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Abstract

The problem of 1-bit compressive sampling is addressed in this paper. We introduce an optimization model for
reconstruction of sparse signals from 1-bit measurements. The model targets a solution that has the least �0-norm
among all signals satisfying consistency constraints stemming from the 1-bit measurements. An algorithm for solving
the model is developed. Convergence analysis of the algorithm is presented. Our approach is to obtain a sequence of
optimization problems by successively approximating the �0-norm and to solve resulting problems by exploiting the
proximity operator. We examine the performance of our proposed algorithm and compare it with the renormalized
fixed point iteration (RFPI) (Boufounos and Baraniuk, 1-bit compressive sensing, 2008; Movahed et al., A robust
RFPI-based 1-bit compressive sensing reconstruction algorithm, 2012), the generalized approximate message passing
(GAMP) (Kamilov et al., IEEE Signal Process. Lett. 19(10):607–610, 2012), the linear programming (LP) (Plan and
Vershynin, Commun. Pure Appl. Math. 66:1275–1297, 2013), and the binary iterative hard thresholding (BIHT) (Jacques
et al., IEEE Trans. Inf. Theory 59:2082–2102, 2013) state-of-the-art algorithms for 1-bit compressive sampling
reconstruction.
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1 Introduction
Compressive sampling is a recent advance in signal acqui-
sition [1, 2]. It provides a method to reconstruct a sparse
signal x ∈ R

n from linear measurements

y = �x, (1)

where� is a givenm×nmeasurement matrix withm < n
and y ∈ R

m is the measurement vector acquired. The
objective of compressive sampling is to deliver an approx-
imation to x from y and �. It has been demonstrated that
the sparse signal x can be recovered exactly from y if� has
Gaussian i.i.d. entries and satisfies the restricted isometry
property [2]. Moreover, this sparse signal can be identi-
fied as a vector that has the smallest �0-norm among all
vectors yielding the samemeasurement vector y under the
measurement matrix �.
However, the success of the reconstruction of this sparse

signal is based on the assumption that the measurements
have infinite bit precision. In realistic settings, the mea-
surements are never exact and must be discretized prior
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to further signal analysis. In practice, these measurements
are quantized, a mapping from a continuous real value to
a discrete value over some finite range. As usual, quanti-
zation inevitably introduces errors in measurements. The
problem of estimating a sparse signal from a set of quan-
tized measurements has been addressed in recent litera-
ture. Surprisingly, it has been demonstrated theoretically
and numerically that 1-bit per measurement is enough
to retain information for sparse signal reconstruction. As
pointed out in [3, 4], quantization to 1-bit measurements
is appealing in practical applications. First, 1-bit quan-
tizers are extremely inexpensive hardware devices that
test values above or below zeros, enabling simple, effi-
cient, and fast quantization. Second, 1-bit quantizers are
robust to a number of non-linear distortions applied to
measurements. Third, 1-bit quantizers do not suffer from
dynamic range issues. Due to these attractive properties
of 1-bit quantizers, in this paper, we will develop efficient
algorithms for reconstruction of sparse signals from 1-bit
measurements.
The 1-bit compressive sampling framework originally

introduced in [3] is briefly described as follows. Formally,
it can be written as
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y = A(x) := sign(�x), (2)

where the function sign(·) denotes the sign of the vari-
able, element-wise, and zero values are assigned to be +1.
Thus, the measurement operator A, called a 1-bit scalar
quantizer, is a mapping from R

n to the Boolean cube
{−1, 1}m. Note that the scale of the signal has been lost
during the quantization process. We search for a sparse
signal x� in the unit ball of Rm such that the sparse signal
x� is consistent with our knowledge about the signal and
measurement process, i.e., A(x�) = A(x).
The problem of reconstructing a sparse signal from its

1-bit measurements is generally non-convex, and there-
fore it is a challenge to develop an algorithm that can
find a desired solution. Nevertheless, since this problem
was introduced in [3] in 2008, there are several algorithms
that have been developed for attacking it [3, 5–7]. Among
those existing 1-bit compressive sampling algorithms, the
binary iterative hard thresholding (BIHT) [4] exhibits its
superior performance in both reconstruction error and
as well as consistency via numerical simulations over the
algorithms in [3, 5].When there are a lot of sign flips in the
measurements, a method based on adaptive outlier pur-
suit for 1-bit compressive sampling was proposed in [7–9].
By formulating 1-bit compressive sampling problem in
Bayesian terms, a generalized approximate message pass-
ing (GAMP) [10] was developed to the problem of recon-
struction from 1-bit measurements. The algorithms in
[4, 7] require the sparsity of the desired signal to be given
in advance. This requirement, however, is hardly satisfied
in practice. By keeping only the sign of the measurements,
the magnitude of the signal is lost. The models associated
with the aforementioned algorithms seek sparse vectors x
satisfying consistency constraints (2) in the unit sphere.
As a result, these models are essentially non-convex and
non-smooth. In [6], a convexminimization problem is for-
mulated for reconstruction of sparse signals from 1-bit
measurements and is solved by linear programming. The
details of the above algorithms will be briefly reviewed in
the next section.
In this paper, we introduce a new �0 minimization

model over a convex set determined by consistency con-
straints for 1-bit compressive sampling recovery and
develop an algorithm for solving the proposedmodel. Our
model does not require prior knowledge on the sparsity
of the signal. Our approach for dealing with our proposed
model is to obtain a sequence of optimization problems
by successively approximating the �0-norm and to solve
resulting problems by exploiting the proximity operator
[11]. Convergence analysis of our algorithm is presented.
This paper is organized as follows. In Section 2, we

review and comment current 1-bit compressive sampling
models and then introduce our own model by assimilat-
ing advantages of existing models. Heuristics for solving

the proposed model are discussed in Section 3. Conver-
gence analysis of the algorithm for the model is studied
in Section 4. A numerical implementable algorithm for
the model is presented in Section 5. The performance of
our algorithm is demonstrated and compared with the
BIHT, RFPI, LP, and GAMP in Section 6. We present our
conclusion in Section 7.

2 Models for one-bit compressive sampling
In this section, we begin with reviewing existing models
for reconstruction of sparse signals from 1-bit measure-
ments. After analyzing these models, we propose our own
model that assimilates the advantages of the existing ones.
Using matrix notation, the 1-bit measurements in (2)

can be equivalently expressed as

Y�x ≥ 0, (3)

where Y := diag(y) is an m × m diagonal matrix whose
ith diagonal element is the ith entry of y. The expression
Y�x ≥ 0 in (3) means that all entries of the vector Y�x
are no less than 0. Hence, we can treat the 1-bit mea-
surements as sign constraints that should be enforced in
the construction of the signal x of interest. In what fol-
lows, Eq. (3) is referred to as sign constraint or consistency
condition, interchangeably.
The optimization model for reconstruction of a sparse

signal from 1-bit measurements in [3] is

min ‖x‖1 s.t. Y�x ≥ 0 and ‖x‖2 = 1, (4)

where ‖ · ‖1 and ‖ · ‖2 denote the �1-norm and the �2-
norm of a vector, respectively. In model (4), the �1-norm
objective function is used to favor sparse solutions, the
sign constraint Y�x ≥ 0 is used to impose the consistency
between the 1-bit measurements and the solution, and the
constraint ‖x‖2 = 1 ensures a nontrivial solution lying on
the unit �2 sphere.
Instead of solving model (4) directly, a relaxed version of

