
EURASIP Journal on Advances
in Signal Processing

Rong et al. EURASIP Journal on Advances in Signal
Processing  (2016) 2016:75 
DOI 10.1186/s13634-016-0374-7

RESEARCH Open Access

Fault detection reduced-order filter
design for discrete-time Markov jump system
with deficient transition information
Lihong Rong1,2, Xiuyan Peng1* and Biao Zhang1

Abstract

The paper addresses the fault detection (FD) problem for a class of discrete-time Markov jump linear systems (MJLSs)
with deficient transition rates, which simultaneously considers the totally known, partly unknown, and uncertain
transition rates. Then, in accordance with the linear matrix inequality (LMI) method and the convexification
techniques, a sufficient condition for the existence of FD reduced-order filter over MJLSs with deficient transition
information is obtained, which can ensure the error augmented system with the FD reduced-order filter is
stochastically stable. In addition, a performance index is given to enhance the robustness of the residual system
against deficient transition information and external disturbance, such that the error between the fault and the
residual is made as small as possible to reinforce the faults sensitivity. Finally, an illustrative example is employed to
show the effectiveness of the proposed design approach.
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1 Introduction
During the past decades, Markov jump linear systems
(MJLSs) have been received extensive interests in many
engineering fields, such as energy system, solar ther-
mal power generation system, networked control system,
manufacturing system, financial market system [1, 2].
Many important results have been reported, such as a
number of studies on the Markovian jump system on the
filter design [3–5], controller design [6], output feedback
control [7–10], stability analysis and synthesis [11–13]. In
fact, MJLSs are very appropriate to dynamical model sys-
tems whose property is subject to random sudden variant
due to abrupt external disturbance, shifting of the action
spots of a nonlinear system, and repairs of components,
thus, in order to ensure the nonlinear system stochas-
tically exponentially stable, the author in [9] proposed
a Markovian Lyapunov functional which was been suc-
cessfully used in the nonlinear systems. In essence, the
transition rates (TRs) in the MJLSs are considerable up
to now. A large number of traditional analysis and design
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results have been reported on condition that the exactly
known the TRs in the MJLSs [14, 15]. However, it should
be pointed that all the mode transition rates can not be
acquired totally in lots of engineering plants. That is to
say, for a majority of MJLSs, there are three types of tran-
sition cases for the MJLSs, e.g., some are known, some
are unknown, and others are polytopic uncertain TRs
[16, 17]. On the other hand, in many published papers,
the unknown TRs and polytopic uncertain TRs in MJLSs
have been taken into account separatedly. In reality, in a
lot of actual conditions, there are the uncertain TRs and
unknown TRs in MJLSs synchronously. To mention a few,
the author in [2] investigated continuous-time Markovian
jump problems with deficient transition descriptions. In
[18], an H∞ filtering was developed for the two dimen-
sional continuous time MJLSs with deficient transition
descriptions. In this way, it is more rational and gen-
eral to research on the analysis and synthesis of MJLSs
with the totally known, uncertain and partly unknown
TRs concurrently, which is the main motivation to do my
research.
On another research frontier, the fault detection and

isolation techniques have gotten a great number of atten-
tion in the academic research and practical application
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because of the increasing demand for improving the sys-
tem reliability and the safety of modern plant operations
and reducing costs (see [19]-[29]). The basic design idea
of FD is to use the effective methods to generate a resid-
ual signal and to construct a common diagnostic residual
evaluation function to compare with a beforehand thresh-
old, then an alarm of fault is generated when the value
of system residual is larger than the threshold [30, 31].
Hence, in the process of fault detection, residual gener-
ation is a very important step, based on this, there are
many basic approaches are provided to generate robust
residuals that are sensitive to faults, while insensitive
to unknown input and noise. In the existing methods,
which have been proposed to detect faults, such as full-
state observer-based methods [32], optimization-based
approach [33], parity relations approach [34], unknown
input observers [35, 36], system identification methods
[37, 38], nonlinear approach [39, 40], artificial intelligence
techniques [41, 42], discrete event systems and hybrid
systems [43–46], the fault detection filter method is the
most favoured method. However, in many practical appli-
cations, high-order models are frequently used to describe
physical systems. This brings many difficulties in design
of the corresponding FD filter in order to detect faults in
a timely way. Moreover, to the knowledge of the authors,
there are few results have been reported in the litera-
ture on the high-efficiency FD reduced-order filter design.
This motivates us to study this work in order to reduce
the complexity, computation time of the FD filter design
process and save storage space, so as to improve the effi-
ciency of the fault detection, which has great potential in
practical applications.
In this paper, the chief aim is to design the FD reduced-

