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Abstract

Maximum hands-off control is a control mechanism that maximizes the length of the time duration on which the
control is exactly zero. Such a control is important for energy-aware control applications, since it can stop actuators for
a long duration and hence the control system needs much less fuel or electric power. In this article, we formulate the
maximum hands-off control for linear discrete-time plants by sparse optimization based on the �1 norm. For this
optimization problem, we derive an efficient algorithm based on the alternating direction method of multipliers
(ADMM). We also give a model predictive control formulation, which leads to a robust control system based on a state
feedback mechanism. Simulation results are included to illustrate the effectiveness of the proposed control method.
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1 Introduction
Sparsity is one of themost important notions in recent sig-
nal/image processing [1], machine learning [2], commu-
nications engineering [3], and high-dimensional statistics
[4]. A wide range of applications is shown in works, such
as [5].
Recently, sparsity-promoting techniques have been

applied to control problems as stated below. Ohlsson
et al. have proposed in [6] sum-of-norms regularization
for trajectory generation to obtain a compact representa-
tion of the control inputs. In [7], Bhattacharya and Başar
have adapted compressive sensing techniques to state esti-
mation under incomplete measurements. The sparsity
notion is also applied to networked control for reduc-
tion of control data size using model predictive control
(MPC) [8–10]. MPC is a very attractive research topic to
which sparsitymethods are applied; in [11, 12] Gallieri and
Maciejowski have proposed �asso-MPC to reduce actuator
activity, and in [13] Aguilera et al. have discussed min-
imization of the number of active actuators subject to
closed-loop stability by using the �0 norm. Sparse MPC
is further investigated based on self-triggered control
in [14].
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Motivated by these researches, themaximum hands-off
control has been proposed in [15, 16] for continuous-time
systems. This control maximizes the length of the time
duration over which the control value is exactly zero.With
such control, actuators can be stopped for a long dura-
tion, during which the control system requires much less
fuel or electric power, emits less toxic gas such as CO2,
and generates less noise. Therefore, the control is also
called green control [17]. The optimization is described as
a finite-horizon L0-optimal control, which is discontinu-
ous and highly non-convex, and hence difficult to solve
in general. In [15, 16], under a simple assumption of nor-
mality, the L0-optimal control is proved to be equivalent
to classical L1-optimal (or fuel optimal) control, which
can be described as a convex optimization. The proof of
the equivalence theorem is mainly based on the “bang-
off-bang” property (i.e., the control takes values ±1 or 0
almost everywhere) of the L1-optimal control. Moreover,
based on the equivalence, the value function in the max-
imum hands-off control is shown to be continuous and
convex in the reachable set [18], which can be used to
prove the stability of an MPC-based closed-loop system.
In this paper, we investigate the hands-off control in

discrete time for energy-aware green control. The main
difference from the continuous-time hands-off control men-
tioned above is that the discrete-timemaximum hands-off
control shows in many cases no “bang-off-bang” property.
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Instead, we use the restricted isometry property (RIP),
e.g., [3], for an equivalence theorem between �0 and �1.
An associated �1-optimal control problem can be

described via an �1 optimization problem with linear con-
straints. This can be equivalently written as a standard
linear program, which can be “efficiently” solved by the
interior-point method [19]. The efficiency of the interior-
point method is true for small or middle-scale problems
with offline computation. However, for real-time control
applications, problems arise. To improve computational
efficiency in the current paper, we adapt the alternating
direction method of multipliers (ADMM) to the control
problem. ADMM was first introduced in [20] in 1976,
and since then, the algorithm has been widely investi-
gated in both theoretical and practical aspects; see the
review [21] and the references therein. ADMMhas indeed
been proved to converge to the exact optimal value under
mild conditions, but in some cases it shows quite slow
convergence to the optimal value. On the other hand,
ADMM often gives very fast convergence to an approxi-
mated value ([21], section 3.2). This property is desirable
for real-time control application, since the approximation
error can often be eliminated by relying upon robust-
ness of the feedback control mechanism. In fact, ADMM
has been applied to MPC with a quadratic cost func-
tion in [22–24]. In particular, an ADMM algorithm for
�1-regularized MPC has been proposed in [25] without
theoretical stability results.