model (4)

min
{

λ‖x‖1 +
m∑
i=1

h((Y�x)i)
}

s.t. ‖x‖2 = 1 (5)

was proposed in [3]. By employing a variation of the fixed
point continuation algorithm in [12], an algorithm, which
is called renormalized fixed point iteration (RFPI), was
developed for solvingmodel (5) efficiently. Here, λ is a reg-
ularization parameter and h is chosen to be the one-sided
�1 (or �2) function, defined at z ∈ R as follows

h(z) :=
{ |z| (

or 1
2z

2) , if z < 0;
0, otherwise. (6)
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We remark that the one-sided �2 function was adopted
in [3] due to its convexity and smoothness properties that
are required by a fixed point continuation algorithm.
In [5], a restricted-step-shrinkage algorithm was pro-

posed for solving model (4). This algorithm is similar in
sprit to trust-region methods for nonconvex optimiza-
tion on the unit sphere and has a provable convergence
guarantees.
Binary iterative hard thresholding (BIHT) algorithms

were recently introduced for reconstruction of sparse
signals from 1-bit measurements in [4]. The BIHT algo-
rithms are developed for solving the following constrained
optimization model

min
m∑
i=1

h((Y�x)i) s.t. ‖x‖0 ≤ s and ‖x‖2 = 1,

(7)

where h is defined by Eq. (6), s is a positive integer,
and the �0-norm ‖x‖0 counts the number of non-zero
entries in x. Minimizing the objective function of model
(7) enforces the consistency condition (3). The BIHT algo-
rithms for model (7) are a simple modification of the itera-
tive thresholding algorithm proposed in [13]. It was shown
numerically that the BIHT algorithms perform signifi-
cantly better than the other aforementioned algorithms
in [3, 5] in terms of both reconstruction error as well as
consistency. Numerical experiments in [4] further show
that the BIHT algorithm with h being the one-sided �1
function performs better in low noise scenarios while the
BIHT algorithm with h being the one-sided �2 function
performs better in high noise scenarios. For the measure-
ments having noise (i.e., sign flips), a robust method for
recovering signals from 1-bit measurements using adap-
tive outlier pursuit was proposed in [7], noise-adaptive
renormalized fixed point iterative (NARFPI) was intro-
duced in [8], and noise-adaptive restricted step shrinkage
(NARSS) was developed in [9].
The algorithms reviewed above for 1-bit compressive

sampling are developed for optimization problems having
convex objective functions and non-convex constraints. In
[6], a convex optimization program for reconstruction of
sparse signals from 1-bit measurements was introduced as
follows:

min ‖x‖1 s.t. Y�x ≥ 0 and ‖�x‖1 = p, (8)

where p is any fixed positive number. The first constraint
Y�x ≥ 0 requires that a solution to model (8) should
be consistent with the 1-bit measurements. If a vector x
satisfies the first constraint, so is ax for all 0 < a < 1.
Hence, an algorithm for minimizing the �1-norm by only
requiring consistency with the measurements will yield
the solution x being zero. The second constraint ‖�x‖1 =
p is then used to prevent model (8) from returning a

zero solution, thus resolves the amplitude ambiguity. By
taking the first constraint into consideration, we know
that ‖�x‖1 = 〈y,�x〉; therefore, the second constraint
becomes 〈��y, x〉 = p. This confirms that both objective
function and constraints of model (8) are convex. It was
further pointed out in [6] that model (8) can be cast as a
linear program. The corresponding algorithm is referred
to as LP. As comparing model (8) with model (4), both
the constraint ‖x‖2 = 1 in model (4) and the constraint
‖�x‖1 = p in model (8), the only difference between both
models, enforce a non-trivial solution. However, as we
have already seen, model (8) with the constraint ‖�x‖1 =
p can be solved by a computationally tractable algorithm.
Let us further comment on models (7) and (8). First,

the sparsity constraint in model (7) is impractical since
the sparsity of the underlying signal is unknown in gen-
eral. Therefore, instead of imposing this sparse constraint,
we consider to minimize an optimization model having
the �0-norm as its objective function. Second, although
model (8) can be tackled by efficient linear programming
solvers and the solution of model (8) preserves the effec-
tive sparsity of the underlying signal (see [6]), the solu-
tion is not necessarily sparse in general as shown in our
numerical experiments (see Section 6). Motivated by the
aforementioned models and the associated algorithms, we
plan in this paper to reconstruct sparse signals from 1-
bit measurements via solving the following constrained
optimization model

min ‖x‖0 s.t. Y�x ≥ 0 and ‖�x‖1 = p, (9)

where p is again an arbitrary positive number. This model
has the �0-norm as its objective function and inequal-
ity Y�x ≥ 0 and equality ‖�x‖1 = p as its convex
constraints.
We remark that the actual value of p is not important as

long as it is positive. More precisely, suppose that S and
S	 are two sets collecting all solutions of model (9) with
p = 1 and p = p	 > 0, respectively. If x ∈ S , that is,
Y�x ≥ 0 and ‖�x‖1 = 1, then, by denoting x	 := p	x,
it can be verified that ‖x	‖0 = ‖x‖0, Y�x	 ≥ 0, and
‖�x	‖1 = p	. That indicates x	 ∈ S	. Therefore, we have
that p	S ⊂ S	. Conversely, we can show that S	 ⊂ p	S
by reverting above steps. Hence, p	S = S	. Without loss
of generality, the positive number p is always assumed to
be 1 in the rest part of the paper.
We compare model (7) and our proposed model (9) in

the following result.

Proposition 1. Let y ∈ R
m be the 1-bit measurements

from an m × n measurement matrix � via Eq. (2) and let
s be a positive integer. Assume that the vector x ∈ R

n is a
solution to model (9). Then, model (7) has the unit vector



Shen and Suter EURASIP Journal on Advances in Signal Processing  (2016) 2016:71 Page 4 of 16

x
‖x‖2 as its solution if ‖x‖0 ≤ s; otherwise, model (7) can
not have a solution satisfying the consistency constraint if
‖x‖0 > s.

Proof. Since the vector x is a solution to model (9), then
x satisfies the consistency constraint Y�x ≥ 0. Hence, it,
together with definition of h in (6), implies that

m∑
i=1

h
((

Y�
x

‖x‖2
)
i

)
= 0.

We further note that
∥∥∥ x

‖x‖2
∥∥∥
0

= ‖x‖0 and
∥∥∥ x

‖x‖2
∥∥∥
2

= 1.
Hence, the vector x

‖x‖2 is a solution of model (7) if ‖x‖0 ≤
s.
On the other hand, if ‖x‖0 > s then all solutions to

model (7) do not satisfy the consistency constraint. Sup-
pose this statement is false. That is, there exists a solution
of model (7), say x�, such that Y�x� ≥ 0, ‖x�‖0 ≤ s, and
‖x�‖2 = 1 hold. Set x	 := x�

‖�x�‖1 . Then ‖x	‖0 = ‖x�‖0 ≤
s, Y�x	 ≥ 0, and ‖�x	‖1 = 1. Since ‖x	‖0 < ‖x‖0, it
turns out that x is not a solution of model (9). This contra-
dicts our assumption on the vector x. This completes the
proof of the result.