order filter for a family of discrete-time MJLSs with
deficient TRs, which is more general. By satisfying some
performance indexes, the susceptibility to malfunction
and the robustness against interference are both enhanced
on residual outputs. Through the constructing of the
residual generator, the FD design scheme is converted to
an H∞ filtering problem in order that the error between
residual and malfunction is minimized at the H∞ level.
Then, the sufficient condition for the existence of the
FD filter for the represented systems is obtained via lin-
ear matrix inequalities. Finally, a numerical example is
presented to show the effectiveness and potential of the
developed theoretical result. In fact, the problem of fault
detection for MJLSs with deficient TRs should meet many
requirements of detection performance andMarkov jump
process, which leads to the increase difficulty of filter
design. Therefore, to the best knowledge of the author, the
research on the fault detection reduced-order filters for
Markov jump systemwith deficient transition information
is relatively few, which is the third motivation for this
research.

The remainder of this paper is organized as follows. In
Section 2, the mathematical model of the system is for-
mulated, and then, many preliminary results are shown.
The sufficient condition of FD filter for the underlying sys-
tem is established in Section 3. In Section 4, a simulation
example is presented to point out the effectiveness of the
proposed approach.
Notations. R

n denotes the n-dimensional Euclidean
space,Rm×n denotes the set of allm×n real matrices, and
N represents a positive integer. The notation P > 0, where
P is the symmetric matrix, which means that P is positive
definite. In a symmetric matrix, ∗ represents the symmet-
ric element. ‖ · ‖ denotes the Euclidean vector norm of a
vector, l2[ 0,∞) is the space of all square summable vector
functions for ω = {ω(k)} ∈ l2[ 0,∞), and its norm is given
by ‖ω‖2 =

√∑∞
k=0 ‖ω‖2. The mathematical expectation

operator is denoted as E[ ·], and ‖Z‖ε2 =
√
E[
∑∞

k=0 ‖Z‖2]
indicates its norm.

2 Problem formulation
Consider the following discrete-time MJLS on a complete
rate space of the form:

xk+1 = A(rk)xk + B(rk)uk + E(rk)ωk + F(rk)fk ,
yk = C(rk)xk + D(rk)ωk + H(rk)fk ,

(1)

where xk ∈ R
nx represents the plant state, uk ∈ R

nu

is the known control input, ωk ∈ R
nd is the exogenous

disturbance signal, fk ∈ R
nf is the fault signal to be

detected, yk ∈ R
ny is the controlled output, uk ,ωk and fk

are assumed to belong to l2[ 0,∞). {rk , k > 0} is a discrete-
time homogeneous Markov chain, which takes values in a
finite set S = {1, 2, . . . , n}withmode transition rates (TRs)
Prob(rk+1 = j

∣∣ rk = i) = λij, where λij ≥ 0, for all i, j ∈ S
and �N

j=1λij = 1. For rk = i, i ∈ S, the system matrices
of the i-th mode are denoted by (Ai,Bi,Ci,Di), which are
known real matrices. In this paper, system (1) is assumed
randomly stable, which is a precondition formodel design.
Moreover, the TRs of the Markov process be regarded

as being polytopic uncertain and partly available; in other
words, the transition rate matrix (TRM) � = {

λij
}

is deemed to belong to a known polytope P� with
vertices �s.

