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Abstract

In this work, we show that by using a recursive random forest together with an alpha beta filter classifier, it is possible
to classify radar tracks from the tracks’ kinematic data. The kinematic data is from a 2D scanning radar without Doppler
or height information. We use random forest as this classifier implicitly handles the uncertainty in the position
measurements. As stationary targets can have an apparently high speed because of the measurement uncertainty, we
use an alpha beta filter classifier to classify stationary targets from moving targets. We show an overall classification
rate from simulated data at 82.6% and from real-world data at 79.7%. Additional to the confusion matrix, we also
show recordings of real-world data.
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1 Introduction
The increasing demand for protection and surveillance
of the coastal areas requires modern coastal surveil-
lance radars. These radars are designed such that small
objects can be detected. Therefore, there is an increasing
amount of information for the radar observer. Moreover,
the number of false and unwanted objects increases as the
demand for seeing small objects makes the radar more
sensitive. Generally, the false objects can be avoided by
using a reliable tracker. However, the tracker does not
exclude unwanted objects. The difference between false
and unwanted objects is that false objects do not originate
from true objects but are mainly noise objects, whereas
the unwanted objects originate from true objects but are
unwanted in the surveillance image. These objects depend
on the purpose of the radar; however, for coastal surveil-
lance radars, the unwanted objects are normally birds,
wakes from large ships, etc.
It has been shown in [1] that it is possible to classify

tracks by using a recursive classifier where a Gaussian
mixture model (GMM) is used to model the probabil-
ity distribution function (PDF) of the target’s kinematic
behavior. However the classifier does not handle the
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uncertainty in the measurements from the radar. In [2],
the position uncertainty is used as an input to the classi-
fier. The classifier also use a GMM tomodel the PDF of the
kinematic behavior of the target. The problem with this
is that it is very computationally expensive. To obtain an
easier way to handle uncertainty, joint target tracking and
classification can be used, as shown in [3–5]. The problem
with joint target tracking and classification is that it is dif-
ficult to achieve a high degree of freedom in the filters to
separate the classes. For example, a car driving 130 km/h
on the highway is not likely to accelerate but more likely
to decelerate. This is very hard to model with a tracking
filter. A particle filter can be used, but this is computation-
ally expensive. In [6], the authors are describing a method
to classify trucks and cars from GPS measurements. The
classifier consists of a support vector machine (SVM), and
the features are primarily acceleration and deceleration.
The classifier is non-recursive, whichmeans that the com-
plete length of the tracks is required. The measurements
from a GPS device is generally more accurate than the
positionmeasurements from a radar. In [7], a decision tree
is used for a recursive classification of four different target
classes. The data are from a radar with height information.
The decision tree has the advantage that it in some way
implicitly handles the uncertainty, that is, features that do
not separate the classes will not be used as much as fea-
tures separating the classes. The disadvantage is that the
classifier has a high variance of the classification results. In
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[8], the random forest classifier is introduced. The random
forest is a bagging classifier [9] where multiple decision
trees are used to reduce the variance of the classification
results. For this reason, random forest is selected in this
work.
In this work, we introduce a classifier which uses posi-

tion measurements to classify radar tracks from a 2D
scanning radar. The classifier consists of an alpha beta fil-
ter [10] and a random forest classifier. The alpha beta filter
is classifying stationary ormoving targets, and the random
forest classifies moving targets. The classifier is recur-
sive such that the classification results are being updated
for each scan of the radar. The classifier performance is
shown by using simulated track data and real-world radar
data.
In Section 2.1, we will introduce the random forest clas-

sifier by describing the training of a decision tree and
then explain how this tree is used in the random forest.
In Section 2.2, we will explain how we utilize the prob-
ability estimates from the random forest in a recursive
framework. In Section 2.3, we introduce an alpha beta fil-
ter classifier, which classifies targets as either stationary or
moving. This is introduced because stationary targets can
have high speeds because they fluctuate in the position
because of measurement uncertainty or the main scatter
points are moving, i.e., wind turbine. In Section 2.4, we
combine the random forest and the alpha beta filter as our
proposed classifier. In Section 2.5, we describe which fea-
tures we use in the random forest. The simulation study
is shown in Section 3, and in Section 4, the real-world
results are shown. We discuss the results in Section 5 and
conclude the work in Section 6.