1.1 Contributions
In this paper, we first analyze discrete-time finite-horizon
hands-off control, where we give a feasibility condition
based on the system controllability, and also develop an
equivalence theorem between �0- and �1-optimal controls
based on the idea of RIP. These are different from the
case of continuous-time hands-off control in [16], where
the concept of normality for an optimal control problem
was adopted. Unfortunately, normality cannot be used in
the discrete-time case. RIP is often used to prove equiv-
alence theorems, e.g., [1] in signal processing, and we
show in this paper that RIP is also useful for discrete-time
hands-off control.
To calculate discrete-time hands-off control, we then

propose to use ADMM, which is widely applied to sig-
nal/image processing [21], and we prove by simulation
that ADMM is very effective in feedback control since
it requires very few iterations. Finally, we prove a sta-
bility theorem for hands-off model predictive control,
which has been never given in the literature except for the
continuous-time case [18].

1.2 Outline
The paper is organized as follows: in Section 2, we for-
mulate the discrete-timemaximumhands-off control, and

prove the feasibility property and the �0-�1 equivalence
based on the RIP. In Section 3, we briefly review ADMM,
and give the ADMM algorithm for maximum hands-off
control. The penalty parameter selection in the optimiza-
tion is also discussed in this section. Section 4 proposes
MPC with maximum hands-off control, and establishes
a the stability result. We include simulation results in
Section 5, which illustrate the advantages of the proposed
method. Section 6 draws concluding remarks.

1.3 Notation
We will use the following notation throughout this paper:
R denotes the set of real numbers. For positive integers
n and m, Rn and R

m×n denote the sets of n-dimensional
real vectors and m × n real matrices, respectively. We
use boldface lowercase letters, e.g., v, to represent vectors,
and upper case letters, e.g., A for matrices. For a positive
integer n, 0n denotes the n-dimensional zero vector, that
is, 0n =[ 0, . . . , 0]� ∈ R

n. If the dimension is clear, the
zero vector is simply denoted by 0. The superscript (·)�
means the transpose of a vector or a matrix. For a vector
v =[ v1, v2, . . . , vn]� ∈ R

n, we define the �1 and �2 norms,
respectively, by

‖v‖1 �
n∑

k=1
|vk|, ‖v‖2 �

√√√√ n∑
k=1

|vk|2.

Also, we define the �0 norm of v as the number of
nonzero elements of v and denote it via ‖v‖0. A vector v is
called s-sparse if ‖v‖0 ≤ s, and the set of all s-sparse vec-
tors is denoted by �s � {v ∈ R

N : ‖v‖0 ≤ s}. For a given
v ∈ R

N, the �1-distance from v to the set �s is defined
by

σs(v) � min
x∈�s

‖v − x‖1.

We say a set is non-empty if it contains at least one ele-
ment. For a non-empty set �, the indicator operator for �

is defined by

I�(x) �
{
0, if x ∈ �,
∞, otherwise.

2 Discrete-time hands-off control
In this article, we consider discrete-time hands-off control
for the following linear time-invariant model:

x[k + 1]= Ax[k]+bu[k] , k = 0, 1, . . . ,N − 1, (1)

where x[k]∈ R
n is the state at time k, u[k]∈ R is the

discrete-time scalar control input, and A ∈ R
n×n, b ∈ R

n.
The control (sequence) {u[0] ,u[1] , . . . ,u[N−1] } is cho-

sen to drive the state x[k] from a given initial state x[0]= ξ

to the origin x[N]= 0 in N steps.
We call such a control feasible, and denote by Uξ the set

of all feasible controls. By solving the difference equation
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in (1) with the boundary conditions, x[0]= ξ and x[N]=
0, we obtain ANξ + �u = 0 with

� �
[
AN−1bAN−2b . . . Ab b

]
. (2)

By this, the feasible control set Uξ is represented by

Uξ = {
u ∈ R

N : ANξ + �u = 0
}
. (3)

For the feasible control set Uξ , we have the following
lemma.
Lemma 1. Assume that the pair (A, b) is reachable, i.e.,

rank
[
b Ab . . . An−1b

] = n, (4)

and N > n. Then Uξ is non-empty for any ξ ∈ R
n.

