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Abstract

Developing compressed sensing (CS) theory reveals that optimal reconstruction of an unknown signal can be
achieved from very limited observations by utilizing signal sparsity. For inverse synthetic aperture radar (ISAR), the
image of an interesting target is generally constructed by limited strong scattering centers, representing strong
spatial sparsity. Such prior sparsity intrinsically paves a way to improved ISAR imaging performance. In this paper,
we develop a super-resolution algorithm for forming ISAR images from limited observations. When the amplitude
of the target scattered field follows an identical Laplace probability distribution, the approach converts super-resolution
imaging into sparsity-driven optimization in the Bayesian statistics sense. We show that improved performance is
achievable by taking advantage of the meaningful spatial structure of the scattered field. Further, we use the
nonidentical Laplace distribution with small scale on strong signal components and large scale on noise to discriminate
strong scattering centers from noise. A maximum likelihood estimator combined with a bandwidth extrapolation
technique is also developed to estimate the scale parameters. Real measured data processing indicates the proposal
can reconstruct the high-resolution image though only limited pulses even with low SNR, which shows advantages
over current super-resolution imaging methods.

Keywords: Inverse synthetic aperture radar (ISAR), Super-resolution, Compressive sensing (CS), Statistical compressive
sensing, Bayesian, Laplace distribution, Nonidentical distribution

1 Introduction
High-resolution radar imaging techniques are widely ap-
plied in many military and civilian fields, such as target
classification and recognition and aircraft traffic control.
For success of these applications, sufficient image reso-
lution is required to characterize the scattering and geo-
metric features of the target. Inverse synthetic aperture
radar (ISAR) combines the use of pulse compression,
flexible pulse repetition frequency (PRF), and target mo-
tions (particularly the rotating motion) to generate two-
dimensional high-resolution imagery. In general, range
resolution is determined by the bandwidth of the trans-
mitted signal which is limited by the radar system. To
mitigate this limitation, stepped frequency waveforms
are usually employed at a price of longer coherent

processing interval (CPI) [1]. Cross-range resolution is
dependent on both the CPI and the target rotational
motion from the variation of radar viewing angles. It is
well known that CPI should be long enough for high azi-
muth resolution, which conflicts with modern radar ac-
tivities such as multi-target tracking and searching [2].
Due to the CPI limitation, achieving high resolution in

azimuth with only a few pulses through conventional
radar imaging schemes, e.g., range-Doppler (RD) algo-
rithm [3], is difficult. This motivates super-resolution
(SR) techniques. SR image formation improves the abil-
ity to resolve two closely spaced scatterers in compari-
son with the Nyquist resolution limit [4], which actually
involves uncertainty as the dimension of the image is re-
quired to be higher than that of the measurements. En-
hancing both the image contrast enrichment and
scattering center localization, SR imaging will also re-
duce scintillation effects associated with unresolved scat-
terers. A super-resolved image can usually promote the
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probability of correct automatic target recognition
(ATR) [5, 6]. Consequently, a large fraction of the radar
imaging research effort has been taken in developing
resolution enhancing algorithms. Generally, there are
three categories that conventional SR approaches are
often sorted into. The first group is the bandwidth ex-
trapolation (BWE) methods. They are based on the fact
that the data is analytic in principle and can be fitted
into a linear prediction model [2, 7–10]. BWE usually
applies some modern spectral estimation techniques to
determine the coefficients of the prediction model.
Burg’s algorithm [2] is one of the most successful esti-
mators. The second general group of SR methods is the
parametric spectral estimation techniques. They attempt
to estimate parameters of the dominant scattering cen-
ters by modern spectral estimation techniques. Probabil-
istic strategies which model the signal and noise
statistically, including maximum a posteriori and max-
imum entropy [11, 12] schemes have also been devel-
oped, yielding good performance. Adaptive spectral
estimators [13–18] utilize sinusoid parametric model to
estimate the coefficients of signals by finding a set of fil-
ters adaptively. Among this sort, RELAX [13], [14],
which estimates the amplitude and frequency of a multi-
component complex sinusoidal signal by minimizing the
residual error energy, is one of the most popular algo-
rithms. Imageries generated by these approaches are in-
herently free from sidelobes, and resolution relies on the
precision of spectral estimation. The third group is non-
linear filtering techniques to reduce side lobes while pre-
serving the width of the main lobe. This group includes
space-variant filtering methods such as adaptive side-
lobe reduction (ASR) [19] and the related special case of
spatially variant apodization (SVA) [20], as well as
CLEAN and its modified versions [21, 22]. All the
current SR algorithms are more or less sensitive to noise
and model error.
Conventional SR imaging can be regarded as a process

that recovers a higher dimensional signal from measure-
ments with much fewer degrees of freedom and is
deemed to involve uncertainty mathematically. Develop-
ing compressive sensing (CS) theory reveals that an un-
known sparse signal can be exactly recovered from very
limited measurements with high probability by solving a
convex l1 optimization problem [23–25]. Satisfaction of
the restricted isometry property (RIP) allows the uncer-
tainty in the l1 optimization problem to be overcome to
provide an exact or approximate signal recovery. The es-
sence of CS is to exploit prior knowledge of sparsity of
the objective signal. This explains the promising per-
formance of radar imaging via regularization techniques.
For ISAR imaging, strong scattering centers exhibiting
the scattering organization and geometric configuration
of the target usually occupy only a fraction of whole bins

in the RD plane. In this sense, the ISAR signal is
spatially sparse in RD domain. Such sparsity can be
exploited by l1 optimization to enhance image quality
and feature. Many sparsity-driven SR approaches based
on l1 optimization have been developed for SAR/ISAR
imaging. The feature-enhanced SAR imaging approach
[26, 27] exploits the sparsity of both image and differen-
tial image via the lp(0 < p ≤ 1) optimization to enhance
the point and region feature of the radar image. Particu-
larly, the point-enhanced image formation can extrapo-
late the data bands beyond the observations, yielding SR
imaging. It should be noted that the point-enhanced
optimization with p = 1 is equivalent to the l1
optimization of CS. However, the main problem of the
feature-enhanced algorithm for radar imaging lies in the
difficulty of parameter selection. SR ISAR imaging using
the l1-FFT, is developed in [28]. Similarly, in [29], a CS-
based approach is developed, which can generate a high-
resolution image with very few pulses, promising
promoted performance of ISAR imaging by utilizing
spatial sparsity. Based on the assumption that only a few
scatterers with different elevations are present in the
same range-azimuth resolution cell, CS is exploited in
[30, 31], to provide a new data acquisition scheme and
SR imaging using only a few signal samples for tomo-
graphic SAR imagery. In [32], the SR capability and ro-
bustness of CS for tomographic SAR imaging have been
analyzed in detail. All this work indicates that it is pos-
sible to substantially enhance the performance of the
radar imaging by exploiting target sparsity. Nevertheless,
it is usually not an easy task to characterize this sparsity
quantitatively due to the uncertainty and complexity of
the real target scattered field, together with the inevit-
able presence of noise and clutter. This makes some
regularization-based methods including the feature-
enhanced image approach ambiguous in both parameter
selection and controlling the sparsity of the recovery.
Generally, it is preferable to represent the sparsity of