From Proposition 1, we can see that the sparsity s for
model (7) is critical. If s is set too large, a solution to
model (7) may not be the sparsest solution satisfying
the consistency constraint; if s is set too small, solutions
to model (7) cannot satisfy the consistency constraint.
In contrast, our model (9) does not require the sparsity
constraint used in model (7) and delivers the sparsest
solution satisfying the consistency constraint. Therefore,
these properties make our model more attractive for 1-bit
compressive sampling than the BIHT.
To close this section, we recall an algorithm in [10]

for the recovery of signals based on generalized approx-
imate message passing (GAMP). This algorithm exploits
the prior statistical information on the signal for esti-
mating the minimum-mean-squared error solution from
1-bit measurements. The performance of GAMP will be
included in our numerical section.

3 An algorithm for 1-bit compressive sampling
In this section, we will develop algorithms for the pro-
posed model (9). We first reformulate model (9) as an
unconstrained optimization problem via the indicator
function of a closed convex set in R

m+1. It turns out
that the objective function of this unconstrained opti-
mization problem is the sum of the �0-norm and the
indicator function composing with a matrix associated
with the 1-bit measurements. Instead of directly solving
the unconstrained optimization problem, we use some
smooth concave functions to approximate the �0-norm

and then linearize the concave functions. The result-
ing model can be viewed as an optimization problem
of minimizing a weighted �1-norm over the closed con-
vex set. The solution of this resulting model is served
as a new point at which the concave functions will be
linearized. This process is repeatedly performed until a
certain stopping criterion is met. Several concrete exam-
ples for approximating the �0-norm are provided at the
end of this section.
We begin with introducing our notation and recall-

ing some background from convex analysis. For the d-
dimensional Euclidean space R

d, the class of all lower
semicontinuous convex functions f : Rd → (−∞,+∞]
such that domf := {x ∈ R

d : f (x) < +∞} 
= ∅ is denoted
by �0(Rd). The indicator function of a closed convex set
C in R

d is defined, at u ∈ R
d, as

ιC(u) :=
{
0, if u ∈ C;
+∞, otherwise.

Clearly, ιC is in �0(Rd) for any closed nonempty convex
set C.
Next, we reformulate model (9) as an unconstrained

optimization problem. To this end, from them× nmatrix
� and them-dimensional vector y in Eq. (2), we define an
(m + 1) × nmatrix

B :=
[
diag(y)
y�

]
� (10)

and a subset of Rm+1

C := {z : zm+1 = 1 and zi ≥ 0, i = 1, 2, . . . ,m}, (11)

respectively. Then, a vector x satisfies the two constraints
of model (9) if and only if the vector Bx lies in the set C.
Hence, model (9) can be rewritten as

min{‖x‖0 + ιC(Bx) : x ∈ R
n}. (12)

Problem (12) is known to be NP-complete due to the
non-convexity of the �0-norm. Thus, there is a need for
an algorithm that can pick the sparsest vector x satisfying
the relation Bx ∈ C. To attack this �0-norm optimization
problem, a common approach that appeared in recent lit-
erature is to approximate the �0-norm by its computation-
ally feasible approximations. In the context of compressed
sensing, we review several popular choices for defining the
�0-norm as the limit of a sequence. More precisely, for a
positive number ε ∈ (0, 1), we consider separable concave
functions of the form

Fε(x) :=
n∑

i=1
fε(|xi|), x ∈ R

n, (13)

where fε : R+ → R is strictly increasing, concave, and
twice continuously differentiable such that

lim
ε→0+ Fε(x) = ‖x‖0, for all x ∈ R

n. (14)
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The parameter ε plays a role of determining the quality
of the approximation Fε(x) to ‖x‖0. Since the function fε is
concave and smooth on R+ :=[ 0,∞), it can be majorized
by a simple function formed by its first-order Taylor series
expansion at a arbitrary point. Write Fε(x, v) := Fε(v) +
〈∇Fε(|v|), |x| − |v|〉. Therefore, at any point v ∈ R

n, the
following inequality holds

Fε(x) < Fε(x, v) (15)

for all x ∈ R
n with |x| 
= |v|. Here, for a vector u, we

use |u| to denote a vector such that each element of |u|
is the absolute value of the corresponding element of u.
Clearly, when v is close enough to x, Fε(x, v) the expres-
sion on the right-hand side of (15) provides a reasonable
approximation to the one on its left-hand side. Therefore,
it is considered as a computationally feasible approxima-
tion to the �0-norm of x. With such an approximation,
a simplified problem is solved and its solution is used
to formulate another simplified problem which is closer
to the ideal problem (12). This process is then repeated
until the solutions to the simplified problems become sta-
tionary or meet a termination criteria. This procedure is
summarized in Algorithm 1.

Algorithm 1 (Iterative scheme for model (12))
Initialization: choose ε ∈ (0, 1) and let x(0) ∈ R

n be an
initial point.
repeat(k ≥ 0)

Step 1: Compute x(k+1):

x(k+1) ∈ argmin
{
Fε(x, |x(k)|) + ιC(Bx) : x ∈ R

n
}
.

until a given stopping criteria is met

The terms Fε(|x(k)|) and 〈∇Fε(|x(k)|), |x(k)|〉 that appear
in the optimization problem in Algorithm 1 can be
ignored because they are irrelevant to the optimization
problem. Hence, the expression for x(k+1) in Algorithm 1
can be simplified as

x(k+1) ∈ argmin
{
〈∇Fε(|x(k)|), |x|〉 + ιC(Bx) : x ∈ R

n
}
.

(16)

Since fε is strictly concave and increasing on R+,
f ′
ε is positive on R+. Hence, 〈∇Fε(|x(k)|), |x|〉 =∑n

i=1 f ′
ε (|x(k)

i |)|xi| can be viewed as the weighted �1-norm
of x having f ′

ε (|x(k)
i |) as its ith weight. Thus, the objec-

tive function of the above optimization problem is convex.
Details for finding a solution to the problem will be pre-
sented in the next section.
In the rest of this section, we list two possible choices of

the functions in (13), namely, theMangasarian function in

[14] and the Log-Det function in [15]. Many other choices
can be found from [16–21] and the references therein.
The Mangasarian function is given as follows:

Fε(x) =
n∑

i=1

(
1 − e−|xi|/ε

)
, (17)

where x ∈ R
n. This function is used to approximate the

�0-norm to obtain minimum-support solutions (that is,
solutions with as many components equal to zero as pos-
sible). The usefulness of the Mangasarian function was
demonstrated in finding sparse solutions of underdeter-
mined linear systems (see [22]).
The Log-Det function is defined as

Fε(x) =
n∑

i=1

log(|xi|/ε + 1)
log(1/ε)

, (18)

where x ∈ R
n. Notice that ‖x‖0 is equal to the rank of

the diagonal matrix diag(x). The function Fε(x) is equal to
(log(1/ε))−1 log(det(diag(x) + εI)) + n, the logarithm of
the determinant of the matrix diag(x) + εI. Hence, it was
named as the Log-Det heuristic and used for minimizing
the rank of a positive semidefinite matrix over a convex
set in [15]. Constant terms can be ignored since they will
not affect the solution of the optimization problem (16).
Hence, the Log-Det function in (18) can be replaced by

Fε(x) =
n∑

i=1
log(|xi| + ε). (19)

We point it out that the Mangasarian function is
bounded by 1; therefore, it is non-coercive while the
Log-Det function is coercive. This makes a difference in
convergence analysis of the associated Algorithm 1 that
will be presented in the next section. In what follows, the
function Fε is the Mangasarian function or the Log-Det
function. We specify it only when it is noted.