P� :=
{
�

∣∣∣� =
∑M

s=1
αs�s; αs ≥ 0,

∑M

s=1
αs = 1

}
,

(2)

where vertices �s = [ λij]N×N , i, j ∈ S, I = 1, 2 · · ·M
are still given TRM containing unknown and uncertain
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factors. For example, for system (1) with four variation
modes, the TRMmay be as:⎡
⎢⎢⎣

λ̃11 λ12 λ̃13 λ̂14
λ̂21 λ̂22 λ23 λ̂24
λ̂31 λ32 λ̂33 λ34
λ41 λ̃42 λ̂43 λ44

⎤
⎥⎥⎦ (3)

where the superscripts labeled with “˜” and “ˆ” represent
the polytopic uncertainties and unknown TRs, separately,
and the others are known TRs. In order to make the nota-
tional more clearly, for all i ∈ S, we denote S = S(i)

k ∪S(i)
uc ∪

S(i)
uk as follows:

S(i)
k := { j : λij is known} ,
S(i)
uc :=

{
j : λ̃ij is uncertain

}
,

S(i)
uk :=

{
j : λ̂ij is unknown

}
.

Also, we define λ
(is)
uk := ∑

j∈S(i)
uk

λ̂ij = 1− ∑
j∈S(i)

k

λij− ∑
j∈S(i)

uc

λ̃
(is)
ij .

Remark 1. The transition rates of the MJLSs {rk , k ≥ 0}
have been universally assumed to be some known, some
unknown, and some uncertain within given intervals.
Hence, the TRM considered in this article is more natu-
ral to the MJLSs, which includes the previous three cases.
Then, we are interested in designing an FD filter for the
underlying system, and its desired structure is considered
to be:

x̂k+1 = AF(rk)x̂k + BF(rk)yk ,
r̂k = CF(rk)x̂k + DF(rk)yk ,

(4)

where, x̂k ∈ R
n is the state estimation of filter,

r̂k ∈ R
f is the residual, and AF(rk), BF(rk), CF(rk),

DF(rk), and ∀rk ∈ I are the matrices to be calculated.

Define x̃k := [
xTk x̂Tk

]T , ek := r̂k − fk . Then, by
augmenting (1) and (4), the error augmented system is
obtained as follows:

x̃k+1 = Ã(rk)x̃k + B̃(rk)ψk ,
ek = C̃(rk)x̃k + D̃(rk)ψk ,

(5)

where, ψk = [uTk ωT
k f Tk ]T and

Ã(rk) =
[

A(rk) 0
BF(rk)C(rk) AF(rk)

]
,

B̃(rk) =
[
B(rk) E(rk) F(rk)
0 BF(rk)D(rk) BF(rk)H(rk)

]
,

C̃(rk) = [DF(rk)C(rk) CF(rk)
]
,

D̃(rk) = [0 DF(rk)D(rk)DF(rk)H(rk) − I] .

In fact, the error augmented system (5) is also an MJLS
with deficient TRM in (3). Now, to describe the main
objective of this article more precisely, let us recom-
mend the following definitions for system (5), which are
necessary for the later progress.

Definition 1. [16] A discrete-time stochastic system (5)
is said to be stochastically stable if for ψk = 0, k ≥ 0 and
every initial condition x̃0 ∈ R

nx and r0 ∈ S the following

holds: E
{

∞∑
k=0

∥∥x̃k ∥∥2 ∣∣x̃0, r0
}

< ∞.

Definition 2. [6] Given the disturbance input ωk ∈
l2[ 0,∞), a scalar γ > 0, system (5) is stochastically stable
and has an H∞ performance index γ if the following two
conditions are satisfied:
1) When ωk = 0, k ≥ 0, system (5) is stochastically

stable in the sense of Definition 1.
2) When ωk 	= 0, k ≥ 0, under zero initial conditions,

the following inequality holds:

E
{ ∞∑
K=0

‖ek‖2
}

< γ 2E
{ ∞∑
K=0

‖ωk‖2
}

(6)

As a consequence, the main purposes of this paper are
to determine matrices {AF(rk), BF(rk), CF(rk), DF(rk)} in
system (4), such that the augmented error system (5) is
randomly stable with a reliable H∞ performance level γ

with deficient transition information. Finally, the discrete-
time MJLS (1) will be assumed to be stable in the end.
Moreover, in order to detect the fault fk , the residual eval-
uation function is designed as J(r̂g) =

√∑k0+L
g=k0 r̂

T
g r̂g ,

where k0 denotes the initial evaluation time instant. The
fault fk can be detected by the following steps.
i) Select a threshold Jth


= supd∈l2,f=0E
[
J(r̂k)

]
.

ii) Based on the above result, the fault fk can be detected
by comparing J(r̂k) and Jth.
iii)When J(r̂k) ≥ Jth, there are some faults, we should

give an alarm; when J(r̂k) < Jth, there are no faults.
Before proceeding further, we give the following lemma

on the H∞ performance analysis of system (5) with com-
pletely known TRs, which will be used in the derivation of
our main results.