the target in a statistical manner. In this paper, a SR im-
aging algorithm is developed wherein the amplitude
sparsity of the target scattered field is represented by a
Laplace distribution. Based on this, the statistical distri-
bution of the complex-valued scattered field is derived.
The SR imaging problem is then converted into solving
a sparsity-constraint optimization corresponding to the
maximum a posterior (MAP) probability estimation fol-
lowing the Bayesian theory. For simplicity, the proposed
algorithm is called Bayesian SR imaging. From Bayesian
compressive sensing (BCS) [33] under the identical La-
place distribution assumption, the original Bayesian SR
imaging is explicitly coincident with the l1-regularization
optimization. The sparsity coefficient controls the spars-
ity of the reconstructed image, which is directly related
to the statistics of the target image and noise. We also
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extend the Bayesian SR imaging by using nonidentical
Laplace distributions since the scattered field of a target
usually follows the energy-assembling and geometric
organization of the target. We place Laplace distribu-
tions with different scale parameters on each element,
by which signal and noise components could be penal-
ized individually in the l1 optimization to promote the
accuracy of SR imagery reconstruction. A novel scheme
to estimate the noise and target statistics parameters are
also developed for both the original Bayesian SR and the
improved version by combining the constant-false-
alarm-ratio (CFAR) [34] and Burg’s BWE techniques. To
achieve a super-resolved image stably, we propose an it-
erative procedure where in each stage the aperture data
is extrapolated doubly and the maximum likelihood
(ML) estimate of the Laplace scale parameter is updated.
The Bayesian SR methods are inherently robust to noise
and workable with limited pulses. Both simulated and
real data experiments are provided to demonstrate the
superiority of Bayesian SR imaging methods over the
current SR approaches under different circumstances.
The organization of this paper is as follows. Section 2

introduces the Bayesian SR imaging approaches based
on identical and nonidentical statistics assumptions. In
Section 3, we focus on three issues: statistics estimation,
imaging procedure, and a modified Quasi-Newton
solver. Finally, in Section 4, simulated and real-data ex-
perimental results are given to show the effectiveness of
the proposed approaches.

2 Resolution enhancement with statistical
compressive sensing

A. Signal model

Considering that an ISAR system observes a maneu-
vering target and collects a number of pulses coherently,
our aim is to achieve a high-resolution image of the tar-
get. At first, conventional motion compensation is ap-
plied to the raw data followed by range compression and
signal alignment to produce the signal S. We assume
that the data contains N pulses with index from 0 to N
−1 and each pulse composes M range bins. Then, the
range-compressed data set is given by S = [snm]N ×M.
Based on the short CPI assumption, the data can be
regarded as a measured patch of the Fourier transform
of the target scattered field relevant to some aspect an-
gles and so the echoed signals can be rewritten as

S ¼ FAþε ð1Þ

where A¼ a�nm½ � �N�M is the �N �M �N > Nð Þ super-
resolved ISAR image whose pixel values correspond to
the amplitude of the scattering centers, ε is the additive

noise matrix with the same size as S, and F is a �N �M
partial Fourier matrix given by

F ¼
1 1 ⋯ 1
1 ω ⋯ ω N−1ð Þ

⋮ ⋮ ⋱ ⋮
1 ω N−1ð Þ ⋯ 1

2
664

3
775
N�N

and ω ¼ exp −j
2π
�N

� �

ð2Þ
Notably, matrix F can be regarded as an over-completed

dictionary, which bridges the recorded data and the SR
image. It should be emphasized that the above signal
model is based on two significant assumptions.

1) Complete motion compensation. In (2), only the
additive noise is taken into account while other
model errors such as range shift and residual phase
error are assumed removed. There are many precise
motion compensation algorithms [35–41] applicable
making this assumption rigid.

2) Stationarity assumption. The signal amplitude and
Doppler frequency are assumed to be invariant. In
this paper, we focus on the SR imaging with short
CPI, during which the signal can be regarded as
stationary and involves no time variance of both the
reflectivity and Doppler for a scatterer.

B. Bayesian SR (BSR) imaging via independent and
identical (IID) statistics assumption

Generally, the components of ε are approximated as a
zero-mean complex Gaussian noise, namely, its imaginary
and real parts (denoted by εr and εi) are subject to inde-
pendent zero-mean Gaussian distribution. The complex-
valued normal probability density function (PDF) of ε with
unknown variance σ2 is given by

pðε σ2
�� � ¼ πσ2

� �−N⋅M
exp −

1
σ2

εk k2F
� �

ð3Þ

where ⋅k k2F denotes the square of the Frobenius norm of a

matrix (the Mk k2F . Notation for a matrix M = [bnm]N ×M

denotes Mk k2F¼
X

n;m
bnmj j2 ). Therefore, we have the

Gaussian likelihood function of the observation, which is

pðS A; σ2
�� � ¼ πσ2

� �−N⋅M
exp −

1
σ2

S‐FAk k2F
� �

ð4Þ

ISAR imagery demonstrates the spatial distribution of the
target scattered field in the RD plane. Dominant scattering
centers usually occupy only a fraction of the whole RD bins
even though they contribute a majority of the energy, while
signals from weak scattering centers contribute little to
image formation. This sparse characteristic of ISAR images
can be exploited to achieve SR. In this section, we develop
a SR approach by combining Bayesian statistics and

Zhang et al. EURASIP Journal on Advances in Signal Processing  (2016) 2016:80 Page 3 of 19



compressive sensing theory. According to sparse Bayesian
learning (SBL) [42] and BCS [33], the sparsity can be for-
mulized by placing a sparseness-promoting prior on A. In
general, a Laplace probability distribution can be used to
enforce the sparsity prior on the recovered objective signal
when the signal is real valued [42, 43]; however, it is not
straightforward to extend the Laplace distribution to the
complex-valued model. In the following content, an exten-
sion of the two-layer SBL model [42] is presented and a La-
place distribution for complex signal is developed to
encourage sparse representation of A.
Let anm = rnm + j ⋅ inm, where rnm and inm denote the real

and imagery part of anm, respectively. Then the PDF of
anm can be expressed by the joint PDF of rnm and inm. Fol-
lowing the two-layer SBL probabilistic framework [42], we
assume both the real and imaginary parts independently
follow the same zero-mean Gaussian distribution with
variance β. Therefore, the PDF of anm has a complex
Gaussian form as

pðanm βj Þ ¼ pðrnm; inm βj Þ
¼ 1

πβ
exp −

r2nm þ i2nm
β

� �
ð5Þ

In the two-layer hierarchical prior model of SBL, a
hyperprior PDF for β is introduced. The gamma distri-
bution is usually used to induce the sparsity properties
of the reconstruction [42], that is

pðβ a; bj Þ ¼ Gammaðβ a; bj Þ ¼ ba

Γ að Þ β
a−1 exp −b⋅βð Þ ð6Þ

where Gamma(· |a, b) denotes a gamma PDF with shape
parameter a and rate parameter b. A detailed analysis on
parameter selection for this PDF can be found in [44].
Integrating out β, we have