2 Method
When using a random forest, a feature vector is needed.
We define our feature vector as a set of kinematic and
geographic features. The feature vector is derived from
the radar position measurements. We define this set of
position measurements as

{Zn}k = {Zn · · ·Zn−k}, (1)

whereZn = [ xn, yn] T, x and y is the position in a Cartesian
coordinate system with the origin at the location of the
radar, n is the measurement number index, and k is the set
size.

2.1 Random forest
In this section, we introduce the random forest classifier
[8, 11]. The random forest is a bagging algorithm, which
means that the random forest consists of a number of
weak classifiers [12], which has zero bias but high vari-
ance of the true value. The weak classifiers are decision
trees [9]. We start this section by describing how to grow
a decision tree and then move on to the random forest.

A decision tree consists of a number of nodes,
e.g., (N1 · · ·N3) and a number of leafs, e.g., (N4 · · ·N7).
This is shown in Fig. 1. A node is defined bymore than one
class existing in the node data, whereas a leaf has only one
class. In every node, a decision must be made such that we
go either left or right in the tree. The decision must always
be true or false. A leaf is defined as a node where all of the
data in the node consists of only one class; therefore, no
more splits are required.
To train the tree, we start with a feature vector F of size

Ns × D where Ns is the number of samples and D is the
number of features, i.e., dimensions in the feature vector.
We now want to split the data such that we make the best
separation of the classes by choosing the best feature and
feature value. To do this, we need to find the best feature
to split on and the best value to split at. To explain the
algorithm, we assume that there are only two classes so it
forms a binary classification problem and that the values
of the feature belong to a finite sample space. This is done
to make the explanation easier.
We start by assuming that a split already has been made

and we want to evaluate how good the split is. For this,
we use a normalized entropy measure to do that [12]. An
alternative to the normalized entropy is themore common
Gini index [13]; however, for this work, the normalized
entropy has shown better results. We define the set of
samples in the parent node as s1 and the number of sam-
ples in the set as |s1|. Similarly, we define the set of samples
in the children as s2 and s3 and the number of samples as
|s2| and |s3|. Further, we index the samples belonging to
class � by the superscript � such as s�1, where � ∈ {1, 2}. We
can calculate the empirical entropy for the children as

H(si) = −P
(
s1i

)
log2

(
P

(
s1i

)) − P
(
s2i

)
log2

(
P

(
s2i

))
, i

= {2, 3},
(2)

where P
(
s1i

) = |s1i |/|si| and P
(
s2i

) = |s2i |/|si|. It follows
that P

(
s1i

) = 1 − P
(
s2i

)
. As the entropy does not take

Fig. 1 An example of a decision tree where N1 to N3 are nodes where
a decision must be made. An example could be the blue ball (true or
false)
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into account howmany samples there are in each child, we
normalize the entropy as

Ĥ(si) = |si|
|s1|H(si), i = {2, 3}. (3)

We can now calculate the information gain from the
split as

H̃ = H(s1) −
(
Ĥ(s2) + Ĥ(s3)

)
. (4)

From (4), we now have a measure for how good a split is
and now able to optimize each split of the data such that
we choose the best feature to split on and the best value
of the feature. We split the data and continue to split the
data until all data in a node is of the same class, i.e., the
node becomes a leaf. To prevent overfitting, a decision
tree must be prone. However, an advantage of using ran-
dom forest is that it is not necessary to prune the decision
trees. The random forest is a bagging classifier [9]. This
means that the random forest consists of a number of trees
Nt where each tree is trained with a random part of the
samples and a random part of the features, that is, we draw
a random subset of the training data and select a random
subset of the features. We then train each tree with these
random subsets, and we assume that the trees are statisti-
cally independent of each other. A decision tree classifies
the data by following a path through each node. The path
is decided by the feature and feature value that made the
best split in the training. The data whichmust be classified
follow the path until a leaf is met. The leaf has a unique
class, and the data is classified as this class. The classifica-
tion of the data is a majority vote of the result from each of
the individual decision trees, that is, each tree is a unique
classifier which classifies the individual data.
In general, the random forest is not a probabilistic clas-

sifier but a majority vote between each of the trees. How-
ever, by counting the votes for each class and normalizing
with the total number of trees, an empirical probability
can be achieved.