Lemma 1. (see([3])) Given the disturbance input ωk ∈
l2[ 0,∞), for theMJLS (5) with completely knownTRs and
a given scalar γ > 0, if the coupled inequalities[

ÃT
i ηiÃi − Pi + C̃T

i C̃i ÃT
i ηiB̃i + C̃T

i D̃i
∗ − (γ 2I − B̃T

i ηiB̃i − D̃T
i D̃i
)
]

< 0, ∀i ∈ I,

(7)

where ηi := ∑N
j=1 λijPj have a resolvable matrices P =
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{P1,P2, . . .PN } such that the MJLS (5) with totally known
TRs is randomly stable with an H∞ performance index γ .

3 Main results
In this section, based on Lemma 1, firstly, we will intro-
duce an H∞ performance analysis criterion for the error
augmented system (5) and further focus on the design of
the FD reduced-order filter for MJLS (1) with deficient
mode information.

3.1 H∞ FD filter with deficient transition information
performance analysis

The following lemma presents an H∞ FD filter perfor-
mance analysis criterion for the underlying augmented
error system in (5) with deficient TRs.

Lemma 2. Let γ > 0 be a given scalar; if there are
positive-definite symmetric matrices P = {P1,P2, ...PN }
such that LMI (8) holds, then the error augmented system
in (5) with deficient transition information is randomly
stable with a guaranteed H∞ performance index γ and
satisfies (6).⎡
⎢⎢⎢⎣

−
(
η

(is)
j

)−1
0 Ãi B̃i

∗ −I C̃i D̃i
∗ ∗ −Pi 0
∗ ∗ ∗ −γ 2I

⎤
⎥⎥⎥⎦ < 0 (8)

where

η
(is)
j := ∑

j∈S(i)
k

λijPj + ∑
j∈S(i)

uc

λ̃
(s)
ij Pj +

∑
j∈S(i)

uk

λ̂ukPj,

∑
j∈S(i)

uk

λ̂uk := 1− ∑
j∈S(i)

k

λij − ∑
j∈S(i)

uc

λ̃
(s)
ij .

Proof. By virtue of Lemma 1, it is shown that system (5)
with totally known TRs is randomly stable with an H∞
performance γ , when matrix inequality (7) holds. Now
due to �N

j=1λij = 1 and with deficient TRs, we rewrite the
term

�N
j=1λijPj =

∑
j∈S(i)

k

λijPj +
∑
j∈S(i)

uc

( M∑
s=1

αsλ̃
(s)
ij

)
Pj +

∑
j∈S(i)

uk

λ̂ukPj .

(9)

Considering the fact that 0 ≤ αs ≤ 1,
M∑
s=1

αs = 1, (9) can

be rewritten as

�N
j=1λijPj =

M∑
s=1

αs

⎛
⎜⎝∑

j∈S(i)
k

λijPj +
∑
j∈S(i)

uc

λ̃
(s)
ij Pj +

∑
j∈S(i)

uk

λ̂ukPj

⎞
⎟⎠ = η

(is)
j .

Thus, with deficient transition information, (7) can be
rewritten as

⎡
⎣ ÃT

i ηiÃi − Pi + C̃T
i C̃i˜ AT

i ηiB̃i + C̃T
i D̃i

∗ −
(
γ 2I − B̃T

i ηiB̃i − D̃T
i D̃i

)
⎤
⎦

=
M∑
s=1

αs

[
ÃT
i η

(is)
j Ãi − Pi + C̃T

i C̃i ÃT
i η

(is)
j B̃i + C̃T

i D̃i

∗ −
(
γ 2I − B̃T

i η
(is)
j B̃i − D̃T

i D̃i
) ] .
(10)

Then, the right-hand side (RHS) of equality (10) can be
further processed as

RHS(10) =[
ÃT
i η

(is)
j Ãi − Pi + C̃T

i C̃i ÃT
i η

(is)
j B̃i + C̃T

i D̃i

∗ −
(
γ 2I − B̃T

i η
(is)
j B̃i − D̃T

i D̃i
) ] .
(11)