pðanm a; bj Þ ¼
Z ∞

0
pðanm βj Þpðδ2 γ2

�� Þdβ

¼
Z ∞

0

1
πβ

exp −
r2nm þ i2nm

β

� �
⋅
ba

Γ að Þ β
a−1 exp −b⋅βð Þdβ

ð7Þ
Following the two-layer SBL probabilistic framework

[33, 42, 43], we set a ¼ 3
2

p

�
anm

3
2
; b

����
�

¼
Z ∞

0

1
πβ

exp −
r2nm þ i2nm

2β

� �
⋅

b
3
2

Γ
3
2

� � β
1
2 exp −b⋅βð Þdβ

¼ b
3
2

π⋅Γ
3
2

� �Z ∞

0
β
−
1
2 exp −

r2nm þ i2nm
2β

−b⋅β
� �

⋅dβ

¼ b
3
2

π⋅Γ
3
2

� �Z ∞

0
exp −

r2nm þ i2nm
2β

−b⋅β
� �

dβ
1
2

ð8Þ

By using the relation
Z ∞

0
exp −

1
2

h2u2 þ k2u−2
� �� �

du

¼
ffiffiffiffiffi
π
2h2

q
exp − hkj jð Þ [45], the PDF of anm is developed as

a function of b, which is given by

pðanm bj Þ ¼ b
π
exp −

ffiffiffiffiffi
2b

p
anmj j


 �
ð9Þ

Setting γ ¼ ffiffiffiffiffi
2b

p
, (9) becomes

pðanm γj Þ ¼ γ2

2π
exp −γ anmj jð Þ ð10Þ

Supposing the image pixels are subject to the IID PDF
in (10), we have the likelihood function of A as

pðA γj Þ ¼
YN

�
−1;M−1

n¼0;m¼0

γ2

2π

� �
exp −γ anmk k1
� �

¼ γ2

2π

� �N
�
⋅M

⋅ exp −γ Ak k1
� � ð11Þ

where Ak k1 ¼
X
n¼1

N
� XM

m¼1

anmk k1 . Then, reconstructing SR

image is shifted into a classical problem of estimating A
from noisy observation S, which has the MAP estimator

Â Sð Þ ¼ arg max
A∈CN

��M

p Að jS½ Þ� ð12Þ

By Bayes rule, we get

Â Sð Þ ¼ arg max
A∈CN

��M

p S A; σ2
�� �

⋅ p A γj Þð ��� ð13Þ

Which is equivalent to

Â Sð Þ ¼ arg max
A∈CN

��M

log p S A; σ2
�� �� 
þ log p A γj Þð �½ g��

ð14Þ
Substituting (4) and (11) into (14), the MAP estimator

becomes

Â Sð Þ ¼ arg max
A∈C �N�N

−
1
σ2

S‐FAk k2F−γ Ak k1
� �

¼ arg min
A∈C �N�N

S‐FAk k2Fþμ Ak k1
� � ð15Þ

where μ = σ2γ is defined as the sparsity coefficient which
is directly related to the unknown statistics of noise and
the target signal. One can note that the optimization
composes two different terms: the l2-norm preserves the
data fidelity of the solution and the l1-norm imposes
most elements of A to be small with a few large ones in
accordance with its spatial sparsity. The complex-valued
Laplace distribution model in (11) can be also applied in
other complex-valued imaging problems, such as tera-
hertz imaging [46]. Clearly, MAP estimator of a SR
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image corresponds to a l1-regularized optimization
which is often referred to as the basis pursuit de-noising
(BPDN) problem [47]. It is also widely accepted that the
problem in (15) is also equivalent to the l1-constrained
optimization in CS [48]; however, BSR imaging has
evident differences with them. Compared to the point-
enhanced algorithm [26], the l1-norm weighting coeffi-
cient in (15) is explicitly associated with the noise and
target statistics in a Bayesian sense. Furthermore, differ-
ent from the CS-based SR imaging in [29], BSR is closely
connected to convex quadratic programming [49] mak-
ing it very efficient and accurate.

C. Improved Bayesian SR (IBSR) imaging based on
nonidentical statistics assumption

In the BSR optimization (15), all the components of A
are treated equally as they are assumed to follow the
same Laplace distribution. In reality, the scattered field
of a distributed target usually has the spatial-assembling
feature corresponding to the phenomenon that most sig-
nificant scattering centers are concentrated around a
small region in the RD image. Neighboring pixels tend
to be large or small simultaneously, characterizing them-
selves with a specific spatial organization. In this sense,
placing the identical Laplace distribution on all compo-
nents of the image would ignore both the spatial config-
uration and the energy-assembling feature of the target
scattering filed. Nevertheless, it is of great potential to
substantially improve the performance of BSR imaging
by leveraging statistics models that better suit the target
image. In order to respect the local spatial organization
and discriminate different elements of the image statisti-
cally, we introduce nonidentical Laplace distributions for
each component of the ISAR image. Following the defin-
ition in (10), for the specific component anm =A(n,m),
the Laplace density function is rewritten as

pðanm γnm
�� � ¼ γ2nm

2π

� �
⋅ exp −γnm anmj j� � ð16Þ

Supposing the image pixels are independent, we have
PDF of the SR image as

p


A γ00; γ01⋯; γ �N−1ð Þ M−1ð Þ
��� �

¼
YM−1

m¼0

Y�N−1

n¼0

γ2nm
2π

� �
exp −γnm anmj j� �

¼
YM−1

m¼0

Y�N−1

n¼0

γ2nm
2π

� �" #
exp − Wmamk k1
� �

ð17Þ
where am =A(:,m) corresponds to the mth column of the
RD image and Wm ¼ diag γ0m γ1m ⋯ γ �N ‐1ð Þm

� 

�N� �N

is the diagonal matrix corresponding to the Laplace distri-
butions. Introducing nonidentical scale parameters in (20)

provides immediate benefits. We want the probabilistic
model to favor certain configurations for the magnitudes
and locations of the significant scattering centers that pro-
mote the performance of the BSR imaging. For this pur-
pose, a long tailed distribution with small scale parameter
for each prominent scattering center imposes high prob-
ability of a large-valued pixel, and large scale parameters
for other signal components lead to small value predic-
tion. The MAP estimator is then given by

Â Sð Þ ¼ arg max
A∈CN

��M

pðS A; σ2
�� �

⋅ p A γ00; γ01⋯; γ N
�
−1ð Þ M−1ð Þ

��� �
 ih
ð18Þ

Which is also equivalent to

Â Sð Þ ¼ arg max
A∈CN

��M

n
log
h
pðS A; σ2
�� �i

þ log p A γ00; γ01⋯; γ N
�
−1ð Þ M−1ð Þ

��� �
 ih o
ð19Þ

Substituting Eqs. (4) and (17) into (19), the MAP esti-
mator becomes

Â Sð Þ ¼ arg max
A∈C �N�M

−
1
σ2

S‐FAk k2F−
XM−1

m¼0

Wmamk k1
( )