P̂(ci|{Zn}k) = ψi/Nt , (5)

where ψi is the the number of votes for class i.
In the next section, we explain howwe obtained (5) from

the random forest to achieve a recursive update of the
probability for the class given all the measurements.

2.2 Recursive update of the random forest probability
The empirical probabilities obtained from the random for-
est classifier are obtained as the fraction of the number
of trees which predicts ci divided by the total number
of trees. By this definition, the resolution of the prob-
ability estimates is given by the number of trees in the

random forest. To prevent that a class is assigned a zero
probability, we modify it in the following way:

P (ci|{Zn}k) = P̂(ci|{Zn}k)(1 − 2/Nt) + 1/Nt
γ

, (6)

where γ is a normalization constant such that∑
i P(ci|{Zn}k) = 1. By this formula, the probability never

reaches zero for any of the classes.
Based upon the above, we have the probability for the

class given the current set of features P(ci|{Zn}k). How-
ever, we want the probability given all measurements, that
is P(ci|{Zn}), where {Zn} = {Zn}n. We have, however,
not been able to find a simple way to recursively update
P(ci|{Zn}) based on the previous P(ci|{Zn−1}) and which
works for all n. Instead, we propose the following recur-
sive function f (ci|{Zn}), which is everywhere non-negative
and sums to one. Thus, f (ci|{Zn}) can be considered to be
a probability mass function (PMF), which we will use as
an approximation for the true P(ci|{Zn}). In particular, we
define

f ({Zn}k , ci) � P(ci|{Zn}k)w
φn

f ({Zn−1}k , ci), (7)

where w is a weighting factor, P(ci|{Zn}k) is given by (6),
and where φn is the normalization constant such that∑

ci f ({Zn}k = 1. The introduction of the weighting by
w is inspired by the weighted Bayesian classifier used in
[14]. In particular, we choose w = 1/k since the features
of the random forest are given by a set of measurements
where only one out of k measurements is substituted at
each update.
In the next section, we describe our alpha beta tracking

filter. This filter is used to classify if a target is non-moving
or moving. The reason for applying such a filter is to clas-
sify stationary targets, which have a high apparent speed
due to measurement uncertainties.

2.3 Alpha beta filter
The alpha beta filter is a simple tracking filter [15]. By
using the alpha beta filter, we assume that we can describe
the target movements with a first-orderMarkov chain.We
have the state vector Xn =[ x̂, ŷ] T and the measurement
Zn. The alpha beta filter is trying to predict Zn given the
speed Vn−1 at time n − 1 and the state Xn−1 as

X−
n = X+

n−1 + τV+
n−1, (8)

where τ is the time between Zn−1 and Zn and the super-
script − is the prediction before the measurement is used
and the superscript + is after the measurement is used.
The filter assumes the speed is constant between n and
n − 1, that is Vn = Vn−1. The error can be calculated as

Rn = Zn − X−
n , (9)
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and with the residual, we update the estimate of the V−
n

and X−
n as

X+
n = X−

n + αRn

V+
n = V−

n + β

τ
Rn,

(10)

where α and β are the constants in the alpha beta filter. To
calculate the probability for Zn given X−

n , α, and β , we use
a multivariate normal distribution

Pαβ(Zn|X−
n ,α,β)

= 1
2π

√|
n| exp
(

−1
2

(
Zn − X−

n
) T
−1

n
(
Zn − X−

n
))

(11)

where 
n is the covariance of the position and the sub-
script αβ is to emphasize that this is the probability for
the alpha beta filter. The purpose of the alpha beta filter
is to separate non-moving targets, i.e., stationary targets
from moving targets. We therefore define two filters: a
stationary filter with the parameters α = 0.1 and β =
0.0, which allows the position part of the state to move
slightly but forces the speed to be constant at zero. The
possibility for a slight movement of the state is because
of the possibility for false-starting measurements. As the
parameters α and β are given of the class cs, we use the
notation Pαβ(Zn|X−

n cs). Likewise, we define the moving
alpha beta filter as Pαβ(Zn|cm,X−

n ) with the parameters
α = 1.0 and β = 1.0, i.e., we hold the speed constant
from update to update but allow both the movement and
the speed to change with the measured change. If we
know {Zn−1} which is the set measurement up to n − 1
and α and β , we can calculate X−

n and we can there-
fore write Pαβ(Zn|ci, {Zn−1}) instead of Pαβ(Zn|ci,X−

n ). For
this work, we want the alpha beta filter to classify if the
target is stationary or non-stationary, and we therefore
recursively update the probability of the alpha beta filter.

