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Robust time-of-arrival source localization
employing error covariance of sample mean
and sample median in line-of-sight/
non-line-of-sight mixture environments
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Abstract

We propose a line-of-sight (LOS)/non-line-of-sight (NLOS) mixture source localization algorithm that utilizes the
weighted least squares (WLS) method in LOS/NLOS mixture environments, where the weight matrix is determined in
the algebraic form. Unless the contamination ratio exceeds 50 %, the asymptotic variance of the sample median can
be approximately related to that of the sample mean. Based on this observation, we use the error covariance matrix
for the sample mean and median to minimize the weighted squared error (WSE) loss function. The WSE loss function
based on the sample median is utilized when statistical testing supports the LOS/NLOS state, while the WSE function
using the sample mean is employed when statistical testing indicates that the sensor is in the LOS state. To testify the
superiority of the proposed methods, the mean square error (MSE) performances are compared via simulation.

Keywords: Adaptive selection, Loss function, Sample mean, Sample median, Statistical testing, Error variance

1 Introduction
The aim of the source localization system is to find
a geometrical point of intersection using the measure-
ments from each receiver, such as the time difference of
arrival (TDOA), time of arrival (TOA), or received signal
strength (RSS). Localizing a point source in which passive
and stationary sensors are used has been a repeated and
popular research issue in the areas of radar, sonar, global
positioning system, video conferencing, and telecommu-
nication. Even though location estimation problems have
been investigated extensively in the existing literature
[1–6], there are still some unresolved problems. One of
the key challenges of the localization problem is to esti-
mate the position of the source in dense cluttered non-
line-of-sight (NLOS) environments [7, 8]. NLOS scenarios
occur when there is an obstruction between transmitters
and receivers located in indoor environments and outdoor
situations such as urban areas. In general, the research
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fields of localization for the LOS/NLOS mixture prob-
lem can be categorized into two parts: (1) the constrained
least squares (LS) method using optimization such as the
semidefinite relaxation and second-order cone relaxation
[9–12] and (2) localization using robust statistics. While
localization using the optimization method has compara-
tively high accuracy, the computational load is higher than
that of the analytical solution. Therefore, we concentrate
on localization using robust statistics. The existing robust
LOS/NLOS mixture position estimators are usually based
on the concept of the median, e.g., least median squares
(LMedS) [13, 14], M-estimator [15, 16], and the Hodges-
Lehmann estimator [17]. The sample mean is an efficient
estimator under the normal distribution; thus, it outper-
forms the accuracy of the sample median in the normal
distribution. However, the accuracy of the sample mean is
severely degraded when outliers exist in the heavy-tailed
distribution, e.g., t distribution or double exponential dis-
tribution. On the other hand, the sample median is robust
to outliers if the contamination ratio is smaller than 50 %
but is inferior to the sample mean when outlier does not
exist, i.e., the asymptotic variance of the sample mean
approximately amounts to 64 % of variance for the sample
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median when the number of samples is large and the noise
distribution follows the normal distribution [18]. Accord-
ingly, the weighted squared error (WSE) loss function
based on the sample mean is utilized in the line-of-sight
(LOS) condition, where the sensor state is determined
by the classical statistical testing [19, 20]. In contrast,
when statistical testing indicates that the sensor in the
LOS/NLOS state is valid, the WSE loss function using the
sample median is adopted. Then, the source position is
determined by minimizing the sum of WSE loss functions
based on the sample mean of the sensor expected to be in
the LOS condition and sample median of the sensor deter-
mined to be in the LOS/NLOS state. The motivation of
this paper is as follows. The weighted least squares (WLS)
estimator utilizes the weight matrix whose diagonal com-
ponents amount to the inverse of the error variances
of independent noisy measurements. However, the algo-
rithm that utilizes the covariance information of the sam-
ple median and mean in the LOS/NLOS mixture state has
not yet been reported; that is, the WLS in the LOS/NLOS
mixture situation, in which the weight matrix is derived in
the algebraic form, has not yet been developed. Thus, we
employ the WLS algorithm for the LOS/NLOS mixture
state, which is extended from the LOS state, and the diag-
onal elements of the weight matrix amount to the inverse
of asymptotic variances for the sample mean and median.
The proposed robust position estimation algorithms dif-
fer from the existing two-stepWLS algorithm for the LOS
conditions, because the proposed methods employ the
error variance for the sample median, and this error vari-
ance has not been applied to the two-step WLS estimator.
The proposed robust localization methods are divided
into the iteration method and closed-form algorithm. The
Taylor series expansion is utilized in the iteration method,
and the two-stepWLS algorithm is adopted in the closed-
formmethod. The proposed methods exhibit the superior
mean square error (MSE) performances when compared
to that of existing methods. Moreover, the performance
of the proposed closed-form LOS/NLOSmixture localiza-
tion method using the two-step WLS method is similar to
that of the Taylor series-based iteration method, with the
advantages of low computational complexity and avoid-
ance of the divergence problem of the solution. When
solution diverges, it can reach a solution, which is far from
the true solution, or sometimes it fails to produce a solu-
tion when the initial value is not appropriately chosen.
The LOS/NLOS mixture localization method for multi-
ple sample case has the advantage that all sensors can be
utilized compared to the single sample-based LOS/NLOS
mixture localization method if the contamination ratio (a
measure of how many outliers exist) for the samples in
each sensor is lower than the breakdown point (in most
cases, when the contamination ratio is less than 10 %, the
breakdown point of the sample median is 50 % [18]).