¼ arg min
A∈C �N�M

XM−1

m¼0

sm‐Famk k2Fþσ2 Wmamk k1
� �( )

ð20Þ

where sm = S(:,m) denotes the mth column of S corre-
sponding to am. In contrast to BSR in (15), the image is
modeled by the nonidentical Laplace distribution in (20).
We designate it improved BSR (IBSR). IBSR imaging can
discriminate pixels containing the strong scattering cen-
ters from the weak ones, which emphasizes the spatial
configuration and strong components in image forma-
tion. To this end, each element of the image is treated
individually to favor the recovery of the structural
organization of the target scattered field. To encourage
the probability of scattering center reconstruction, and
enforce the noise be near zero, small scale parameters
are preferable for scattering centers, while large scale pa-
rameters for noise components. Furthermore, similar to
the optimization in weighted compressive sensing [50],
the weights in the l1-norm penalty term in (20) will in-
fluence the contributions of different components to the
penalty function improving reconstruction accuracy and
efficiency. Therefore, if proper scale parameters are uti-
lized in (20), different distributions of signal and noise
can be obtained, leading to more precise signal recovery
and more effective noise suppression.
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3 Statistics estimation and imaging solver

A. Statistics estimation and imaging procedure

It is widely accepted that in the Bayesian optimization
in (15), if μ is set too large, weak scatterers together with
noise will be rejected in the reconstruction of image
leaving only the dominant scattering centers. If μ is too
small, then a large amount of noise may be tolerated in
the image. Therefore, for successful SR imaging via the
MAP estimator in (15), we must choose σ2 and γ opti-
mally. In ISAR imaging, strong scattering centers of the
target are usually clustered densely in only a small frac-
tion of the whole RD plane. Therefore, some pure noise
pixels are evidently distinguishable from the target sup-
port in some range bins, with which the noise variance
can be estimated straightforwardly. For the other factor
γ, supplementary approaches can be employed. As is
known, conventional SR methods are usually precise and
robust enough to extrapolate the short aperture to a lim-
ited length, such as twice the original aperture length. In
real applications, we find that in the BSR optimization,
using γ estimated from the SR image generated by Burg’s
BWE performs well when its SR factor is small. This
motivates us to combine BWE techniques as an auxiliary
tool to provide a coarse SR image to determine the stat-
istical parameters for constructing the Bayesian SR im-
ages. In this section, we design a scheme for parameter
estimation by combining the BWE and CFAR detection
techniques together with a stage-by-stage procedure to
achieve a desired SR robustly. The main characteristic of
this process is extrapolation of aperture of the signal by
a factor of two and updating the estimate of the Laplace
scale parameter each stage. In this procedure, the scale
parameter estimation depends on the SR image with
double BWE from last stage, yielding better BSR and
IBSR images. Therefore, the resolution is enhanced step
by step until a desired SR is achieved. The procedure
runs in the following three steps:

1) We apply Fourier transform (FT) to the range-
compressed data to generate the coarse RD image
and estimate the noise variance by using the pure
noise samples. Those noise samples are also used to
develop a CFAR threshold to remove noise in the
background of the coarse image. It should be
emphasized that the noise within the target region
cannot be removed; however, due to the high SNR
gain from two-dimensional coherent integration, this
noise does not affect much. The de-noised image is
then transformed back into the time domain by an
inverse Fourier transform (IFT). This is followed by
Burg’s BWE to extrapolate the aperture twice, and
then the scale parameter is estimated from the BWE

image based on the ML rule. This step functions as
the initialization.

2) The Bayesian optimization for an image with a SR
factor of two is developed with the statistics from
the last step and then solved by a Quasi-Newton
solver (this solver will be introduced in the following
section). The reconstructed SR image is transformed
back into the time domain by IFT, after which,
Burg’s BWE with double extrapolation is employed
to obtain an image with SR at a factor of four and to
estimate the scale parameter for the next stage.

3) We repeat the second step until a desired SR is
reached.

Step 1 plays a significant role in determining the noise
variance and coarse target support in the RD plane.
With suitable motion compensation, a RD image of size
N ×M is obtained by a FT in the azimuth direction. The
statistical parameters can be estimated by using the RD
image. Since motion compensation usually removes all
translational motion, the target is centralized in the RD
plane, and thus, the pixels corresponding to high Dop-
pler frequency contain noise only. In practice, we usually
use the range bins excluding the target support as the
pure noise samples. These pure noise samples can be
used to form the ML estimate of σ2. Suppose that we
choose Nε pure noise samples and place them in a vector
with real and imaginary parts given by εr nð Þ½ �N ε�1 and

εi nð Þ½ �N ε�1 , respectively, the ML estimate σ̂ 2 of σ2 is
given by

σ̂ 2 ¼ 1
N ε

XN ε

n¼0

ε2r nð Þ þ
XN ε

n¼0

ε2i nð Þ
" #

ð21Þ

This estimate is usually accurate due to the abundance
of noise samples. The CFAR detector for strong scatter-
ing centers in the RD image can be developed subse-
quently. The RD image has high SNR gain from the
two-dimension coherent integration, and so strong scat-
tering centers are discernible from noise in amplitude.
In general, discriminating strong scatterers from noise in
the RD domain corresponds to distributed target detec-
tion under homogeneous Gaussian noise. Noting σ̂ 2 also
corresponds to the power of noise, a CFAR threshold is
developed as [51].

T ¼
ffiffiffiffiffiffiffiffiffi
σ̂ 2⋅λ

p
ð22Þ

where λ is a scale coefficient used to achieve a desired
constant false alarm probability. For an extensive math-
ematical study of the CFAR detector, see [34] and [51].
To calculate λ, the software provided by Glen Davidson
[52] and Matlab function npwgnthresh.m can be used
directly. Pixels with amplitude larger than the CFAR
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threshold are determined as target components, while
those below the threshold are classified as noise and set
to zeros to achieve the de-noised image. Only the noise
components in the background region are detected and
removed, while noise mixed with the target region re-
mains. However, due to the high SNR gain from the
double coherent integration, the remaining noise has lit-
tle affect. The de-noised image is then transformed back
into the time domain where Burg’s BWE is used to ex-
trapolate the data doubly. Therefore, a SR image can be
achieved by a FT after Burg’s BWE processing. For clar-
ity, we define �A1 ¼ �A1 n;mð Þ½ �N1�M as the BWE image
with size N1 ×M (N1 = 2N). Then, the parameter scale
γ1 of the image with SR at a factor of two is ready to be
estimated by the ML rule. The ML estimator of γ1 is
formed by finding γ1 that maximizes the log-likelihood
function

log½P �A1 γ1
�� Þ� 
 ¼ log

γ21
2π

� �N1⋅M

⋅ exp −γ1 �A1

�� ��
1


 �" #

ð23Þ
Differentiating with respect to γ1 yields

∂ log½P �A1 γ1
�� Þ� 


∂γ1
¼ 2N1⋅M

γ1
−
XN1−1

n¼0

XM−1

m¼0

�A1 n;mð Þ�� �� ð24Þ

Setting (24) equal to zero so that γ1 is a critical point
leads to the ML estimator