Pαβ(ci|{Zn}) = Pαβ(Zn|ci, {Zn−1})Pαβ(ci|{Zn−1})
Pαβ(Zn|{Zn−1}) .

(12)

To reduce the computational complexity, we assume
that the positions are controlled by a first-order Markov
chain, i.e., Zn ↔ Zn−1 ↔ {Zn−2},∀n.1

Pαβ(ci|{Zn}) = Pαβ(Zn|ci,Zn−1)Pαβ(ci|{Zn−1})
Pαβ(Zn|Zn−1)

, (13)

In the next section, we describe how we combine the
random forest classifier and the alpha beta filter classifier
such that a classifier, which is a combination of the two
classifiers, is created.

2.4 Combining the alpha beta filter with random forest
In our work, we let the alpha beta filter classify if the target
is stationary or non-stationary, i.e., the alpha beta filter has

two classes. The random forest has a stationary class and
multiple non-stationary classes.We define for the random
forest c0 to be the stationary class and c1···nC to be the
moving classes, where nC is the total number of classes.
For the alpha beta filter, we have the two classes as cs and
cm for stationary and non-stationary classes, respectively.
We want the alpha beta filter classifier to have a larger
weight on the classification result of stationary vs. mov-
ing than the random forest.We therefore use the recursive
updated probability from (13). We do this as described in
(14) and (15).

P̂(c0|{Zn}) = f ({Zn}k , c0)Pαβ(cs|{Zn}), (14)

P̂(ci|{Zn}) = f ({Zn}k , ci)Pαβ(cm|{Zn}), i = 1 · · · nC
(15)

We then normalize P̂(ci|{Zn}) as

Pc(ci|{Zn}) = P̂(ci|{Zn})
ω̂

, (16)

where ω̂ is a constant such that
∑

i Pc(ci|{Zn}) = 1. By
including the alpha beta filter in this manner, we ensure
that the alpha beta filter classifies if a target is station-
ary while the alpha beta filter classifier does not have
influence on the different moving classes.
In the next section, we will describe the features we

use for the random forest feature vector, and we will also
describe how these are derived from the position. We
only utilize position-dependent features such as speed and
acceleration.

2.5 Features
For the feature vector, we draw inspiration from [16] for
some of the features. In this work, we set the number
of position measurements k in (1) to 10. The number
of measurements used in the feature vector is a com-
promise between the time it takes to get the number of
measurements required for a full feature vector and the
amount of information contained in the feature vector.
Larger k requires more measurements, i.e., more time
before a classification result is made, whereas for smaller
k, the first classification result comes earlier albeit with
a greater uncertainty due to the smaller amount of avail-
able information. The features and their descriptions can
be seen in Table 1. Remember that we defined {Zn}k to be
{Zn · · ·Zn−k}. To make the notation easier, we index each
measurement in {Zn}k by i such that i represent the ith ele-
ment in the set of measurements {Zn}k , that is 0 ≤ i < k.
Likewise, we define the set of time stamps of the mea-
surements as {tn}k with the individual measurement being
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Table 1 The feature vector used. The number of measurement
has been chosen to be k = 10

Feature Feature description

std(�i) Empirical standard deviation of sample-to-sample distances

v1
... 2-point speed estimate

vk

mean(vi) Empirical mean of the speed

std(vi) Empirical standard deviation of the speed

a1
... 2-point acceleration estimate

ak−1

mean(ai) Empirical mean of the acceleration

std(ai) Empirical standard deviation of the acceleration

mean(a⊥
i ) Empirical mean of the normal acceleration

std(a⊥
i ) Empirical standard deviation of the normal acceleration

|zk − z0| Total distance moved

d0
... Distance to coastline

dk

mean(di) Empirical mean of the distance to coast line

observed at time ti. We start by calculating the vectorial
distance between the measurements as