4 Convergence analysis
In this section, we shall give convergence analysis for
Algorithm 1. We begin with presenting the following
result.

Theorem 2. Given ε ∈ (0, 1), x(0) ∈ R
n, and the set C

defined by (11), let the sequence {x(k) : k ∈ N} be generated
by Algorithm 1, where N is the set of all natural numbers.
Then the following three statements hold:

(i) The sequence {Fε(x(k)) : k ∈ N} converges when Fε is
corresponding to the Mangasarian function (17) or
the Log-Det function (19);

(ii) The sequence {x(k) : k ∈ N} is bounded when Fε is
the Log-Det function;

(iii)
∑+∞

k=1
∥∥|x(k+1)| − |x(k)|∥∥22 is convergent when the

sequence {x(k) : k ∈ N} is bounded.
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Proof. We first prove item (i). The key step for proving it
is to show that the sequence {Fε(x(k)) : k ∈ N} is decreas-
ing and bounded below. The boundedness of the sequence
is due to the fact that Fε(0) ≤ Fε(x(k)). From Step 1 of
Algorithm 1 or Eq. (16), one can immediately have that

ιC(Bx(k+1)) = 0

and

〈∇Fε(|x(k)|), |x(k+1)|〉 ≤ 〈∇Fε(|x(k)|), |x(k)|〉. (20)

By identifying x(k) and x(k+1), respectively, as v and x in
(15) and using the inequality in (20), we get Fε(x(k+1)) ≤
Fε(x(k)). Hence, the sequence {Fε(x(k)) : k ∈ N} is decreas-
ing and bounded below. Item (i) follows immediately.
When Fε is chosen as the Log-Det function, the coer-

civeness of Fε together with item (i) implies that the
sequence {x(k) : k ∈ N} must be bounded, that is, item (ii)
holds.
Finally, we prove item (iii). Denote w(k) := |x(k+1)| −

|x(k)|. From the second-order Taylor expansion of the
function Fε at x(k), we have that

Fε(x(k+1)) = Fε(x(k+1), x(k)) + 1
2
(w(k))�∇2Fε(v)w(k),

(21)

where v is some point in the line segment linking the
points |x(k+1)| and |x(k)| and∇2Fε(v) is the Hessianmatrix
of Fε at the point v.
By (20), the first term on the right hand of Eq. (21) is

less than Fε(x(k)). By Eq. (19), ∇2Fε(v) for v lying in the
first octant of Rn is a diagonal matrix and is equal to
− 1

ε2
diag(e−

v1
ε , e−

v2
ε , . . . , e−

vn
ε ) or −diag((v1 + ε)−2, (v2 +

ε)−2, . . . (vn + ε)−2) which corresponds to Fε being the
Mangasarian or the Log-Det function. Hence, the matrix
∇2Fε(v) is negative definite. Since the sequence {x(k) : k ∈
N} is bounded, there exists a constant ρ > 0 such that

(w(k))�∇2Fε(v)w(k) ≤ −ρ‖w(k)‖22.
Putting all above results together into (21), we have that

Fε(x(k+1)) ≤ Fε(x(k)) − ρ

2

∥∥∥|x(k+1)| − |x(k)|
∥∥∥2
2
.

Summing the above inequality from k = 1 to +∞ and
using item (i) we get the proof of item (iii).

From item (iii) of Theorem 2, we have∥∥|x(k+1)| − |x(k)|∥∥2 → 0 as k → ∞.
To further study properties of the sequence {x(k) : k ∈

N} generated by Algorithm 1, the matrix B� is required
to have the range space property (RSP) which is originally
introduced in [23]. With this property and motivated by
the work in [23], we prove that Algorithm 1 can yield a
sparse solution for model (12).

Prior to presenting the definition of the RSP, we intro-
duce the notation to be used throughout the rest of this
paper. Given a set S ⊂ {1, 2, . . . , n}, the symbol |S| denotes
the cardinality of S, and Sc := {1, 2, . . . , n}\S is the comple-
ment of S. Recall that for a vector u, by abuse of notation,
we also use |u| to denote the vector whose elements are
the absolute values of the corresponding elements of u.
For a given matrix A having n columns, a vector u in
R
n, and a set S ⊂ {1, 2, . . . , n}, we use the notation AS

to denote the submatrix extracted from A with column
indices in S and uS the subvector extracted from u with
component indices in S.

Definition 3 (Range space property (RSP)). Let A be
an m × n matrix. Its transpose A� is said to satisfy the
range space property (RSP) of order K with a constant ρ >

0 if for all sets S ⊆ {1, . . . , n} with |S| ≥ K and for all ξ in
the range space of A� the following inequality holds

‖ξSc‖1 ≤ ρ‖ξS‖1.

The range space property states that the range of the
matrix A� contains no vectors where some entries have
a significantly larger magnitude with respect to the oth-
ers. We remark that if the transpose of an m × n matrix
A has the RSP of order K with a constant ρ > 0, then
for every non-empty set S ⊆ {1, . . . , n}, the transpose of
the matrix AS, denoted by A�

S , has the RSP of order K
with constant ρ as well. We further remark that there is
a relationship (see Proposition 3.6 in [23]) between the
RSP and the restricted isometry property (RIP) and null
space property (NSP) of A which have been widely used
in the compressive sensing literature. For example, if we
have a matrix satisfying the NSP or RIP, we may construct
a matrix satisfying the RSP. Unfortunately, similar to the
RIP and the NSP, the RSP is hard to verify in practice.
The next result shows that if the transpose of the matrix

B in Algorithm 1 possesses the RSP, then Algorithm 1 can
lead to a sparse solution for model (12). To this end, we
define a mapping σ : Rd → R

d such that the ith com-
ponent of the vector σ(u) is the ith largest component of
|u|.

Proposition 4. Let B be the (m+1)×nmatrix be defined
by (10) and let {x(k) : k ∈ N} be the sequence generated
by Algorithm 1. Assume that the matrix B� has the RSP of
order K with ρ > 0 satisfying (1 + ρ)K < n. Suppose that
the sequence {x(k) : k ∈ N} is bounded. Then, (σ (x(k)))n
the nth largest component of x(k) converges to 0.

Proof. Suppose this proposition is false. Then there exist
a constant γ > 0 and a subsequence {x(kj) : j ∈ N} such
that (σ (x(kj)))n ≥ 2γ > 0 for all j ∈ N. From item (iii) of
Theorem, 2 we have that
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(σ (x(kj+1)))n ≥ γ (22)

for all sufficiently large j. For simplicity, we set y(kj) :=
∇Fε(|x(kj)|). Hence, by inequality (22) and Fε , we know
that

|x(kj)| > 0 |x(kj+1)| > 0, and y(kj) > 0 (23)

for all sufficient large j. In what follows, we assume that the
integer j is large enough such that the above inequalities
in (23) hold.
Since the vector x(kj+1) is obtained through step 1 of

Algorithm 1, i.e., Eq. (16), then by Fermat’s rule and the
chain rule of subdifferential, we have that

0 = diag(y(kj))∂‖ · ‖1(diag(y(kj))x(kj+1)) + B�b(kj+1),

where b(kj+1) ∈ ∂ιC(Bx(kj+1)). By (23), we get

∂‖ · ‖1(diag(y(kj))x(kj+1)) = {sgn(x(kj+1))},
where sgn(·) denotes the sign of the variable element-wise.
Thus

y(kj) = |ξ (kj+1)|,
where ξ (kj+1) = B�b(kj+1) is in the range of B�.
Let S be the set of indices corresponding to the K

smallest components of |ξ (kj+1)|. Hence,
n−K∑
i=1

(σ (y(kj)))i = ‖ξ (kj+1)
Sc ‖1

and
n∑

i=n−K+1
(σ (y(kj)))i = ‖ξ (kj+1)

S ‖1.