γ̂ 1 ¼
2N1⋅MXN1−1

n¼0

XM−1

m¼0

�A1 n;mð Þ�� �� ð25Þ

This shows that the ML estimator of γ1 is the recipro-
cal of the amplitude mean of Ā1. Without loss of gener-
ality, in the initialized step, all variables are indicated by
the subscript g = 1, and the initialization step is embed-
ded in the first stage of the whole procedure.
Steps 2 and 3 implement the BSR imaging in an itera-

tive manner. By using σ̂ 2 and γ̂ 1 , the optimization for a
SR image with double aperture extrapolation which cor-
responds to the first stage of SR imaging can be devel-
oped. For clarity, we use subscript g as the stage number,
and in the first stage, we have g = 1. BSR optimization in
the gth stage is given by

Âg ¼ arg min
A∈C �N g�M

S‐FgAg

�� ��2
Fþσ̂ 2γ̂ g Ag

�� ��
1

n o
ð26Þ

where Ag denotes the �Ng �M �Ng ¼ 2gN
� �

SR image,
and the N � �Ng Fg can be calculated by using Eq.
(3). Similarly, Burg’s BWE is applied to Âg in order
to estimate the Laplace scale parameter for the next

stage. We transform Âg back into the azimuth time
domain and use Burg’s BWE to generate the �Ngþ1

�M BWE image �Agþ1 ¼ �Agþ1 n;mð Þ� 

N1�M which is

then used in the ML estimation of the next Laplace

scale parameter γ̂ gþ1 ¼ 2Ngþ1⋅MXNgþ1−1

n¼0

XM−1

m¼0

�Agþ1 n;mð Þ�� �� . The BSR

optimization for the next stage can be performed using
γ̂ gþ1 , σ̂

2 , and Fg + 1. We increment g and repeat this pro-

cessing until a desired SR is obtained. For example, if we
want to achieve a SR factor of eight, we need three stages
for BSR imaging together with the initialization step, and
in each stage, we need to perform the Burg’s BWE and
BSR imaging once. For a clear description of the proced-
ure, we list the corresponding variables in Table 1 and give
a detailed flowchart of the BSR with G stages in Fig. 1.
It should be noted that the Burg’s BWE plays an essen-

tial role in the estimation of the Laplace scale parameter.
Implemented in a recursive way, Burg’s BWE is stable in
aperture extrapolation. In real data processing, the order
of the linear prediction model in the BWE is typically
set high, such as one third of the data length, to ensure
estimation precision of the largest coefficients without
bringing spurious scattering centers [10]. Additionally,
in the Burg’s BWE, the retention of primary data and
phase coherency of the extrapolated signal are meaning-
ful for the precise estimation of the scale parameter.
However, in [53], detailed theoretic analysis reveals that
Burg’s BWE has limited SR ability at a factor of 2.6 for
two identical point-scatterers, and beyond that, the
negative effect becomes evident, which is the main
reason why the extrapolation factor of two in each
stage is set.
Similarly, IBSR imaging with the optimization in (20)

can be also performed by using the parameter estimation
and stage-by-stage procedure presented above. Unlike
BSR imaging, IBSR utilizes the nonidentical Laplace distri-
bution, and the estimation of the scale parameters should
be reconsidered. As mentioned before, the ISAR image
represents the local spatial structure and energy-
assembling characteristic of the target scattering field,
which means that neighboring components tend to be
large or small simultaneously. Therefore, we estimate the
scale parameter corresponding to a certain component by

Table 1 Variable description in the stage-by-stage procedure

g Subscript of the stage number

�Ng ¼ 2g⋅N Azimuth dimension of SR image in the gth stage

Ag SR image �Ng �M
� �

Âg Estimation of Ag (�Ng �M)

Āg BWE SR image �Ng �M
� �

in the gth stage

Fg Partial Fourier matrix �Ng � N
� �
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using its neighbors, such as the 5 × 5 neighborhood sur-
rounding it. It should be noted that in reality, the num-
ber of the neighboring components should be selected
optimally since if we use only a few neighboring pixels,
severe deviation would be introduced in the result,
while if we use a large number of neighbors, they would
tend to not follow similar distributions leading to poor
IBSR performance as well. A useful scheme is to use
only those with similar magnitudes to the central pixel
in a small neighboring window 11 (such as 3 × 3) in the
first stages, and in the last stages select those with simi-
lar magnitudes in a large window (such as 5 × 5) to esti-
mate the Laplace scale for the central pixel. The scale
parameter is estimated as the reciprocal of the mean of
these pixel values similar to the ML estimation in (25).
With the help of CFAR detection and Burg’s BWE, the
resolution is enhanced stage-by-stage until it reaches

the predetermined factor. Similarly, for the gth stage,
we have the IBSR optimization as

Âg ¼ arg min
A∈C �N g�M

XM−1

m¼0

sm‐Fgam gð Þ
�� ��2

Fþσ̂ 2 Wm gð Þam gð Þ
�� ��

1


 �( )

ð27Þ
For clarity, a flowchart for IBSR imaging with G stages

is provided in Fig. 2.

B. An effective solver to the IBSR optimization

As mentioned in the above section, many algo-
rithms and software [54–57] are ready to be applied
in order to solve the optimizations of (15) and (20).
Herein, we apply a Quasi-Newton solver to them.
This takes advantage of the fast Fourier transform

Fig. 1 Flowchart of BSR imaging

Fig. 2 Flowchart of IBSR
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(FFT), promising high efficiency and the possibility of
real-time implementation of BSR and IBSR imaging.
In the following content, we only deduce the solver
to the optimization (20), but it can be extended to
(15) straightforwardly. Noting that the optimizations
in (15) and (20) are non-differentiable, we need to
modify them to be consistent with the gradient-based
optimization algorithms. In order to overcome the
non-differentiability of the l1-norm around the origin
in (20), a useful approximation [27, 58] is employed
by

anmk k1≈ anmj j2 þ τ
� �1=2 ð28Þ

where | ⋅ | stands for the modulus operator, and τ is a
small nonnegative parameter. To ensure the approxima-
tion as rigid as possible, τ should be set small. The IBSR
optimization in (18) can be reformatted as

Â Sð Þ ¼ arg min
A∈CN

��M

(XM−1

m¼0

 
sm‐Famk k2F

þσ2
XN�−1
n¼0

γnm⋅ anmj j2 þ τ
� �1=2!)

ð29Þ

The approximation in (28) keeps the optimizations
in (20) and (29) consistent, and the solution to (29)
tends to that of the optimization (20) as τ approaches
to zero. Therefore, a precise solution to optimization
(20) can be achieved by solving (29) if and only if a
very small τ is used in (28). In the following experi-
ments, τ = 10−6. The selection of τ is still an open
problem, and it is empirically small to get rid of large
approximation errors. Due to the independence
between range cells, solving the two-dimensional
optimization (29) is equivalent to solving the one-
dimension optimization.