δi = Zi − Zi−1, (17)

with the scalar distance given by

�i = |Zi − Zi−1|, (18)

and the time difference between the measurements as

τi = ti − ti−1. (19)

The 2-point velocity estimate is

vi = �i
τi

, (20)

for 1 ≤ i < k, and the 3-point acceleration estimate is

ai = 2(vi+1 − vi)
τi+1 + τi−1

, (21)

for 1 ≤ i < (k − 1). The normal acceleration a⊥
i is given

by the product of the speed and angular velocity

a⊥
i =

(
vi+1 + vi

2

) (
2

ti+1 − ti−1

)
cos−1

(
δi+1 · δi
�i+1�i

)
.

(22)

We also use land/sea as information These can be
extracted from the SWBD (SRTM Water Body Data)
database from [17]. The database is a set of polygons

describing the coastline. Because of errors in the database,
a hard threshold cannot be used for land and sea. We
therefore proposed to use the distance to the coastline
di for each measurement as a feature. By using these
polygons, it is possible to calculate the distance from a
measurement to the coastline. However, it is getting more
and more computationally expensive to calculate the dis-
tance as the distance to the nearest coastline increases.
We therefore assign a maximum distance ξ to the coast-
line from the target. If the target is farther away than ξ , we
assign ξ to the distance. The sign of the distance decides if
it is over land or sea. We set ξ = 700 m to accommodate
for errors in the SWBD database.
In the next section, we will show some simulation results

of the classifier. We will also show some real-world results
of the classifier.

3 Simulation study
We start by showing the performance of the algorithm vs.
the number of measurements k where the extracted fea-
tures are from. The size of the feature vector changes by k
and the table shown in Table 1 for k = 10. The data we use
are simulated data from a controlled random walk. The
controlled randomwalk consists of a three-state transition
matrix which has a deceleration state, steady state, and
acceleration state. The parameters for maximum andmin-
imum speed are incorporated which changes the proba-
bility in the transition matrix if the speed is not within
the boundary of the permitted speed range. The data for

Fig. 2 The state machine used for the data generation of the
simulated data. The state machine has three states, an accelerating a,
decelerating d, and a constant-speed c state. The probability for
jumping between the states is controlled with Pĵ,j which is change
depending on the speed
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Fig. 3 An example of a simulated track

Fig. 4 The speed PDFs of the four different classes
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different targets are generated such that they have nearly
the same support in speed and the main difference is the
acceleration support. The random walk creates positions
pxm and pym which are extrapolated from some smooth
speeds v̂xm and v̂ym described later.

pxm = pxm−1 + �tv̂xm + 
x
m (23)

pym = pym−1 + �tv̂ym + 

y
m, (24)

where �t is the time between the updates form andm−1
and 
x

m and 

y
m are position uncertainties drawn from a

distribution.[

x

m



y
m

]
∼ N (0,
e), (25)

where 
e is the position covariance and N denotes the
normal distribution. The smooth speeds are speeds vxm
and vym which are convolved with a 25-tap moving average
filter h. This is done to avoid quick changes in the speed.

v̂xm = h ∗ vxm (26)
v̂ym = h ∗ vym. (27)

The speeds (27) are extrapolated from accelerations
axj (m) and ayj (m), where j denotes depending upon the
state j described in (32). The speeds are given as[

vxm
vym

]
=

[
vxm−1 + �toxj (m)

vym−1 + �toyj (m),

]
(28)

where oxj (m) and oyj (m) are accelerations which are drawn
from two normal distributions given by

oxj (m) ∼ N
(
μx,j, σ 2

x,j

)
(29)

oyj (m) ∼ N
(
μy,j, σ

y
y,j

)
(30)

The parameters for the normal distribution μx,j, μy,j,
σ 2
x,j, and σ 2

y,j are given from the function φj(v(m − 1),�).
This is done because we want to control the maximum
and minimum allowed speed. We define this function as