The RHS of equality (11) can be decomposed into the
following form:

RHS(11) =
[
ÃT
i η

(is)
j Ãi ÃT

i η
(is)
j B̃i

∗ B̃T
i η

(is)
j B̃i

]

+
[−Pi + C̃T

i C̃i C̃T
i D̃i

∗ −γ 2I + D̃T
i D̃i

]

=
[
ÃT
i η

(is)
j Ãi ÃT

i η
(is)
j B̃i

∗ B̃T
i η

(is)
j B̃i

]

+
[
C̃T
i C̃i C̃T

i D̃i
∗ D̃T

i D̃i

]
+
[−Pi 0

∗ −γ 2I

]
(12)

In fact, by Schur complement, RHS (12) is equivalent to

RHS(12) =
⎡
⎣ −I C̃i D̃
C̃T
i −Pi 0

D̃T
i 0 −γ 2I

⎤
⎦+

[
ÃT
i η

(is)
j Ãi ÃT

i η
(is)
j B̃i

∗ B̃T
i η

(is)
j B̃i

]

=

⎡
⎢⎢⎢⎣

−(η
(is)
j )

−1
0 Ãi B̃i

∗ −I C̃i D̃i
∗ ∗ −Pi 0
∗ ∗ ∗ −γ 2I

⎤
⎥⎥⎥⎦ < 0.

(13)

This completes the proof of the lemma.

Remark 2. Lemma 2 presents an H∞ performance anal-
ysis criterion for a family of MJLSs with deficient TRs.
However, it is shown that there are coupling terms in the
systemmatrices inequality (8), which structural constraint
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significantly augments the level of design conservatism.
Thus, it incurs some difficulties for fault detection fil-
ter synthesis problem. To overcome these difficulties, the
slack matrix method can be adopted here in order to
obtain the following improved criterion for augmented
error system (5).

3.2 Design of H∞ FD reduced-order filter
The next step is to translate theH∞ FD reduced-order fil-
ter design problem into amodel-matching problem. In the
following theorem, a sufficient condition is provided for
the existence of an admissibleH∞ FD reduced-order filter
with the deficient transition probabilities (3).

Theorem 1. Consider system (1) with deficient transi-
tion information, for given γ > 0, determine the matrices
AFi = M−1

i(2)Ãi, BFi = M−1
i(2)B̃i, CFi = C̃i, DFi = D̃i,

then the FD reduced-order filter (4) is found so that
the augmented error system (5) is randomly sta-
ble with an H∞ performance index γ , if there exist

positive-definite symmetric matrices Pi =
[
Pi(1) Pi(2)
∗ Pi(3)

]
∈

R(nx+nr)×(nx+nr), Mi =
[
Mi(1) TMi(2)

∗ Mi(3)

]
∈

R(nx+nr)×(nx+nr), and Ãri, B̃ri, C̃ri, D̃ri, ∀i ∈ I, satisfy the
following LMIs:⎡
⎢⎢⎢⎢⎢⎢⎣

�1 �2 0 �4 TMi(2)AFi �6
∗ �3 0 �5 Mi(2)AFi �7
∗ ∗ −I DFiCi CFi �8
∗ ∗ ∗ −Pi(1) −Pi(2) 0
∗ ∗ ∗ ∗ −Pi(3) 0
∗ ∗ ∗ ∗ ∗ −γ 2I

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0, (14)

where

η
(is)
j(m) :=

∑
j∈S(i)

k

λijPj(m) + ∑
j∈S(i)

uc

λ̃
(s)
ij Pj(m) + ∑

j∈S(i)
uk

λ̂ukPj(m),

m = 1, 2, 3,
∑
j∈S(i)

uk

λ̂uk := 1− ∑
j∈S(i)

k

λij− ∑
j∈S(i)

uc

λ̃
(s)
ij ,

(15)

�1 = η
(is)
j(1) − Mi(1) − MT

i(1),
�2 = η

(is)
j(2) − HMi(2) − MT

i(3),
�3 = η

(is)
j(3) − Mi(2) − MT

i(2),
�4 = Mi(1)Ai + TMi(2)BFiC,
�5 = Mi(3)Ai + Mi(2)BFiCi,

�6 =
[
Mi(1)Bi Mi(1)Ei + TMi(2)BFiD Mi(1)Fi + TMi(2)BFiHi

]
,

�7 =
[
Mi(3)Bi Mi(3)Ei + Mi(2)BFiDi Mi(3)Fi + Mi(2)BFiHi

]
,

�8 =
[
0 DFiDi DFiHi − I

]
.