âm Sð Þ ¼ arg min
am∈C �N�1

sm‐Famk k2Fþσ2
X�N−1

n¼0

γnm⋅ anmj j2 þ τ
� �1=2

ð30Þ

for each range cell separately. That is, in order to re-
construct the mth column of A, we must solve (30).

The conjugate gradient of f amð Þ ¼ sm‐Famk k2 þ 2σ2

X�N−1

n¼0

Wm n; nð Þ⋅ anmj j2 þ τ
� �1=2

with respect to am is

given by

∇am� f amð Þ ¼ 2FHFam þ σ2⋅U amð Þ⋅Wmam−FHsm
¼ H amð Þ⋅am−FHsm

ð31Þ
where the Hessian matrix H(am) is approximately given
by

H amð Þ≈2FHFþ σ2⋅U amð Þ⋅Wm ð32Þ
and

U amð Þ ¼ diag

"
1= a0mj j2 þ τ
� �1=2

; 1= a1mj j2 þ τ
� �1=2

; ⋅⋅⋅;

1= a �N−1ð Þm
��� ���2 þ τ

� �1=2
#

ð33Þ
Because the Hessian approximation relies on the ob-

jective am, an iterative solver to (30) is presented
through:

â hþ1ð Þ
m ¼ H â hð Þ

m


 �h i‐1
FHsm ð34Þ

where â hð Þ
m is the estimator of A(:,m) in the hth iteration.

To accelerate the iteration, the conjugate gradient algo-
rithm (CGA) [59] can be applied to avoid the Hessian
matrix inversion in (34). A fixed threshold δCG is used
for a complete run of the CGA. Without prior informa-
tion about A, it is initialized as Â0 = FHS. We iterate h

until â hþ1ð Þ
m −â hð Þ

m

��� ���
2
= â hð Þ

m

��� ���
2
≤ρ , where ρ is a small param-

eter for the predetermined threshold, or h reaches a pre-
determined maximum iteration number.
In the following computational cost analysis of the

Quasi-Newton solver, we keep track of the multiplica-
tions. The main computational cost of the solver for
IBSR optimization is in using CGA to iterate (34). One
may note that the term FHF corresponds to the partial
Fourier matrix F, allowing us to use a FFT to efficiently
calculate FHFam in (31). We perform an inverse fast
Fourier transform (IFFT) to am, set the components cor-
responding to the vacant aperture to zero, and then
apply a FFT dramatically reducing the computational
load. Let the number of the CGA iterations to solve (34)
be NCGA. The computational cost of the FFT and IFFT
in solving (34) is 2NCGA �N log2 �N flops. If there are NQN

iterations in the Quasi-Newton solver, the total compu-
tation cost is approximately 2NQNNCGA �N log2 �N flops,
while the computational load of calculating matrix inver-
sion through the Cholesky factorization [60] is up to

NQN �N 3
=3 flops. Since NCGA is usually on the order of

several tens, the efficiency improvement via FFT and
CGA is obvious. In practice, we can start with a relaxed
CGA tolerance δCG and reduce it as we iterate the
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Quasi-Newton solver. For further improvements, there
are optimization algorithms such as the preconditioned
conjugate gradient algorithms [60], which can reduce
the number of iterations of the standard CGA.

4 Performance analysis

A. Simulation for SR analysis

In this subsection, we analyze the SR power of BSR and
IBSR by comparing them with two compressive sensing-
based SR imaging approaches. Namely, we compare BSR
and IBSR to the CS [29] and improved CS (ICS) [61] im-
aging methods under different signal-to-noise ratio (SNR)
conditions. All of the methods are sparsity-driven. Both
the CS and ICS imaging methods are implemented by the
cvx software [56], which usually finds the globally optimal
solution to the l1-norm constraint problem. Meanwhile,
the BSR and IBSR optimizations are solved by the Quasi-
Newton solver by using the CGA and FFT. It should be
emphasized that, as pointed out in [32], the needle-like re-
sponses of SR methods tell neither the location accuracy
nor capability of resolving two close-located scatterers
with limited noisy pulses. In general, the performance of
all SR approaches degrades in some degree with the in-
crease in noise. This is due to the strong coherence be-
tween Fourier basis vectors, amplitude fluctuation of the
scatterers, and the increasing presence of false points at
adjacent bins that are usually involved. Since it is difficult
to find a theory supporting the SR power comparison, we
approach the problem experimentally by analyzing the re-
construction of a signal containing two closely spaced
scatterers. Taking both the reconstruction accuracy and
the presence of false points into account, we use the Mean
Square Error (MSE) and a specified probability of detec-
tion PD to evaluate the SR power of different methods.
The MSE is defined as

MSE ¼ a‐âð ÞH ⋅ a‐âð Þ
�N

ð35Þ

where a and â is the ideal and the reconstructed signal,
respectively, and �N denotes the length of the reconstruc-
tion. We repeat the SR reconstruction 1000 times with
different noise levels and use the average MSE as an
evaluating metric.
Assuming that there are only two closely located scat-

terers, probability of detection corresponds to the hy-
pothesis test:

H0: There is at most one scatterer present in the
reconstruction signal;
H1: There are exactly two scatterers inside the given
Doppler bins of the reconstruction signal.

Note that we take it as a failure when artifacts occur
in the reconstruction, which means that the definition of
PD is slightly different from that in [32]. In general, the
number of scatterers in the reconstructed signal can be
converted into the problem of model selection by some
information theory rules before the SR reconstruction
[32]. In the manner of signal detection, we utilize the
CFAR technique by a predefined threshold to determine
the number of signal components. The threshold is cal-
culated according to the added noise variance before the
SR reconstruction. The false alarm rate is adjusted ex-
perientially according to the given noise variance to
maintain the threshold value constant at 0.3, which is se-
lected optimally based on the performance of IBSR. In
the following experiments, bins of the reconstructed sig-
nal exceeding the threshold are determined to be signal
components and the total number of components is out-
putted for the hypothesis test.
First, we apply the methods to one-dimensional syn-

thetic signals covering the Doppler range −255 to
256 Hz. All signals contain N = 32 regularly sampled ac-
quisitions with sample interval 1/512 s, providing a Ray-
leigh resolution of 16 Hz. Each signal contains two
scatterers corresponding to two closely located Doppler
points whose amplitudes are equally set to unity and
have zero phases. We consider four cases of different
distances between the two scatterers to analyze the SR
power of the methods. In the four cases, the two scat-
terers are located at Doppler frequencies of 0/8 Hz, 0/
4 Hz, 0/2 Hz, and 0/1 Hz, respectively. To separate the
two scatterers in all cases with the given central 32 sam-
ples within the dwell time [−31/512, 32/512] (s), we per-
form the SR methods with SR factors 2, 4, 8, and 16,
corresponding to the reconstructed signal lengths 64,
128, 256, and 512, respectively. Complex-valued Gauss-
ian noise is added in to the synthetic signals to generate
SNRs from 0 to 20 dB, wherein SNR is defined as the
energy ratio of a single point and the added noise.
For comparison, typical results from the sparsity-