Proof. SinceN > n, the matrix� in (2) can be written as

� �
[
�1 �2

]
,

�1 �
[
AN−1bAN−2b . . . Anb

]
,

�2 �
[
An−1bAn−2b . . . Ab b

]
.

(5)

From the reachability assumption in (4), �2 is nonsin-
gular. Then the following vector

ũ �
[

0N−n
−�−1

2 ANξ

]
, (6)

satisfies ANξ + �ũ = 0, and hence ũ ∈ Uξ .

For the feasible control set Uξ in (3), we consider the
discrete-time maximum hands-off control (or �0-optimal
control) defined by

minimize
u∈Uξ

‖u‖0, (7)

where u = [
u[0] ,u[1] , . . . ,u[N − 1]

]�, and ‖u‖0 is so-
called the �0 norm of u, which is defined as the number
of nonzero elements of u. We call a vector u s-sparse if
‖u‖0 ≤ s. Let �s be the set of all s-sparse vectors, that is,

�s � {u ∈ R
N : ‖u‖0 ≤ s}.

For the �0 optimization in (7), we have the following
observation:
Lemma 2. Assume that the pair (A, b) is reachable and
N > n. Then, we have Uξ ∩ �n �= ∅.

Proof. From the proof of Lemma 1, there exists a feasible
control ũ ∈ Uξ that satisfies ‖ũ‖0 ≤ n; see (6). It follows
that ũ ∈ �n and hence ũ ∈ Uξ ∩ �n.

This lemma assures that the solution of the �0 opti-
mization is at most n-sparse. However, the optimization
problem (7) is a combinatorial one, and requires heavy
computational burden if n or N is large. This property is
undesirable for real-time control systems, and we propose

to relax the combinatorial optimization problem to obtain
a convex one.
For this purpose, we adopt an �1 relaxation for (7), that

is, we consider the following �1-optimal control problem:

minimize
u∈Uξ

‖u‖1, (8)

where ‖u‖1 � |u[0] |+|u[1] |+· · ·+|u[N−1] |. The result-
ing optimization can be described as a linear program,
and hence we can solve it efficiently by using numerical
software such as CVX in MATLAB [26, 27]. Moreover, an
accelerated algorithm is derived by the alternating direc-
tion method of multipliers (ADMM) [21]; see Section 3.
To justify the use of the �1 relaxation, we recall the

restricted isometry property [1] defined as follows:
Definition 1. A matrix � satisfies the restricted isometry
property (RIP for short) of order s if there exists δs ∈ (0, 1)
such that

(1 − δs)‖u‖22 ≤ ‖�u‖22 ≤ (1 + δs)‖u‖22
holds for all u ∈ �s.
Then, we have the following theorem.

Theorem 1. Assume that the pair (A, b) is reachable and
that N > n. Suppose that the �0 optimization (7) has a
unique s-sparse solution. If the matrix � given in (2) satis-
fies the RIP of order 2s with δ2s <

√
2−1, then the solution

of the �1-optimal control problem (7) is equivalent to that
of the �0-optimal control problem (8).

Proof. Let u∗ denote the unique s-sparse solution to (7).
By ([28], Theorem 1.2) or ([1], Theorem 1.8), the solution
to the �1 optimization (8), which we denote by û, obeys

‖û − u∗‖2 ≤ C0
σs(u∗)√

s
,

where C0 is a constant given by

C0 = 2 · 1 − (1 − √
2)δ2s

1 − (1 + √
2)δ2s

,

and

σs(u∗) � min
v∈�s

‖u∗ − v‖1.

