
during each sampling instance. The proposed SS-MC
approach exploits the low-rank representation of appro-
priately generated trajectory matrices, when expressed in
the subspace associated with dictionaries learned using
training data, in order to recover missing measurements
as well as predict future values. The recovery and pre-
diction procedures are implemented via an efficient opti-
mization based on the augmented Lagrange multipliers
method. Experimental results on real data from the Intel-
Berkeley and the SensorScope datasets validate the mer-
its of the proposed scheme compared to state-of-the-art
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methods like typical matrix completion, RegEM, and Knn-
imputation, both in terms of pure reconstruction as well
as in the demanding case of simultaneous recovery and
prediction.

Endnotes
'http://db.csail. mit.edu/labdata/labdata.html.
Zhttp://Icav.epfl.ch/page-86035-en.html.
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