driven methods with SNR = 5 dB are presented in Fig. 3.
The first and second rows correspond to the results
from CS- and ICS-based imaging, while the last two
rows show the BSR and IBSR images, respectively. From
Fig. 3, we find that reconstructing the ideal signal with
only 32 noisy samples is achievable by all sparsity-driven
approaches. These approaches work well in cases of rela-
tively high SNRs. We can find that under SNR = 5 dB,
the two scatterers are discriminated optimally and the
noise is also suppressed effectively in all cases. Neverthe-
less, as we increase noise, the performance of each ap-
proach is expected to degrade producing fluctuating
amplitudes and artifacts. In general, the imaging per-
formance of ICS and IBSR degrades more gracefully
than that of CS and BSR. To see this, the MSEs of the
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reconstructions are plotted in Fig. 4. From Fig. 4, we
note that when the SNR is larger than 10 dB, each
method can provide optimal SR reconstruction since
they can provide very small MSEs and high probability
of detection. Performance degrades with the increase
of noise. From Fig. 4, we can note that BSR is compar-
able to CS-based imaging only in the high SNR situa-
tions. This indicates that BSR should be more sensitive
to strong noise. In the low SNR cases, ICS and IBSR
usually provide better performance than the others,
due to the weighting processing in the l1-norm optimi-
zations. In particular, IBSR provides the lowest MSE
and the highest probability of detection in case 1 and
2, which demonstrates the improvement achieved by
using the nonidentical Laplace probability assumption.
However, this performance is not maintained with the
increase of SR factor and decrease of SNR. In case 3
and 4, we find that IBSR provides the lowest MSE and
the highest probability of detection only in the high
SNR situations, with its performance degrading dra-
matically with the decrease of SNR. Especially in case
3 and 4 when SNR decreases under 5 dB, IBSR is worse
than ICS and close to BSR and CS. This is probably
due to Laplace scale parameters not being estimated

accurately by the proposed iterative procedure due to
the strong noise interference and capability limitations
of Burg’s BWE. It is easy to understand that when MSE
increases to an unacceptably high level or the probabil-
ity of detection decreases under a low threshold, the
SR reconstruction can be regarded as a failure, by
which one can have a concrete definition of SR. In this
sense, ICS and IBSR should be the better options in
real applications, and IBSR should be the best from the
view of MSE in first and second cases. From the two
point-scatterers simulation, both MSE and probability
of detection curves provide two perspectives of BSR
and IBSR:

1) The performance of BSR can approach cvx-based
CS imaging, especially in the cases of relative high
resolution. Therefore, although BSR never performs
better than CS-based imaging, BSR is preferable in
some ideal applications due to its high efficiency.

2) Based on the nonidentical statistical assumption
and accommodation of statistical parameters
estimation implemented by CFAR and Burg’s
BWE, IBSR is more robust to noise and limitation
of measurements.

Fig. 3 Typical SR results of different methods under SNR = 5 dB
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However, when the SR factor increases up to 8 and
16, performance degrades dramatically. The reason for
this phenomenon lies in that, in these cases, Burg’s
BWE cannot provide accurate estimation of the non-
identical Laplace scale parameters. In other words,
when the two point-scatterers are spaced too closely,
the assistance from Burg’s BWE in the IBSR iteration
is still achievable, but not when strong noise is in-
volved. In this sense, the SR power of IBSR is limited
by Laplace parameter estimation. On the other hand,
this phenomenon also indicates that if some operations
are capable of improving the accuracy of statistical es-
timation, the performance of IBSR can be further en-
hanced in some degree. This should be accounted for
in further study.

B. Real data set description and evaluation metrics

In the following, real ground-based data is used for a
performance analysis of BSR and IBSR for SR. Real data
experimental comparisons of the Burg’s BWE, CS, ICS,
BSR, and IBSR are given. The performance analysis in
the following is carried out by considering mainly two
factors: the pulse amount and the noise interference.
The data set of a Yak-42 airplane is recorded by a C-

band (5.52 GHz) ISAR experimental system. The system
transmits a 400-MHz linear modulated chirp signal with
25.6-μs pulse duration, resulting in a range resolution of
0.375 m. The received signal is de-chirped and I/Q sam-
pled. In this data set, the pulse repetition frequency is
100 Hz, i.e., 256 pulses within dwell time [−1.28, 1.28]
(s) are utilized. Motion compensation, including range
alignment and autofocus processing, is performed to re-
move the translational motion in advance. The aligned
profiles are shown in Fig. 5a. The RD image generated

Fig. 4 Comparison of SR performance. a MSEs with different sparsity-driven methods. b PD with different sparsity-driven methods
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by all 256 pulses is shown in Fig. 5b for evaluating the
experimental results. In the following experiments, SNR
is defined as the energy ratio between the original data
set and the added noise.
To provide a quantitative evaluation for the following

SR imaging experiments, we consider some metrics that
are directly relevant to the performance of automatic
target recognition (ATR). The first metric is the coherence
between the reconstructed SR image and the reference
image in Fig. 5b, which represents the comparability of
these two. In general, high coherence ensures high recog-
nition probability in template-based classifiers [61]. The
coherence is defined as follows.

Coherence ¼ A⊙Â
� �
Ak kF ⋅ Â

�� ��
F

ð36Þ

where A and Â ¼ ânm½ � �N�M denote the original and re-
constructed SR image, respectively, ⊙ denotes the

Hadamard product, and < · >, the operator for summing
up all components of a matrix. Notably, the coherence is
defined with respect to the magnitude. Since the phases
of the image are random, they usually provide few con-
tributions to feature extraction for ATR [62]. Therefore,
we calculate the coherence only with the magnitude of
image in (36).
Another evaluation metric is the target-to-background

ratio (TBR). By applying the adaptive watershed segmen-
tation method [63] on the RD image to separate the tar-
get and the background regions and then counting the
target energy (within the target region) and noise energy,
and the TBR definition is given by

TBR ¼ 10⋅ log10

X
n;mð Þ∈Τ

ânmj j2

X
n;mð Þ∈Β

ânmj j2

0
BB@

1
CCA ð37Þ

where T and B are the target and background region, re-
spectively, shown in Fig. 6. In our special case of imaging
with limited noisy measurements, the main disadvantage
of approaches based on parametric modeling is the intro-
duction of false scattering centers. This could have a nega-
tive effect on the description of the configuration and
features of the target. Clearly, TBR effectively considers
the false points and energy leakage of target support. It is
also relevant to the SNR of the reconstruction. Moreover,
it can measure target preservation and noise suppression
with the help of the predetermined target region. We de-
fine the noise energy as

Noise ¼
X
n;mð Þ∈Β

ânmj j2 ð38Þ

The false points and noise in the background of the
reconstructed image could be treated as scatters in ATR,

Fig. 5 Data set and RD image with 256 pulses. a Aligned range
profiles. b RD image

Fig. 6 Target region
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potentially leading to performance degradation. Both the
TBR and noise energy metrics should be significant for
feature-based ATR processing. We repeat the SR recon-
struction 100 times with different noise in the following
experiments to analyze coherence, TBR, and noise en-
ergy. The mean values of coherence, TBR, and noise en-
ergy from different SR approaches have been exploited
to evaluate the experimental results in the following.