The organization of this paper is listed as follows.
Section 2 explains the LOS/NLOS mixture source local-
ization problem to be solved in this paper. In Section 3,
the details of the existing localization methods using the
sample median are addressed. The proposed localization
methods using error variances of the sample mean and
sample median are addressed in Section 4. The estima-
tion performances of the proposed methods are evaluated
via simulation results in Section 5, comparing them with
those of the existing algorithms. Finally, the conclusion is
presented in Section 6.

2 Problem formulation
The main goal of the TOA-based source localization
method is to accurately determine the position of a source
using multiple circles whose centers are the locations of
sensors. In the LOS/NLOS mixture source localization
context, the measurement equation is represented as

ri,j = di + ni,j =
√

(x − xi)2 + (y − yi)2 + ni,j, (1)

where ni,j ∼ (1 − ε)N
(
0, σ 2

1
) + εN

(
μ2, σ 2

2
)
, i =

1, 2, . . . ,M, j = 1, 2, . . . ,P with M and P denoting the
number of sensors and samples in the ith sensor, respec-
tively [21–23]. Also, ri,j is the measured distance between
the source and the ith sensor at the jth sampling and
di is the range (distance) model between the source and
ith sensor. The measurement noise ni,j is modeled as a
Gaussian mixture distribution in which the LOS noise
is distributed according to N

(
0, σ 2

1
)
with a probability

(1− ε) and the NLOS noise distributed byN
(
μ2, σ 2

2
)
with

a probability of ε. It is assumed that while the statistics of
the inlier can be obtained, the mean and variance of the
outlier distribution are unknown. Here, ε (0 ≤ ε ≤ 1)
is the contamination ratio (i.e., fraction of contamina-
tion) which is a small number (typically smaller than 0.1)
[21–23]. Also, [ x y]T is the true source position and
[ xi yi]T is the position of the ith sensor. Note that,
throughout this paper, a lowercase boldface letter denotes
a vector, an uppercase boldface letter indicates a matrix,
and the superscript T signifies the vector/matrix trans-
pose. The purpose of this paper is to determine the source
position for which the MSE of the position estimate is
minimized.

3 Review of the existing LOS/NLOSmixture TOA
localizationmethods

In general, the LS and Gauss-Newton methods have been
widely used as localizationmethods. The twomethods are
discussed briefly in this section in terms of the formula-
tion of the LOS/NLOS mixture source localization.
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3.1 LS method using the sample median
Squaring (1) and rearranging yield the following equation:

xix + yiy − 0.5R + mi,j = 0.5(x2i + yi2 − r2i,j), (2)
i = 1, 2, . . . ,M, j = 1, 2, . . . ,P

where R = x2 + y2,mi,j = −dini,j − 1
2n

2
i,j. For convenience,

(2) can be simply represented in a matrix form as

Ax + qj = bj, j = 1, · · · ,P (3)

where qj =[m1,j, · · · ,mM,j]T , x =[ x y R]T ,

A =
⎛
⎜⎝

x1 y1 −0.5
...