Since B� has the RSP of order K with the constant ρ, we
have that ‖ξ (kj+1)

Sc ‖1 ≤ ρ‖ξ (kj+1)
S ‖1. Therefore,

n−K∑
i=1

(σ (y(kj)))i ≤ ρ

n∑
i=n−K+1

(σ (y(kj)))i. (24)

However, by the definition of σ , we have that
n−K∑
i=1

(σ (y(kj)))i ≥ (n − K)(σ (y(kj)))n−K+1

and
n∑

i=n−K+1
(σ (y(kj)))i ≤ K(σ (y(kj)))n−K+1.

These inequalities together with the condition (1 +
ρ)K < n lead to

n−K∑
i=1

(σ (y(kj)))i > ρ

n∑
i=n−K+1

(σ (y(kj)))i,

which contradicts to (24). This completes the proof of the
proposition.

From Proposition 4, we conclude that a sparse solution
is guaranteed via Algorithm 1 if the transpose of B satis-
fies the RSP. Next, we answer how sparse this solution will
be. To this end, we introduce some notation and develop
a technical lemma. For a vector x ∈ R

d , we denote by
τ(x) the set of the indices of non-zero elements of x, i.e.,
τ(x) := {i : xi 
= 0}. For a sequence {x(k) : k ∈ N}, a posi-
tive number μ, and an integer k, we define Iμ(x(k)) := {i :
|x(k)

i | ≥ μ}.

Lemma 5. Let B be the (m + 1) × n matrix defined by
(10), let Fε be the Log-Det function defined by (19), and let
{x(k) : k ∈ N} be the sequence generated by Algorithm 1.
Assume that the matrix B� has the RSP of order K with
ρ > 0 satisfying (1 + ρ)K < n. If there exist μ > ρεn
such that |Iμ(x(k))| ≥ K for all sufficient large k, then there
exists a k′′ ∈ N such that ‖x(k)‖0 < n and τ(x(k+1)) ⊆
τ(x(k′′)) for all k > k′′.

Proof. Set y(k) := ∇Fε(|x(k)|). Since x(k+1) is a solution
to the optimization problem (16), then by Fermat’s rule
and the chain rule of subdifferential we have that

0 ∈ diag(y(k))∂‖ · ‖1(diag(y(k))x(k+1)) + B�b(k+1),

where b(k+1) ∈ ∂ιC(Bx(k+1)). Hence, if x(k+1)
i 
= 0, we have

that y(k)
i = |(B�b(k+1))i|.

For i ∈ Iμ(x(k)), we have that |x(k)
i | ≥ μ and y(k)

i =
f ′
ε (|x(k)

i |) ≤ f ′
ε (μ) for all k ∈ N, where fε = log(· + ε).

Furthermore, there exist a k′ such that |xk+1
i | > 0 for

i ∈ Iμ(x(k)) and k ≥ k′ due to item (iii) in Theorem 2.
Thus, we have for all k ≥ k′

∑
i∈Iμ(x(k))

|(B�b(k+1))i| =
∑

i∈Iμ(x(k))

y(k)
i

≤
∑

i∈Iμ(x(k))

f ′
ε (μ) ≤ W ∗,

where W ∗ = n limε→0+ f ′
ε (μ) = n

μ
is a positive number

dependent on μ.
Now, we are ready to prove ‖x(k)‖0 < n for all k > k′′.

By Proposition 4, we have that (σ (x(k)))n → 0 when k →
+∞. Therefore, there exists an integer k′′ > k′ such that
|Iμ(x(k))| ≥ K and 0 ≤ σ(x(k)))n < min{ μ

ρn − ε,μ} for all
k ≥ k′′. Let i0 be the index such that |x(k′′)

i0 | = (σ (x(k′′)))n.
We will show that x(k′′+1)

i0 = 0. If this statement is not true,
that is, x(k′′+1)

i0 is not zero, then

|(B�b(k′′+1))i0 | = f ′
ε (|x(k′′)

i0 |) = 1
|x(k′′)

i0 | + ε
> ρW ∗.

(25)
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However, since i0 is not in the set Iμ(x(k′′)) and B�
satisfies the RSP, we have that

|(B�b(k′′+1))i0 | ≤
∑

i/∈Iμ(x(k′′))

|(B�b(k′′+1))i|

≤ ρ
∑

i∈Iμ(x(k′′))

|(B�b(k′′+1))i| ≤ ρW ∗,

which contradicts to (25). Hence, we have that x(k′′+1)
i0 = 0

and |τ(x(k′′+1))| < n. By replacing k′′ by k′′ +1 and repeat-
ing this process, we can obtain x(k′′+�)

i0 = 0 for all � ∈ N.
Therefore, ‖x‖0 < n for all k > k′′. This process can be
also applied to other components satisfying x(k′′+1)

i = 0.
Thus there exists a k′′ ∈ N such that τ(x(k)) ⊆ τ(x(k′′)) for
all k ≥ k′′.

With Lemma 5, the next result shows that when the
transpose of B satisfies the RSP, there exists a cluster point
of the sequence generated by Algorithm 1 that is sparse
and satisfies the consistency condition.

Theorem 6. Let B be the (m + 1) × n matrix defined
by (10), let Fε be the Log-Det function defined by (19), and
let {x(k) : k ∈ N} be the sequence generated by Algorithm
1. Assume that the matrix B� has the RSP of order K with
ρ > 0 satisfying (1 + ρ)K < n. Then, there is a subse-
quence {x(kj) : j ∈ N} that converges to a �(1+ρ)K�-sparse
solution, that is (σ (x(kj)))�(1+ρ)K+1� → 0 as j → +∞ and
ε → 0.

Proof. Suppose the theorem is false. Then, there exist
μ∗, for any 0 < ε∗ <

μ∗
ρn , there exist a ε ∈ (0, ε∗) and k′

such that (σ (x(k)))�(1+ρ)K+1� ≥ μ∗ for all k ≥ k′. It implies
that for all k ≥ k′

|Iμ∗(x(k))| ≥ �(1 + ρ)K + 1� > (1 + ρ)K > K . (26)

By Lemma 5, there exist a k′′ ≥ k′ such that ‖x(k)‖0 < n
and τ(x(k+1)) ⊆ τ(x(k′′)) for all k ≥ k′′. Let S = τ(x(k′′)).
Thus x(k)

Sc = 0 for all k ≥ k′′. Therefore, the optimization
problem (16) for updating x(k+1) can be reduced to the
following one

xk+1
S ∈ argmin{〈(∇Fε(|x(k)|))S,u〉+ι((BS)u) : u ∈ R

|S|}.
(27)

If |τ(x(k′′))| > |Iμ∗(x(k′′))|, from (26), we have (1 +
ρ)K < |S|. Thus, from Lemma 5 and B�

S having RSP with
the same parameters, there exist a k′′′ > k′′ such that

τ(x(k)) < τ(x(k′′)) for all k ≥ k′′′. Therefore, by induction,
there must exist a k̃ such that for all k ≥ k̃

τ(x(k)) = Iμ∗(x(k)), τ(xk) ⊆ τ(x(k̃)).