Since u∗ is s-sparse, that is, u∗ ∈ �s, we have σs(u∗) = 0,
and hence û = u∗.

3 Numerical optimization by ADMM
The optimization problem in (8) is convex and can be
described as a standard linear program [19]. However, for
real-time computation in control such as model predictive
control discussed in section 4, a much more efficient algo-
rithm is desired than the standard interior point method
for the linear program. For this purpose, we propose
to adopt ADMM [20, 21, 29], for the �1 optimization.
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Although ADMM generally only achieves very slow con-
vergence to the exact optimal value, it is shown in ([21],
Section 3.2) that ADMM often converges to modest accu-
racy within a few tens of iterations. This property is
especially favorable in model predictive control, since the
computational error generated by the ADMM algorithm
can often be reduced by the feedback control mechanism;
see the simulation results in Section 5.

3.1 Alternating direction method of multipliers (ADMM)
Here, we briefly review the ADMM algorithm. ADMM is
an algorithm to solve the following type of optimization:

minimize
y∈Rμ,z∈Rν

f (y) + g(z) subject to Cy + Dz = c (9)

where f : Rμ �→ R ∪ {∞} and g : Rν �→ R ∪ {∞} are
closed and proper convex functions, and C ∈ R

κ×μ, D ∈
R

κ×ν , c ∈ R
κ . For this optimization problem, we define

the augmented Lagrangian by

Lρ(y, z,w) � f (y) + g(z) + w�(Cy + Dz − c)

+ ρ

2
‖Cy + Dz − c‖22,

(10)

where ρ > 0 is called the “penalty parameter” (or the step
size; see the third line of the ADMM algorithm below).
Then the algorithm of ADMM is described as

y[ j + 1] := arg min
y∈Rμ

Lρ(y, z[ j] ,w[ j] ),

z[ j + 1] := arg min
z∈Rν

Lρ(y[ j + 1] , z,w[ j] ),

w[ j + 1] := w[ j]+ρ
(
Cy[ j + 1]+Dz[ j + 1]−c

)
,

j = 0, 1, 2, . . . ,

(11)

where ρ > 0, y[0]∈ R
μ, z[0]∈ R

ν , and w[0]∈ R
κ are

given before the iterations.
Assuming that the unaugmented Lagrangian L0 (i.e., Lρ

with ρ = 0) has a saddle point, the ADMM algorithm
is known to converge to a solution of the optimization
problem (9) ([21], Section 3.2).

3.2 ADMM for �1-optimal control
Here we derive the ADMM algorithm for the �1-optimal
control (8). The optimization (8) can be described in the
standard form in (9) as follows:

minimize
y,z∈RN

IUξ
(y) + ‖z‖1 subject to y − z = 0,

where IUξ
is the indicator operator for Uξ , that is

IUξ
(y) �

{
0, if y ∈ Uξ ,
∞, otherwise.

Then, the ADMM algorithm for the �1-optimal control (8)
is given by

y[ j + 1] := �(z[ j]−w[ j] ),
z[ j + 1] := S1/ρ(y[ j + 1]+w[ j] ),
w[ j + 1] := w[ j]+y[ j + 1]−z[ j + 1] , j = 0, 1, 2, . . . ,

(12)

where � is the projection operator onto Uξ , that is,

�(v) �
(
I − ��(���)−1�

)
v − ��(���)−1ANξ ,

(13)

� is as in (2), and S1/ρ is the element-wise soft thresh-
olding operator (see Fig. 1) defined by (for scalars a)

S1/ρ(a) �

⎧⎨
⎩
a − 1/ρ, if a > 1/ρ,
0, if |a| ≤ 1/ρ,
a + 1/ρ, if a < −1/ρ.