...
...

xM yM −0.5

⎞
⎟⎠ , and bj = 1

2

⎛
⎜⎝

x21 + y21 − r21,j
...

x2M + y2M − r2M,j

⎞
⎟⎠ .

Because the outliers among ri,j (i = 1, 2, · · · ,M, j =
1, 2, · · · ,P) result in severely degraded performance, the
median is taken to prevent the adverse effects of outliers.
The LS location estimate is then obtained by minimizing
the squared error sum as given by

x̂ = (ATA)−1AT {med(b1:P)} (4)

where med(b1:P) is [med(b1,1:P), · · · , med(bM,1:P)]T and
med is the abbreviation for the median. Here, (4) dif-
fers from the classical LS estimator in which the squared
error sum between all samples from each sensor and para-
metric model is minimized, because (4) minimizes the
squared error sum between the median value from each
sensor and signal model. The median is the centered value
of the ascending ordered sample set. Let us assume the
ascending ordered N components of {a(1), · · · , a(N)}. The
median is defined as a((N+1)/2) if N is odd, or {a(N/2) +
a(N/2+1)}/2 if N is even. Also, bi,1:P includes measure-
ments from the first to the Pth of the ith sensor. The rea-
son why the median is used to merge the measurements
of each sensor is to counteract the effects of outliers.

3.2 Gauss-Newtonmethod using the sample median
In the Gauss-Newton method using the sample median,
the source position is determined by minimizing the sum
of squared error as given below:

M∑
i=1

(
med{ri,1:P} −

√
(x − xi)2 + (y − yi)2

)2
. (5)

The range is linearized with respect to the reference
point xo using the Taylor series method as follows:

d = f(x) � f(x0) + G(x − x0) (6)

where d =[ d1 · · · dM]T , f(x) = [ f1(x) · · · fM(x)]T , fi(x) =√
(x − xi)2 + (y − yi)2, and

G =

⎛
⎜⎜⎝

∂ f1
∂x |x=xo

∂ f1
∂y |x=xo

...
...

∂ fM
∂x |x=xo

∂ fM
∂y |x=xo

⎞
⎟⎟⎠ .

Each row of matrixG is the gradient vector of one of the
components of f(x). The vector xo could be an estimate
of x determined from the previous iteration. The source
position is then obtained using the same procedure in [1]
as follows:

x(k+1) = x(k)+
(
G(k)TG(k)

)−1
G(k)T

(
med (r1:P) − f

(
x(k)
))
(7)

where x(k) is the estimate of x in the kth iteration
(the superscript (k) denotes the iteration number) and
med(r1:P) =[med(r1,1:P), · · · , med(rM,1:P)]T .

4 Proposed adaptive LOS/NLOSmixture TOA
source localizationmethod using theWSE loss
function

In this paper, the LOS/NLOS mixture state is divided into
the LOS and LOS/NLOS states. The LOS state denotes
the case where the contamination ratio is zero (ε = 0) and
the LOS/NLOS state is the condition in which 0 < ε ≤ 1.
TheWSE based on the sample median is robust to outliers
as the loss function when the sensor is in the LOS/NLOS
state but is less efficient than the WSE loss function using
the sample mean when the sensor is in the LOS condition.
Hence, it is adequate to adaptively select the loss function
by investigating whether the corresponding sensor is in
the LOS or LOS/NLOS condition. To determine whether
outliers exist among measurements of the sensor, some
testing rules to be explained later are used.