φj(v(m − 1),�) =
⎧⎨
⎩

ψj(1) if vm−1 > ζmax,
ψj(2) if ζmin ≤ vm−1 ≤ ζmax

ψj(3) else,
,

(31)

Fig. 5 The acceleration PDF of the four classes
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where ψj(1), ψj(2), and ψj(3) are the set of parameters
{μy,j,μx,j, σ 2

y,j, σ 2
x,j} used in (30) and � = {ζmin, ζmax}. The

state machine consists of three states: deceleration (d),
constant (c), and acceleration (a) states, see Fig. 2. Fur-
ther, the state machine is also controlled by the speed. We
define the state transition probabilities as

Pĵ,j(v(m − 1),�) =

⎧⎪⎨
⎪⎩

�ĵ,j(1) if vm−1 > ζmax,
�ĵ,j(2) if ζmin ≤ vm−1 ≤ ζmax

�ĵ,j(3) else,
,

(32)

where ĵ is the previous state and�ĵ,j is the transition prob-
ability. An example of a track can be seen in Fig. 3. The
speed PDFs can be seen in Fig. 4, and the accelerations
PDF can be seen in Fig. 5. The performance of the clas-
sifier vs. the number of measurements k can be seen in
Fig. 6. Further, we show the performance of the classifier
vs. the number of trees Nt used in the random forest, see
Fig. 7. The confusion matrix of the classification results
for the four classes can be seen in Table 2, where we have
used k = 10 and Nt = 100.

4 Real-world results
The data used for this work consist of Automatic Identifi-
cation System (AIS), which is a broadcast system used for
large ships; Automatic Dependent Surveillance-Broadcast
(ADS-B), which is a broadcast system used for commercial
aircrafts; GPS logs; and real-world radar data. The classes
for this work are typical classes for coastal surveillance,
e.g., large ships, birds, and small boats.
We show a confusion matrix for real-world data in

Table 3. As a confusion matrix does not take into account
how the probability develops over time, we also show
some real-world scenarios. For these scenarios, extra
classes are used. The scenarios are images showing all
tracks within a specific time period. The scenarios have
both known and unknown targets. It is therefore not pos-
sible to make a confusion matrix of the scenario; however,
it is possible to have a good estimate of the performance
of the classifier in real-world situations. The scenarios are
recorded with different radars and antennas; further, the
sampling rate can be different for the different scenarios.
We show two scenarios from coastal surveillance applica-
tions. The first coastal surveillance scenario is recorded in

Fig. 6 The overall performance of the algorithm given the number of measurements used in the feature vector
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Fig. 7 The performance of the classifier for the synthetic generated data vs. the number of trees used in the random forest

Denmark where a rigid inflatable boat (RIB) is sailing from
west to east and zigzagging back. Towards the north of
the RIB, there are two unknown vessels; further, there are
some sea buoys present both to the north of the RIB and
also to the far south. The rest of the tracks are believed to
be birds. See the scenario in Fig. 8. The second scenario
is also from Denmark and shows two wind turbine farms.
A commercial plane is flying in from the west to the east,
and a small personal aircraft is circling over the first wind
farm to the north, then the second wind farm, and finally
leaving towards the east. Three vessels are present, one to

Table 2 The confusion matrix of the simulated data

Predicted

Actual Type 1 Type 2 Type 3 Type 4

Type 1 95.2 4.8 0.0 0.0

Type 2 16.7 72.1 11.2 0.0

Type 3 1.0 35.6 63.3 0.0

Type 4 0.0 0.0 0.0 99.9

Overall performance 82.6

the east of the wind farm in the north (above the other
wind farm) and the second vessel is sailing through the
wind farm in the south. The last vessel is sailing from west
to east under the south wind farm. The rest of the tracks
are believed to be birds, see Fig. 9. As the majority of pre-
viously published results are based on a joint tracking and
classification approach, mostly on simulated data, it is not
directly possible to compare the obtained classification
accuracy.
In the next section, we will discuss the results of the

classifier.