(14)

The operator S1/ρ is also known as the proximity oper-
ator for the �1-norm term in the augmented Lagrangian
Lρ . Note that if the pair (A, b) is reachable and N >

n, then the matrix � is full row rank (see the proof of
Lemma 1), and hence the matrix ��� is non-singular.
Note also that thematrix I−��(���)−1� and the vector
��(���)−1ANξ in (13) can be computed before the iter-
ations in (12), and hence the computation in (12) is very
simple.

3.3 Selection of penalty parameter ρ

To use the ADMM algorithm in (12), we should appro-
priately determine the penalty parameter (or the step
size) ρ. In general, if the penalty parameter is large,
then the primal residual y[ j]−z[ j], or Cy[ j]+Dz[ j]−c[ j]
tends to be small, since it places a large penalty on
violations of primal feasibility; see (10). On the other
hand, a smaller ρ tends to give a sparser output from
the definition of the soft thresholding operator S1/ρ ; see
(14) or Fig. 1. For the selection of ρ, one should rely
on trial and error by simulation. One may extend the

Fig. 1 Soft-thresholding operator S1/ρ(a)
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idea of optimal parameter selection for quadratic prob-
lems [24, 30] to the �1 optimization (8), for which we
do not have any optimal parameter selection method.
Alternatively, one can adopt the varying penalty param-
eter ([21], Section 3.4), in which one may use possibly
different penalty parameters ρ[ j] for each iteration. See
also [31, 32].

4 Model predictive control
Based on the finite-horizon �1-optimal control in (8), we
here extend it to infinite-horizon control by adopting a
model predictive control strategy.1

4.1 Control law
The control law is described as follows. At time k (k =
0, 1, 2, . . . ), we observe the state x[k]∈ R

n of the discrete-
time plant (1). For this state, we compute the �1-optimal
control vector

û[k]�

⎡
⎢⎢⎢⎣

û0[k]
û1[k]
...

ûN−1[k]

⎤
⎥⎥⎥⎦ � arg min

u∈Uξ

‖u‖1, ξ = x[k] .

(15)

Then, as usual in model predictive control [33, 34], we
use the first element û0[k] for the control input u[k], that
is, we set

u[k]= û0[k]= [1 0 . . . 0] û[k] . (16)

This control law gives an infinite-horizon closed-loop
control system characterized by

x[k + 1]= Ax[k]+Bû0[k] . (17)

Since the control vector û[ k] is designed to be sparse by
the �1 optimization as discussed above, the first element,
û0[k], will often be exactly 0, e.g., the vector shown in
(6). A numerical simulation in Section 5 illustrates that
the control will often be sparse, when using this model
predictive control formulation.

4.2 Stability
We here discuss the stability of the closed-loop system
(17) with the model predictive control described above.
In fact, we can show the stability of the closed-loop con-
trol system by using a standard argument in the stability
analysis of model predictive control with a terminal con-
straint (e.g., ([33], Chapter 6), ([34], Chapter 2), or ([35],
Chapter 5)).
The key idea of the stability analysis in model predictive

control is to use the value function of the (finite-horizon)
optimal control problem as a Lyapunov function. The

value function of the �1-optimal control in (8) is defined
by (see (15))

V (ξ) � min
u∈Uξ

‖u‖1. (18)

The following lemma shows the convexity, the conti-
nuity, and the positive definiteness of the value func-
tion V (ξ). These properties are useful to show the value
function to be a Lyapunov function (see the proof of
Theorem 2 below).
Lemma 3. Assume that the pair (A, b) is reachable, A
is nonsingular, and N > n. Then V (ξ) is a convex,
continuous, and positive definite function on R

n.