It means that for all k ≥ k̃, all the nonzero components
of x(k) are bounded below by μ∗. Therefore, for any k ≥ k̃,
the updating Eq. (16) is reduced by (27) with S = Iμ∗(x(k)).
From Lemma 4, we get [ σ(x(k))]|S| → 0 which contradicts
with |xk|S|| ≥ μ∗. Therefore, we get this theorem.

5 An implementation of Algorithm 1
In this section, we describe in detail an implementation of
Algorithm 1 and show how to select the parameters of the
associated algorithm.
Solving problem (16) is the main issue for Algorithm 1.

A general model related to (16) is

min{‖�x‖1 + ϕ(Bx) : x ∈ R
n}, (28)

where � is a diagonal matrix with positive diagonal ele-
ments and ϕ is in �0(Rm+1). In particular, if we choose
� = ∇Fε(|x(k)|) and ϕ = ιC , where x(k) is a vector in R

n, ε
is a positive number, C is given by (11), and Fε is a function
given by (13), then model (28) reduces to the optimization
problem in Algorithm 1.
We solve model (28) by using recently developed

first-order primal-dual algorithm (see, e.g., [24–26]). To
present this algorithm, we need two concepts in con-
vex analysis, namely, the proximity operator and conju-
gate function. The proximity operator was introduced in
[27]. For a function f ∈ �0(Rd), the proximity oper-
ator of f with parameter λ, denoted by proxλf , is a
mapping from R

d to itself, defined for a given point
x ∈ R

d by

proxλf (x) := argmin
{

1
2λ

‖u − x‖22 + f (u) : u ∈ R
d
}
.

The conjugate of f ∈ �0(Rd) is the function f ∗ ∈ �0(Rd)
defined at z ∈ R

d by

f ∗(z) := sup{〈x, z〉 − f (x) : x ∈ R
d}.

With these notation, the first-order primal-dual (PD)
method for solving (28) is summarized in Algorithm 2
(referred to as PD subroutine).
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Algorithm 2 PD subroutine (the first-order primal-dual
algorithm for solving (28))

Input: the (m + 1) × n matrix B defined by (10); two
positive numbers α and β satisfying the relation αβ <
1

‖B‖2 ; the n × n diagonal matrix � with all diagonal
elements positive; and the function ϕ ∈ �0(Rn).
Initialization: i = 0 and an initial guess
(u(−1),u(0), x(0)) ∈ R

m+1 × R
m+1 × R

n

repeat(i ≥ 0)
Step 1: Compute x(i+1):

x(i+1) = proxα‖·‖1◦�

(
x(i) − αB�(2u(i) − u(i−1))

)
Step 2: Compute u(i+1):

u(i+1) = proxβϕ∗(u(i) + βBx(i+1))

Step 3: Set i := i + 1.
until a given stopping criteria is met and the corre-
sponding vectors u(i), u(i+1), and x(i+1) are denoted by
ucur , unew, and xnew, respectively.
Output: (ucur ,unew, xnew) =
PD(α,β ,B,�,ϕ,u(−1),u(0), x(0))

Theorem 7. Let B be an (m + 1) × n matrix defined by
(10), let C be the set given by (11), let α and β be two positive
numbers, and let L be a positive such that L ≥ ‖B‖2, where
‖B‖ is the largest singular value of B. If

αβL < 1,

then for any arbitrary initial vector (x−1, x0,u0) ∈ R
n ×

R
n × R

m+1, the sequence {xk : k ∈ N} generated by
Algorithm 2 converges to a solution of model (28).

The proof of Theorem 7 follows immediately from
Theorem 1 in [24] or Theorem 3.5 in [25]. We skip its
proof here.
Both proximity operators proxα‖·‖1◦� and proxβϕ∗

should be computed easily and efficiently in order to make
the iterative scheme in Algorithm 2 numerically efficient.
Indeed, the proximity operator proxα‖·‖1◦� is given at z ∈
R
n as follows: for j = 1, 2, . . . , n(

proxα‖·‖1◦�(z)
)
j = max

{|zj| − αγj, 0
} · sign(zj), (29)

where γj is the jth diagonal element of �. Using the well-
known Moreau decomposition (see, e.g., [27, 28])

proxβϕ∗ = I − β prox 1
β
ϕ ◦

(
1
β
I
)
, (30)

we can compute the proximity operator proxβϕ∗ via
prox 1

β
ϕ which depends on a particular form of the func-

tion ϕ. As our purpose is to develop algorithms for the

optimization problem in Algorithm 1, we need to com-
pute the proximity operator of ι∗C which is given in the
following.

Lemma 8. If C is the set given by (11) and β is a positive
number, then for z ∈ R

m+1, we have that

proxβι∗C (z) = (z1 − (z1)+, . . . , zm − (zm)+, zm+1 − β),
(31)

where (s)+ is s if s ≥ 0 and 0 otherwise.

Proof. We first give an explicit form for the proximity
operator prox 1

β
ιC
. Note that ιC = 1

β
ιC for β > 0 and

ιC(z) = ι{1}(zm+1) + ∑m
i=1 ι[0,∞)(zi), for z ∈ R

m+1. Hence,
we have that

prox 1
β
ιC

(z) = ((z1)+, (z2)+, . . . , (zm)+, 1), (32)

where (s)+ is s if s ≥ 0 and 0 otherwise. Here we use the
facts that proxι[0,+∞)

(s) = (s)+ and proxι{1}(s) = 1 for any
s ∈ R.
By the Moreau decomposition (30), we have that

proxβι∗C (z) = z − βprox 1
β
ιC

( 1
β
z). This together with

Eq. (32) yields (31).

Next, we comment on the diagonal matrix � in
model (28). When the function ϕ in model (28) is chosen
to be ιC , then the relation aϕ = ϕ holds for any posi-
tive number a. Hence, by rescaling the diagonal matrix �

in model (28) with any positive number, the solutions of
model (28) are not altered. Therefore, we can assume that
the largest diagonal entry of � is always equal to one.
In applications of Theorem 7 as in Algorithm 2, we

should make the product of α and β as close to 1/‖B‖2 as
possible. In our numerical simulations, we always set

α = 0.999
β‖B‖2 . (33)

In such a way, β is essentially the only parameter that
needs to be determined.
Prior to computing α for a given β by Eq. (33), we need

to know the norm of the matrix B. When min{m, n} is
small, the norm of the matrix B can be computed directly.
When min{m, n} is large, an upper bound of the norm
of the matrix B is estimated in terms of the size of B as
follows.

Proposition 9. Let � be an m × n matrix with i.i.d.
standard Gaussian entries and y be an m-dimensional
vector with its component being +1 or −1. We define an
(m + 1) × n matrix B from � and y via Eq. (10). Then,

E{‖B‖} ≤ √
m + 1(

√
n + √

m).
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Moreover,

‖B‖ ≤ √
m + 1(

√
n + √

m + t)

holds with probability at least 1 − 2e−t2/2 for all t ≥ 0.