Proof. Based on Lemma 2, accomplishing a congruence
transformation with (8) using given matrix {Mi I I I}
yields the following inequality
⎡
⎢⎢⎢⎣

−Mi
(
η

(is)
j

)−1
MT

i 0 MiÃi MiB̃i

∗ −I C̃i D̃i
∗ ∗ −Pi 0
∗ ∗ ∗ −γ 2I

⎤
⎥⎥⎥⎦ < 0, (16)

For an discretionary matrix Mi, ∀i ∈ I, we have the
following inequality established:(

ηTj − MT
i

)
η−1
j

(
ηj − MT

i

)
≥ 0. (17)

We expand (17), then, get the following bounding
inequality:

ηTj − MT
i − MT

i ≥ −MT
i η−1

j MT
i . (18)

It can be easily obtained the following form:

⎡
⎢⎢⎣

η
(is)
j − Mi − MT

i 0 MiÃi MiB̃i
∗ −I C̃i D̃i
∗ ∗ −Pi 0
∗ ∗ ∗ −γ 2I

⎤
⎥⎥⎦ < 0. (19)

In (19), in order to further research, we assume that the
matrix P, M have the following forms:

Pi :=
[
Pi(1) Pi(2)
∗ Pi(3)

]
, Mi :=

[
Mi(1) Mi(2)

∗ Mi(3)

]
, i ∈ I.

(20)

For H∞ FD filter design purpose, we choose the slack
matrixMi as:

Mi :=
[
Mi(1) TM(2)
Mi(3) M(4)

]
, i ∈ I, (21)

where

T := [ Inr Onr×(nx−nr)
]T , Mi(1) ∈ Rnx×nx , Mi(3) ∈ Rnr×nx ,

M(2) ∈ Rnr×nr , and M(4) ∈ Rnr×nr .

Then, according to formula (21), performing the follow-
ing congruent transformation

[
Mi + Mi

T
]

=
[
Mi(1) + MT

i(1) TM(2) + MT
i(3)

∗ M(4) + MT
(4)

]
,

(22)

by
[
I 0
∗ M(2)M−1

(4)

]
yields
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[
I 0
∗ M(2)M−1

(4)

][
Mi(1) + MT

i(1) TM(2) + MT
i(3)

Mi(3) M(4) + MT
(4)

][
I 0
∗ M−T

(4) M
T
(2)

]

=
[
Mi(1) + MT

i(1) TM(2)M−T
(4) M

T
(2) + MT

i(3)M
−T
(4) M

T
(2)

∗ M(2)M−T
(4) M

T
(2) + M(2)M−1

(4)M
T
(2)

]

=
[
Mi(1) + MT

i(1) TMi(2) + Mi(3)
∗ Mi(2) + MT

i(2)

]
.

(23)

Thus, matrix Mi in (21) can been directly specified the
following general form:

Mi :=
[
Mi(1) TMi(2)
Mi(3) Mi(2)

]
, i ∈ I. (24)

It is shown that in this way the matrix variableMi(2) can
be absorbed by the filter model gain variables AFi and BFi
by introducing

Ãi := Mi(2)AFi, B̃i := Mi(2)BFi. (25)

This feature enables one to make no congruent transfor-
mation to the original matrix inequality, and all the slack
variables can be set as Markov switching. Further define
matrix variables

C̃i = CFi, D̃i = DFi, η
(is)
j =

[
η

(is)
1j η

(is)
2j

∗ η
(is)
3j

]
. (26)

Then, we replace matrices Mi given by (24) into (19);
together with the admissible filter parameter, matrices are
defined in (25) and (26). Finally, we can get (14) exactly.
This completes the proof.