Proof. First, we prove convexity. Fix initial states ξ , η ∈
R
n and a scalar λ ∈ (0, 1). From Lemma 1, there exist �1-

optimal controls ûξ and ûη for ξ and η, respectively. Then
the control ν � λûξ + (1 − λ)ûη is feasible for the initial
state ζ � λξ +(1−λ)η, that is, ν ∈ Uζ . From the convexity
of the �1 norm, we have

V
(
λξ + (1 − λ)η

) ≤ ‖ν‖1 = ∥∥λûξ + (1 − λ)ûη

∥∥
1

≤ λ‖ûξ‖1 + (1 − λ)‖ûη‖1
= λV (ξ) + (1 − λ)V (η).

Next, the continuity of V on R
n follows from the con-

vexity and the fact that V (ξ) < ∞ for any ξ ∈ R
n, due to

Lemma 1.
Finally, we prove the positive definiteness of V. It is eas-

ily seen that V (ξ) ≥ 0 for any ξ ∈ R
n, and V (0) = 0.

Assume V (ξ) = 0. Then there exists u∗ ∈ Uξ such that
‖u∗‖1 = 0. This implies u∗ = 0 and hence 0 ∈ Uξ . Since
A is nonsingular, ξ should be 0.

By using the properties proved in Lemma 3, we can
show the stability of the closed-loop control system.
Theorem 2. Suppose that the pair (A, b) is reachable, A
is nonsingular, and N > n. Then the closed-loop system
with the model predictive control defined by (15) and (16)
is stable in the sense of Lyapunov.

Proof. We here show that the value function (18) is
a Lyapunov function of the closed-loop control system.
From Lemma 3, we have

• V (0) = 0.
• V (ξ) is continuous in ξ .
• V (ξ) > 0 for any ξ �= 0.

Then, we show V (x[k + 1] ) ≤ V (x[k] ) for the state tra-
jectory x[k], k = 0, 1, 2, . . . , under the MPC (see (17)). By
the assumptions, we have the �1-optimal control vector
û[k] as given in (15). From this, define

ũ[k]�
[
û1[k] . . . ûN−1[k] 0

]� .
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Since there are no uncertainties in the plant model (1), we
see ũ[k]∈ U(x[k + 1] ). Then, we have

V (x[ k + 1] ) = min
u∈Ux[k+1]

‖u‖1 ≤ ‖ũ[k] ‖1
= −|û0[k] | + V (x[k] ) ≤ V (x[k] ).

It follows that V is a Lyapunov function of the closed-
loop control system. Therefore, the stability is guaranteed
by Lyapunov’s stability theorem.

We should note that if we use the first element of the
sparse feasible control given in (6), then the MPC gen-
erates the all-zero sequence, which obviously does not
stabilize any unstable plants. This shows that not all feasi-
ble controls necessarily guarantee closed-loop stability. It
is also worth noting that continuity of the value function
leads to favorable robustness properties of the closed-loop
system, see Section 5.

5 Simulation
Here, we document simulation results of the maximum
hands-off MPC described in the previous section in com-
parison with �2-based quadratic MPC [33]. Let us con-
sider the following continuous-time unstable plant:

ẋc(t) = Acxc(t) + bcuc(t),

with

Ac =
⎡
⎣ 3 −1.5 0.5
2 0 0
0 1 0

⎤
⎦ , bc =

⎡
⎣ 0.5

0
0

⎤
⎦ .

Note that this plant has the transfer function 1/(s −
1)3. We discretize this plant model with sampling period
h = 0.1 to obtain a discrete-time model as in (1) using
MATLAB function c2d(Ac,Bc,h). The obtained matrix
and vector are

A =
⎡
⎣ 1.3317 −0.1713 0.0580
0.2321 0.9836 0.0055
0.0111 0.0995 1.0002

⎤
⎦ , b =

⎡
⎣ 0.0580
0.0055
0.0002

⎤
⎦ .