Proof. By the structure of the matrix B in (10), we know
that

‖B‖ ≤
∥∥∥∥
[
diag(y)
y�

]∥∥∥∥ · ‖�‖.

Therefore, we just need to compute the norms on the
right-hand side of the above inequality. Denote by Im the
m × m identity matrix and 1m the vector with all its
components being 1. Then,

[
diag(y)
y�

] [
diag(y) y

] =
[
Im 1m
1�
m m

]
,

which is a special arrow-head matrix and has m + 1 as its
largest eigenvalue (see [29]). Hence,

∥∥∥∥
[
diag(y)
y�

]∥∥∥∥ = √
m + 1.

Furthermore, by using random matrix theory for the
matrix �, we know that E{‖�‖} ≤ √

n + √
m and ‖�‖ ≤√

n + √
m + t with probability at least 1 − 2e−t2/2 for all

t ≥ 0 (see, e.g., [30]). This completes the proof of this
proposition.

Let us compute the norm of B numerically for 100
randomly generated matrices � and vectors y for the
pair (m, n) with three different choices (500, 1000),
(1000, 1000), and (1500, 1000), respectively. Correspond-
ing to these choices, the mean values of ‖B‖ are about 815,
1276, and 1711 while the upper bounds of the expected
values of ‖B‖ by Proposition 9 are about 1208, 2001, and
2726, respectively. We can see that the norm of B varies
with its size and turns to be a big number when the value
of min{m, n} is relatively large. As a consequence, the
parameter α or β must be very small relative to the other
by Eq. (33). Therefore, in what follows, the used matrix B
in model (28) is considered to have been rescaled in the
following way:

B
‖B‖ or

B√
m + 1(

√
n + √

m)
(34)

when the norm of B can be computed easily or not.
The complete procedure for model (12) and how the PD

subroutine is employed are summarized in Algorithm 3.

Algorithm 3 (Iterative scheme for model (12))
Input: the (m + 1) × n matrix B formed by an m × n
matrix � and an m-dimensional vector y via (10); the
set C given by (11); ε ∈ (0, 1), and τ > 0; αmax and εmin
be two real numbers; the maximum iteration number
kmax.
Initialization: normalizing B according to (34); �

being the n × n identity matrix; an initial guess
(uold0 ,ucur0 , x(0)) ∈ R

m+1 × R
m+1 × R

n; and initial
parameters β and α = 0.999/β .
while k < kmax do

Step 1: Compute

(uoldk+1 ,ucurk+1 , x(k+1))

= PD(α,β ,B,�, ιC ,uoldk ,ucurk , x(k))

Step 2: Update � as the scaled matrix
diag(∇Fε(x(k+1))) such that the largest diagonal
element of � is one.

Step 3: If α < αmax, update α ← 2α, β ← β/2;
if ε > εmin, update ε ← τε;

Step 4: Update k ← k + 1.
end while
Output: x(kmax)

6 Numerical simulations
In this section, we demonstrate the performance of Algo-
rithm 3 for 1-bit compressive sampling reconstruction in
terms of accuracy and consistency and compare it with the
BIHT, RFPI, LP, and GAMP.
Through this section, all randomm × nmatrices � and

length-n, s-sparse vectors x are generated based on the
following assumption: entries of � and x on their sup-
port are i.i.d. Gaussian random variables with zero mean
and unit variances. The locations of the nonzero entries
(i.e., the support) of x are randomly permuted. We then
generate the 1-bit observation vector y by Eq. (2). We
obtain reconstruction of x� from y by using either the
BIHT, RFPI, LP, GAMP, or Algorithm 3. Four metrics,
the signal-to-noise ratio (SNR), the Hamming error, the
number of missing nonzero coefficients, and the num-
ber of misidentified nonzero coefficients, respectively, are
used to evaluate the quality of the reconstruction. More
precisely, the signal-to-noise ratio (SNR) in dB is defined
as

SNR(x, x�) = 20 log10
(∥∥∥∥ x

‖x‖
∥∥∥∥
2
/

∥∥∥∥ x
‖x‖ − x�

‖x�‖
∥∥∥∥
2

)
;

the Hamming error is ‖y − sign(�x�)‖0/m where m is
the number of measurements; the number of missing
nonzero coefficients refers to the number of nonzero coef-
ficients that an algorithm “misses,” i.e., determines to be
zero; the number of misidentified nonzero coefficients



Shen and Suter EURASIP Journal on Advances in Signal Processing  (2016) 2016:71 Page 11 of 16

(a) (b)
Fig. 1 The marks in the plots (from the top row to the bottom row) represent the pairs of the SNR values from the BIHT with the correct sparsity input
(i.e., s = 10) and incorrect sparsity inputs 8, 9, 11, and 12, respectively. We fix n = 1000
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refers to the number of nonzero coefficients that are
“misidentified,” i.e., coefficients that are determined to be
nonzero when they should be zero. The last two metrics
measure how well each algorithm finds the signal sup-
port, meaning the locations of the nonzero coefficients.
A higher value of SNR indicates a better reconstructed
signal. The smaller the values of the rest three metrics
are the better the reconstructed signals will be. The accu-
racy of all test algorithms is measured by the average of
values of these four metrics over 100 trials unless oth-
erwise noted. For all figures in this section, results by
the BIHT, RFPI, LP, GAMP, and Algorithm 3 with the
Mangasarian function (17) and the Log-Det function (19)
are marked by the symbols “�,” “�,” “�,” “�,” “◦,” and
“�,” respectively.

6.1 Effects of using inaccurate sparsity on the BIHT
The BIHT requires knowing the sparsity of the underly-
ing signals. This requirement is, however, not known in
practical applications. In this subsection, we demonstrate
through numerical experiments that the mismatched
sparsity for a signal will degenerate the performance of the
BIHT.
To this end, we fix n = 1000 and s = 10 and con-

sider two cases ofm being 500 and 1000. For each case, we
vary the sparsity input for the BIHT from 8 to 12 in which
10 is the only right choice. Therefore, there are total ten
configurations. For each configuration, we record the SNR
values of the reconstructed signals by the BIHT.
Figure 1 depicts the SNR values of the experiments.

The plots in the left column of Fig. 1 are for the case

(a) (b)

(c) (d)
Fig. 2 Algorithm comparison with configuration 1 for fixed n = 1000 and s = 10. a average SNR vsm/n; b average Hamming error vsm/n; c
average number of missing nonzero coefficients vsm/n; and d average number of misidentified nonzero coefficients vsm/n
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m = 500 while the plots in the right column are for the
case m = 1000. The marks in each plot represent the
pairs of the SNR values with the correct sparsity input
(i.e., s = 10) and with a mismatched sparsity input (i.e.,
s = 8, s = 9, s = 11, or s = 12 corresponding to
the row 1, 2, 3, or 4). A mark below the red line indi-
cates that the BIHT with the correct sparsity input works
better than the one with an incorrect sparsity input. A
mark that is far away from the red line indicates the
BIHT with the correct sparsity input works much bet-
ter than the one with an incorrect sparsity input or vice
versa. Except the second plot in the left column, we
can see that the BIHT with the correct sparsity input
performs better than the one with an inaccurate spar-
sity input. In particular, when an underestimated sparsity

input to the BIHT is used, the performance of the BIHT
will be significantly reduced (see the plots in the first
two columns of Fig. 1). When an overestimated spar-
sity input to the BIHT is used, majority of the marks
are under the red lines and are relatively closer to the
red lines than those from the BIHT with underestimated
sparsity input. We further report that the average SNR
values for the sparsity input s = 8, 9, 10, 11, and 12
for m = 500 are 21.89, 24.18, 23.25, 22.10, and 21.00dB,
respectively. Similarly, for m = 1000, the average SNR
values for the sparsity input s = 8, 9, 10, 11, and 12
are 19.77dB, 26.37dB, 34.74dB, 31.12dB, and 29.46dB,
respectively. In summary, we conclude that a proper cho-
sen sparsity constraint is critical for the success of the
BIHT.