Remark 3. Up until now, it has shown that the main
result presented in Theorem 1 that not only provides
performance index γ ∗ but also gives a numerically effi-
cient and reliable approach to determine the correspond-
ing gains of an admissible FD reduced-order filter in
(4) by using Matlab software. In order to acquire a
receivable H∞ FD reduced-order filter with γ made as
small as possible in (6), it is necessary to calculate the
inequality (14) in Theorem 1 iteratively. Also, it can be
derived from (14) that the design FD reduced-order fil-
ter and the corresponding error between residual and
fault should be different on the basis of the different
degree of deficient statistics of mode transitions. The
main goal is to make the error as small as possible. To
illustrate the feasibility and effectiveness of the proposed
FD scheme, a numerical example will be given in the next
section.

4 Numerical example
For simplicity, we only consider the addressed FD prob-
lem for a discrete-time MJLS with deficient transition

information. Consider MJLS (1) with four operation
modes, and the following matrices:

A1 =

⎡
⎢⎢⎣
0.05 −0.27 0.44 0.39
0.55 0.33 0.38 0.55
0.1 0.17 0.27 0.44
0.05 0.22 0.16 0.11

⎤
⎥⎥⎦ ,

A2 =

⎡
⎢⎢⎣
0.11 −0.17 0.27 0.44
0.55 0.06 0.22 0.55
0.05 0.17 0.28 0.44
0.17 0.05 0.06 −0.11

⎤
⎥⎥⎦ ,

A3 =

⎡
⎢⎢⎣

0.16 0.06 −0.02 0.18
0.04 −0.37 0.53 −0.04

−0.08 −0.32 −0.05 −0.11
−0.17 0.4 0.04 0.29

⎤
⎥⎥⎦ ,

A4 =

⎡
⎢⎢⎣

0.23 0.01 −0.55 −0.38
−0.33 0.36 −0.48 −0.1
−0.20 −0.45 0.1 −0.19
0.23 0.16 0.5 −0.3

⎤
⎥⎥⎦ ,

B1 =[ 0.5; 0.2; 0.3; 0.1] , B2=[−0.8;−0.2;−0.1;−1] ,
B3=[ 0.2;−0.2;−0.1; 0.1] , B4=[ 0.9;−1.1;−0.7;−1.2] ,
C1 =[ 1 0.1 0.2 − 0.3] , C2 =[ 0.5 − 0.8 0.3 0.5] ,
C3 =[ 1.4 0.7 0.2 − 0.8] , C4 =[−0.71.2 1.2 − 0.6] ,
D1 = D2 = D3 = D4 = 0.5,
E1 = E2 = E3 = E4 =[ 0.08; 0.12; 0.50; 0.29] ,
F1 = F2 = F3 = F4 =[ 1; −1; −1; 1] ,
H1 = H2 = H3 = H4 =[−1] .

In order to make the simulation simplification, we con-
sider the known control input u(k) is simulated by step
signal with amplitude 0.2 for k = 0, 1, 2, . . . , 300. The
exogenous disturbance input ωk is given by white noise
signal with amplitude less than 0.5. The fault signal fk is:

fk =
{
2, 100 ≤ k ≤ 200,
0, others.

Now, four cases for different transition rate matrix
(TRM) are shown in Table 1, and the simulation result of
Markov chain rk is given in Fig. 1.

Table 1 Four different TRMs

Case1: completely known TRM Case 2: polytopic uncertain TRM⎡
⎢⎢⎢⎢⎢⎣

0.3 0.2 0.1 0.4

0.3 0.2 0.3 0.2

0.1 0.5 0.3 0.1

0.2 0.2 0.1 0.5

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

0.3 0.2 λ̂13 λ̂14

λ̂21 λ̂22 λ̂23 λ̂24

λ̃31 λ̂32 λ̃33 λ̂34

λ̂41 λ̂42 0.1 0.5

⎤
⎥⎥⎥⎥⎥⎦

Case 3: partly known TRM Case4: completely unknown TRM⎡
⎢⎢⎢⎢⎢⎣

0.3 0.2 λ̂13 λ̂14

λ̂21 λ̂22 0.3 λ̂24

λ̂31 λ̂32 λ̂33 λ̂34

λ̂41 λ̂42 0.1 0.5

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

λ̂11 λ̂12 λ̂13 λ̂14

λ̂21 λ̂22 λ̂23 λ̂24

λ̂31 λ̂32 λ̂33 λ̂34

λ̂41 λ̂42 λ̂43 λ̂44

⎤
⎥⎥⎥⎥⎥⎦



Rong et al. EURASIP Journal on Advances in Signal Processing  (2016) 2016:75 Page 7 of 10