C. Performance versus pulses amount

To study how the sample amount affects the recovery
performance, we compare the reconstructed results of
BSR, IBSR, and current SR algorithms by varying the
sample number. With different amount of pulses and
constant SNR (10 dB), the SR images are generated with
256 Doppler bins. The pulse amount decreases from 128
to 16. In Fig. 7, we give typical images with four different
pulse numbers (128, 64, 32, and 16), corresponding to 2,
4, 8, and 16 times SR. By this, we investigate the per-
formance of the five approaches with specific pulse
numbers. In all processing of BSR and IBSR, CFAR is set

to 10 − 4 in the initialization step, the threshold for the
Quasi-Newton solver is ρ = 10− 3, and the terminating
tolerance for CGA is δCG = 10− 5. Typical experimental
results are illuminated in Fig. 7. In Fig. 7, the first row
presents the aperture patterns with different pulse num-
bers, the second row gives RD images after Burg’s BWE,
the third and fourth rows contain CS and ICS images,
respectively, and the fifth and the bottom row show BSR
and IBSR images, respectively.
From the comparisons, it is clear that ICS and IBSR

perform better in scattering center extraction and noise
suppression. In addition, IBSR imaging is more stable
than BSR with a small number of pulses, as it generates
dense and clear images with significant information and
energy preserved to some extent. In order to
characterize the performance quantitatively, the curves
for the mentioned metrics with respective to the pulse
amount are given in Fig. 8. Figure 8a provides the coher-
ence between the recovered SR images and the reference
image. Figure 8b, c shows the TBR and noise energy, re-
spectively. It is worth noting that the performance of the
IBSR and ICS performs well even under low SNR

Fig. 7 SR imaging with 128, 64, 32, and 16 pulses
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Fig. 8 Performance with different pulse numbers. a Coherence. b TBR. c Noise energy
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conditions. They provide higher coherence, TBR, and
lower noise energy than the others. Figure 8a shows that
the coherence corresponding to all algorithms increases
with the increase of pulse amount. However, the
sparsity-driven approaches can provide higher coherence
than Burg’s BWE even in the case of very limited pulses.
Burg’s BWE also presents good coherence performance,
which lies in the fact that in Burg’s BWE, the retention
of primary data and phase coherency of the extrapolated
signal are useful. In Fig. 8b, we note that Burg’s BWE
provides the lowest TBR because of its poor de-noising.
CS, ICS, BSR, and IBSR give very high TBRs in a stable
way. In particular, ICS and IBSR present TBR up to
25 dB, indicating that they suppress the majority of noise
while preserving target energy optimally, which is also
clear in Fig. 8c. The metrics show that we achieve better
performance by imposing proper statistics on the target
and the nonidentical Laplace distribution is suitable to
represent the sparsity of the image.

D. Performance versus SNR

The aim of this experiment is to analyze the influence
of SNR on the performance of the approaches. To com-
pare the noise tolerance of the four methods, we use 64
pulses corresponding to the dwell time [−0.32, 0.32] (s).
As the original data set has high SNR after range com-
pression, we generate experimental data with different
SNRs (15, 10, 5, and 0 dB) by adding complex-valued
white Gaussian noise into the data. Then, four times
aperture extrapolation is carried out with Burg’s BWE,
and a hamming windowed Fourier transform is then ap-
plied to yield a SR image with 256 Doppler bins. Corres-
pondingly, SR images with the same Doppler bins
obtained by CS and ICS are constructed with precise
noise level. For BSR and IBSR implemented by the
stage-by-stage flows, we need three iterations to yield
256-Doppler-bin images with 64 pulses. In Fig. 9, we
give the resulting images with different SNRs. The re-
covered images via Burg’s BWE, CS, ICS, BSR, and IBSR
are shown from the first row to the fifth in Fig. 9, re-
spectively. By comparing the results, we note that all the
approaches provide good performance in the case of

Fig. 9 SR imaging with SNR 15, 10, 5, and 0 dB
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high SNR (15 and 10 dB) and the images are formed in
a clean and dense way. Nevertheless, artifacts increase
apparently, and some scattering centers are missing
when we decrease SNR in Burg’s BWE images. The
sparsity-driven methods are capable of providing good
performance under strong noise. Distinctively, ICS and
IBSR usually generate images with much fewer artificial
background points and denser target images due to the
weighting processing. Putting it quantitatively, the
metric curves with respective to the SNR are given in
Fig. 10. Figure 10a provides the coherence between the
recovered SR images and the reference image. Figure 10b,
c shows the TBR and noise energy, respectively. In
Fig. 10a, we note that all algorithms provide stable co-
herence with varied SNRs. However, BSR provides com-
parable coherence to CS. ICS and IBSR give the highest
coherence. In Fig. 10b, we note that TBR of all ap-
proaches decreases proportionally to the increase of
noise energy. However, Burg’s BWE generates the lowest
TBR due to the lack of noise suppression. All sparsity-
driven approaches perform much more stably, yielding
high TBR up to 20 dB regardless of the decreasing SNR.
In the aspect of TBR, IBSR is the best. In Fig. 10c, the
noise energy of SR images obtained by the sparsity-
driven approaches is distinctive from Burg’s BWE. It is
very low and almost constant with the decrease of SNR.
Both the last and current experimental results show that
sparsity-driven methods are optimal in SR imaging
under noise conditions. In particular, ICS and IBSR can
overcome strong noise and generate high-quality SR im-
ages effectively.

5 Conclusions
In this paper, we present SR imaging algorithms based
on BCS. By combining the statistics estimation and
CS, they are implemented by solving optimizations
with l1-norm optimization, derived from the MAP es-
timations. The sparsity level of the reconstructed
image is determined by extracting the statistics from
data stage by stage. Both BSR and IBSR are robust to
strong noise and can reconstruct an image while sup-
pressing strong noise. Based on the fact that the scat-
tered field usually has distinctive spatial configuration,
the nonidentical Laplace distribution is introduced in
IBSR to discriminate prominent scattering centers
from weak ones and noise in the l1 penalty term. The
nonidentical Laplace distribution promotes perform-
ance in terms of noise tolerance and limited pulses.
The contribution of this paper illuminates the possibil-
ity of substantially improving the performance of SR
imaging by leveraging statistical models coinciding
with the image optimally. Surely, there are other novel
statistics models that can also be used to represent the
sparsity and local feature of radar image ideally.

Recent studies show that Gaussian mixture models
[64] are optimal candidates to describe the structural
dependence and sparsity of a target. This will be sur-
veyed in future work. The improved statistical com-
pressive sensing would be also beneficial for multi-
antenna setting for SAR [65] and ISAR imaging for
maneuvering targets [66, 67].

Fig. 10 Reconstruction metrics with different SNRs. a Coherence.
b Target-to-background ratio. c Noise energy
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