For the discrete-time plant model, we assume the initial
state x[0]=[1, 1, 1]� and the horizon length N = 30. For
the ADMM algorithm in (12), we set the penalty param-
eter ρ = 2, which is chosen by trial and error. We also
choose the number of iterations in ADMM as Niter = 2,
so that the computation in (12) is much faster than the
interior-point method (see below for details).
For these parameters, we simulate the maximum hands-

off MPC. For comparison, we also simulate the quadratic
MPC with the following �2 optimization

minimize
u∈Uξ

‖u‖22.

Figure 2 shows the obtained control sequence u[k] by both
MPC formulations.

Fig. 2Maximum hands-off control (solid line) and L2-optimal control
(dashed line)

In this figure, the maximum hands-off control is suffi-
ciently sparse (i.e., there are long time durations on which
the control takes zero) while the L2-optimal control is
smoother but not sparse.
The �2 norm of the resulting state x[k] is shown in Fig. 3.
From the figure, the maximum hands-off control

achieves significantly faster convergence to zero than the
L2-optimal control.
Since we set the number of iterations Niter to 2 for

ADMM, there remains the difference between the exact
solution, say û[k] of (8) with ξ = x[k], and the approx-
imated solution, say uADMM[k] by ADMM. To elucidate
this issue, we describe the control system with ADMM as

x[k + 1] = Ax[k]+bû[k]+w[k] ,
w[k] � b(uADMM[k]−û[k] ),

Fig. 3 The �2 norm of the state, ‖x[ k] ‖2, by maximum hands-off
control (solid line) and L2-optimal control (dashed line)
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where û[k] and uADMM[k] are the first element of û[k]
and uADMM[k], respectively. That is, the ADMM-based
control is equivalent to the exact �1-optimal control with
perturbationw[k], which is caused by the inexact ADMM.
Figure 4 illustrates the perturbation w[k], where the exact
solution û[k] is obtained by directly solving (8) by CVX in
MATLAB based on the primal-dual interior point method
[19]. The solution by CVX can be taken as the exact solu-
tion since the maximum relative primal-dual gap in the
iteration is in this case 1.49 × 10−8. Figure 4 shows that
the perturbation also converges to zero thanks to the
stabilizing feedback mechanism (recall that, as shown in
Lemma 3, the cost function is continuous, hence the feed-
back loop can be expected to have favorable robustness
properties.)
Finally, we compare the number of iterations between

ADMM and the interior-point-based CVX. The averaged
number of the CVX iterations is 10.7, which is approx-
imately five times larger than that of ADMM, Niter =
2. Note that the interior-point-based algorithm needs to
solve linear equations at each iteration, and hence com-
putational times may be much longer than those for the
ADMM, since the inverse matrix in (13) can be computed
offline.

6 Conclusions
In this paper, we have introduced the discrete-time max-
imum hands-off control that maximizes the length of
time duration on which the control is zero. The design is
described by an �0 optimization, which we have proved
to be equivalent to convex �1 optimization using the
restricted isometry property. The optimization can be
efficiently solved by the alternating direction method of
multipliers (ADMM). The extension to model predictive

Fig. 4 The �2 norm of the perturbation w[k] by ADMM with Niter = 2

control has been examined and nominal stability has been
proved. Simulation results have been shown to illustrate
the effectiveness of the proposed method.

6.1 Future work
Here, we show future directions related to the maximum
hands-off control. The maximum hands-off control has
been proposed in this paper for linear time-invariant sys-
tems. It is desired to extend it to time-varying and nonlin-
ear networked control, such as Markovian jump systems
as discussed in [36–38], to which “intelligent methods”
have been applied in [39, 40]. We believe the sparsity
method can be combined with fault detection and reli-
able control methods, as discussed in [41, 42]. Future work
also includes an optimal selection method for the penalty
parameter ρ in ADMM which takes into account control
performance.

Endnote
1It is desirable if one can use an infinite-horizon control

like an H∞ control as in e.g. [36]. However, for the maxi-
mum hands-off control discussed in this paper, there is no
available methods to directly obtain infinite-horizon con-
trol, and model predictive control is a convenient way to
extend a finite-horizon control to infinite-horizon.
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