Fig. 1Modes evolution

For case 2, the TRM includes three vertices 
r , r =
1, 2, 3, and their third row 
3

r , r = 1, 2, 3, are given by


3
1 = [ 0.5 λ̂32 0.2 λ̂34

]
,


3
2 = [ 0.35 λ̂32 0.42 λ̂34

]
,


3
3 = [ 0.2 λ̂32 0.36 λ̂34

]
.

Applying Theorem 1 through the Matlab LMI Toolbox,
the gains of an admissible FD filter in the form of (4) for
four different TRMs in Table 1 are acquired respectively.
Obviously, it is seen from Fig. 2, which presents the gen-

erated residual signals r̂k , that the more transition rate
information we have known, the smaller the generated

Fig. 2 Generated residual
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Fig. 3 Evolution of J(rF)

residual r̂k will become, e.g., the generated residual value
in case 2 is the smaller than the residual value in case 3.
The simulation results of polytopic uncertain effect better
than partly known and completely unknown.
In the following, Fig. 3 displays the evolution of J(r̂k) =√∑k0+L

k=k0 r̂
T
k r̂k for both faulty case and fault-free case,

respectively. It can be concluded from Fig. 3 that, when
the fault occurs, the residual and the residual evaluation
function have obvious change and the H∞ performance
indices for the error augmented system (5) in case 2 are
better than those in case 3 and case 4.
According to the path in Fig. 1 and the residual thresh-

old Jth = supd∈l2,f=0 E[
√∑k0+L

k=k0 r̂
T
k r̂k], for the four dif-

ferent TRM cases, the optimal H∞ performance indices
and the corresponding time steps for the FD are obtained

Table 2 Computation results for four different reduced-order FD
filter cases

Transition rate matrix Jmin Time steps

Completely known (case 1) 2.0057 102

Polytopic uncertain (case 2) 2.5169 103

Partly known (case 3) 2.6306 105

Completely unknown (case 4) 3.3299 107

in Tables 2 and 3. The filter gain is set to 0.1. From the
computation results, it can be also shown that the FD
capability in case 2 is stronger than that in case 3 and case
4. From the comparison results of the same-order FD fil-
ters, it is clear to see that the fault detection results in
polytopic uncertain TRs are less conservative than those
in incompletely known and completely unknown TRs.
The more polytopic uncertain knowledge in the TRM, the
faster sensitivity to faults will be taken and the better fault
detection performance the filter can attain. The time steps
to detect the fault have been shortened. Finally, compar-
ing Tables 2 and 3, we can find that FD speed with the
reduced-order filter is faster than that with full-order filter
in the same case. Thus, it declares the effectiveness of the
designed FD reduced-order filter for MJLSs with deficient
transition information.

Table 3 Computation results for four different full-order FD filter
cases

Transition rate matrix Jmin Time steps

Completely known (case 1) 2.0032 104

Polytopic uncertain (case 2) 2.4527 106

Partly known (case 3) 2.5062 107

Completely unknown (case 4) 3.2015 109
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5 Conclusion
In this paper, a fault detection approach is proposed for
discrete-time MJLSs with deficient transition informa-
tion. The main contribution of our study is the intro-
duction of Markov jump system with deficient transition
information in fault detection reduced-order filter design.
Special emphasis is polytopic uncertain entries have been
included in deficient transition information. The under-
lying systems are more general, where the deficient tran-
sition descriptions are assumed to be completely known,
polytopic uncertain, partly unknown, and completely
unknown transition rates. Based on the linear matrix
inequality approach and the linear convex optimization, a
sufficient condition of FD reduced-order filter for MJLS
with deficient transition information is obtained, such
that the augmented error system is stochastically stable.
Then, the changes of the fault signal approximately equal
to the changes of the residual signal. Finally, a numerical
simulation example has been given to illustrate the effec-
tiveness of the proposed design approach. An interesting
topic for future works includes fault detection and fault-
tolerant control methods for nonhomogeneous Markov
process in the nonlinear systems.
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