5 Discussion
In Fig. 6, the performance of the classification results for
the simulated data set is shown, where we vary the num-
ber of measurements k, in (1), used to extract the features.
The performance is calculated as the mean of the diagonal
in the confusion matrix. It is clear that the more measure-
ment (longer feature vector) used, the better the classi-
fication results. This is clear as more information to the
classifier gives better estimation of the class, and there-
fore, it is more likely to classify correct. The downside of
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Table 3 The confusion matrix for real-world data

Predicted

Actual Birds RIBs Stationary sea Large ships Helicopters Commercial aircrafts
targets

Birds 67.9 9.2 0.0 21.0 1.9 0.0

RIBs 6.4 62.4 0.0 31.2 0.0 0.0

Stationary sea targets 0.5 0.0 99.5 0.0 0.0 0.0

Large ships 21.4 5.1 0.3 61.5 11.6 0.0

Helicopters 12.2 0.0 0.0 0.0 87.8 0.0

Commercial aircrafts 0.8 0.0 0.0 0.0 0.0 99.2

Overall performance 79.7

increasing the number of measurements is that it takes
longer time from a track is seen until the first probability
of the target is shown. For our results, the sampling rate
varies between 0.333 and 1 Hz. For 10 measurements, this
gives a maximum waiting time of 30 s, which we believe
for the application in hand is acceptable. In Fig. 7, the per-
formance can be seen when varying the number of trees
used in the random forest. The plot is made with k = 10.

It can be seen that the performance does not get better
after around 170 trees. The increase in the number of trees
takes longer time to train the random forest and is more
computationally expansive and memory requiring when
using the classifier for testing, i.e., the purpose of the clas-
sifier is to run in real time. The performance of k = 10
and nt = 100 can be seen in Table 2. It is clear that type
2 and type 3 have the most confusion between them. This

Fig. 8 The scenario where a RIB is sailing out and zigzagging back again. A big amount of birds is present
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Fig. 9 Horns Rev

is also natural if we look at the speed PDFs and the accel-
eration PDFs in Figs. 4 and 5, respectively, as these are
very similar. In general, the diagonal numbers in the con-
fusion matrix are at the left side. This is due to the fact
the large allowed acceleration still contains smaller accel-
eration which therefore will be classified as a lower class
type.
For the real-world scenarios, we use k = 10 and nt =

170. As it can be seen, the confusion matrix in Table 3
shows relative good performance. Nearly all of the sta-
tionary sea targets and commercial aircrafts are classified
correctly. The helicopters are confused with birds. This
can be because the helicopters can move as slow as birds.
There is some confusion between large ships, birds, and
RIBs. All of these classes have kinematics which are close
to each other.
In Fig. 8, one of the real coastal surveillance scenarios

is shown. The scenario shows a RIB sailing out from a
marina and zigzagging back again. The RIB is classified
as a small fast boat. The reason that it is not classified as
a Jet Ski/RIB is that it sails more like a fast boat whereas
a Jet Ski/RIB often makes turns, accelerates, and deceler-
ates. The two slow-moving vessels to the north of the RIB
are classified correctly. Some of the sea buoys are classified
correctly as stationary targets. Only a few birds are clas-
sified correctly. In Fig. 9, two wind farms can be seen and
nearly all of the wind turbines are classified as stationary,

while a few are misclassified as small slow-moving boats.
The commercial aircraft is between a commercial aircraft
and small aircraft; however, the target is primarily classi-
fied as a commercial aircraft. The small aircraft circling
the two wind farms is classified correctly even though the
aircraft is flying below stall speed. This can be due to
the strong winds, and therefore, the real airspeed is much
larger. The one sea vessel that is sailing between the wind
turbines is misclassified as a bird, while the other sea ves-
sels are classified as small slow boats, small fast boats, and
helicopters. Unfortunately, nearly all the birds are misclas-
sified either as unknown or as a helicopter. We believe
this is because the training data do not contain any birds
at that distance and speed (because of the wind). Further,
the radar used to record this scenario is different from the
radars used for the training data.

6 Conclusions
We have shown that it is possible to use a recursive
approach to classify radar tracks from kinematic data. We
have also shown that it is possible to use an alpha beta
filter together with the random forest such that station-
ary targets are classified as stationary. The study used
both simulated data, which is simulated to behave as
real targets, and real-world data. We have shown both
scenario and confusion matrix to get an overview of the
performance.
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