(a) (b)

(c) (d)
Fig. 3 Algorithm comparison with configuration 2 for fixedm = 1000 and n = 1000. a average SNR vs sparsity; b average Hamming error vs
sparsity; c average number of missing nonzero coefficients vs sparsity; and d average number of misidentified nonzero coefficients vs sparsity
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6.2 Performance of Algorithm 3
Prior to applying Algorithm 3 for 1-bit compressive sam-
pling problem, parameters kmax, τ , αmax, εmin, α, and ε

in Algorithm 3 need to be determined. Under the afore-
mentioned setting for the random matrix � and sparse
signal x, we fix kmax = 13, τ = 1

2 , αmax = 8000, εmin =
10−4. For the functions Fε defined by (17) and (19), we
set the pair of initial parameters (α, ε) as (500, 0.25) and
(250, 0.125), respectively. The iterative process in the PD
subroutine is forced to stop if the corresponding number
of iteration exceeds 300. These parameters are used in all
simulations performed by Algorithm 3 in the rest of this
section.
To evaluate the performance of Algorithm 3 at vari-

ous scenarios, the following three configurations for n the

dimension of the signal, m the number of measurements,
and s the sparsity of the vector x, are considered:

• configuration 1: n = 1000, s = 10, and
m = 100, 500, 1000, 1500

• configuration 2:m = 1000, n = 1000, and
s = 5, 10, 15, 20

• configuration 3:m = 1000, s = 10, and
n = 500, 800, 1200, 1400

For every case in each configuration, we compare the
accuracy of Algorithm 3 with the BIHT, RFPI, LP, and
GAMP by computing the average of values of the four
metrics over 100 trials.We remark that Algorithm 3, RFPI,
LP, and GAMP do not require the knowledge of sparsity
of original signals.

(a) (b)

(c) (d)
Fig. 4 Algorithm comparison with configuration 3 for fixedm = 1000 and s = 10. a average SNR vs signal size; b average Hamming error vs signal
size; c average number of missing nonzero coefficients vs signal size; and d average number of misidentified nonzero coefficients vs signal size
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For the first configuration, Fig. 2 displays the average
values of the four metrics by the BIHT, RFPI, LP, GAMP,
and Algorithm 3 with the Mangasarian function (17) and
the Log-Det function (19). Figure 2a demonstrates that the
GAMP performs best, the BIHT and Algorithm 3 perform
similarly and exhibit much better performance than the
LP and RFPI in terms of SNR values. As expected, the SNR
value of the reconstruction from each algorithm increases
as the number of measurements m increases. Figure 2b
depicts the consistency of the algorithms through Ham-
ming error, that is, whether the signs of measurements of
the reconstruction are the same as the signs of the origi-
nal measurements. We can see that the Hamming errors
generated by the BIHT, GAMP, and Algorithm 3 decrease
towards to zeros as m increases. However, the Ham-
ming errors from the LP and RFPI are always above zero.
Figure 2c, d is used to demonstrate how well each algo-
rithm finds the signal support, meaning the locations of
the nonzero coefficients. Figure 2c depicts that the num-
ber of missed coefficients as a function of the ratiom/n is
decreasing. From this plot, we can see that the GAMP per-
forms best and the rest algorithms perform similarly, in
particular, when the ratiom/n is larger than 1.5. However,
Fig. 2d depicts that the sparsity of the reconstructed sig-
nal fromGAMP is higher than that from other algorithms.
In summary, Algorithm 3 with the Mangasarian function
and the Log-Det function performs as equally good as the
BIHT in terms of the four metrics, in particular, when
m/n is greater than 1, even though our algorithm does
not require to know the exact sparsity of the original sig-
nal. We can also conclude that Algorithm 3 outperforms
the RFPI for all metrics while the GAMP performs better
than the other algorithms in terms of the metrics of SNR,
the Hamming error, and the number of missing nonzero
coefficients.
For the second configuration, the average values of the

four metrics as a function of sparsity s are depicted in
Fig. 3 for the BIHT, RFPI, LP, GAMP, and Algorithm 3
with fixed m = 1000 and n = 1000. Figure 3a, b depicts

that BIHT, GAMP, and Algorithm 3 outperform the RFPI
and LP in terms of values of SNR and the Hamming
error. Figure 3c indicates that GAMP performs much bet-
ter than the other algorithms in terms of the number of
missing nonzero coefficients while Fig. 3d indicates that
GAMP performsmuch worse than the other algorithms in
terms of the number ofmisidentified nonzero coefficients.
For the third configuration, the average values of the

four metrics as a function of signal size s are depicted in
Fig. 4 for the BIHT, RFPI, LP, GAMP, and Algorithm 3
with fixed m = 1000 and s = 10. The plots in Fig. 4a–c
indicate that the GAMP performs best, the BIHT and
Algorithm 3 perform similarly and exhibit much better
performance than the LP and RFPI in terms of values
of SNR, the Hamming error, and the number of miss-
ing nonzero coefficients. Figure 4d shows that the BIHT
and Algorithm 3 outperform the other algorithms for all
tested values of n in terms of the number of misidentified
nonzero coefficients.
Finally, we compare the speed of the algorithms by

measuring the average CPU time it takes each algorithm
to produce the results showed in Figs. 2, 3, and 4. The
experiments are performed under Windows 7 and Mat-
lab 7.11 (R2010b) running on a laptop equipped with
an Intel Core i5-2520M CPU at 2.50GHz and 4G RAM
memory. When we implemented the BIHT, the num-
ber of iterations is set to 1500. The MATLAB command
linprog was adopted in the implementation of LP. The
source code of the GAMP was downloaded from the
website of the first author of [10]. The source code of
the RFPI was provided by the authors of [8]. The RFPI
has two loops. The suggested number of outer-loop iter-
ations is 20 while the number of inner-loop iterations
is 200. The results of the experiments are depicted in
Fig. 5. We find that both BIHT and GAMP are faster
than the RFPI and Algorithm 3. The CPU time con-
sumed by LP increases significantly, in particularly, when
the size of the signal or the number of measurement
increases.

(a) (b) (c)
Fig. 5 Speed comparison: average CPU time for a configuration 1; b configuration 2; and c configuration 3
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7 Conclusions
In this paper, we proposed a new model and algorithm
for 1-bit compressive sensing. The convergence analysis
of the proposed algorithm was given. We demonstrated
the performance of the algorithm for reconstruction from
1-bit measurements. In the future, it would be of interest
to study the convergence of Algorithm 3 with the Man-
gasarian function. This result would be highly needed to
adaptively update all the parameters in Algorithm 3 so that
consistent reconstruction can be achieved with improved
accuracy.
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