4.1 Adaptive LOS/NLOSmixture localization using the
WSE loss function

At first, the proposed adaptive LOS/NLOS mixture local-
ization method uses the WSE loss function based on the
sample mean when the sensor is judged by the LOS sen-
sor and the WSE loss function using the sample median
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if the sensor is predicted to be the LOS/NLOS sen-
sor. Hereafter, this method is referred to as the ANLOS
method. When the sensor is in the LOS condition and the
noise follows a normal distribution, it is known that the
asymptotic relative efficiency represented as Var(x)

Var(̃x) (x and
x̃ are respectively the sample mean and sample median
and Var is the abbreviation for the variance) is 2/π � 0.64
when the number of samples is large [18]. That is, the
WSE loss function based on the sample mean is more effi-
cient than that using the sample median when no outlier
exists. Thus, the proposed adaptive method utilizes the
WSE based on the sample mean as the loss function if
the testing result that the sensor is in the LOS condition
is supported. To select the proper loss function accord-
ing to the state of each sensor, discrimination between the
LOS and LOS/NLOS sensor must be performed. When
no outlier exists, the difference between the sample mean
and range measurements of the ith sensor would not be
inflated by outliers; thus, the difference between the sam-
ple mean and range measurements of the ith sensor when
the outlier does not exist would be smaller than that in the
case that the outlier exists. Hence, the following statisti-
cal testing is reasonable to determine whether an outlier
exists or not

∑P
j=1
(
ri,j − ri,SE

)2
(P − 1)

NLOS
≷
LOS

σ 2
i,LOS, i = 1, · · · ,M, j = 1, · · · ,P

(8)

where ri,SE = 1
P
∑P

j=1 ri,j [19]. In practice, σ 2
i,LOS can be

estimated by observing the energy bins in an absence of
the transmitted signal [24]. When the left-hand side of (8)
is smaller than σ 2

i,LOS (the variance of the single sample
of the ith LOS sensor), the following WSE loss function
based on the sample mean is used since the judgment that
the ith sensor is in the LOS condition is supported

1
σ 2
i,SE

(
ri,SE − fi(xo) − gTi x + gTi xo

)2
(9)

where gTi denotes the ith row of G, represented as[
∂ fi
∂x |x=xo

∂ fi
∂y |x=xo

]
, σ 2

i,SE is the variance of the sample
mean of the measurements in the ith LOS sensor and is
found by σ 2

i,LOS
P . This WSE loss function is extended to the

multiple sensor case as follows:

∑
i∈�

1
σ 2
i,SE

(
ri,SE − fi(xo) − gTi x + gTi xo

)2
(10)

where � denotes the sensor index set that belongs to the
LOS sensors. On the contrary, when the left-hand side of

(8) is larger than σ 2
i,LOS, theWSE using the sample median

is utilized as the loss function because the qth sensor is
assumed to be in the LOS/NLOS condition and can be
extended to the multiple sensor case as given below:

∑
q∈�c

1
σ 2
q,SA

(
med(rq,1:P) − fq(xo) − gTq x + gTq xo

)2
(11)

where �c is the sensor index set belonging to the
LOS/NLOS sensors and σ 2

q,SA is the variance of the sam-
ple median for the measurements in the qth LOS/NLOS
sensor. When the contamination ratio does not exceed
50 %, σ 2

q,SA can be approximated by π
2

σ 2
q,LOS
P (σ 2

q,LOS is the
variance of the single LOS sample of the qth LOS/NLOS
sensor) [25]. Then, the source location parameter is deter-
mined by minimizing the sum of (10) and (11) as follows:

min
∑
i∈�

1
σ 2
i,SE

(
ri,SE − fi(xo) − gTi x + gTi xo

)2

+
∑
q∈�c

1
σ 2
q,SA

(
med(rq,1:P) − fq(xo) − gTq x + gTq xo

)2
.

(12)

The location parameter that satisfies (12) is determined
as follows:

x(k+1) = x(k) +
⎛
⎝∑

i∈�

1
σ 2
i,SE

{
g(k)
i g(k)

i
T
}

+
∑
q∈�c

1
σ 2
q,SA

{
g(k)
q g(k)

q
T}⎞⎠−1

×
⎛
⎝∑

i∈�

g(k)
i

1
σ 2
i,SE

(
ri,SE − fi

(
x(k)
))

+
∑
q∈�c

g(k)
q

1
σ 2
q,SA

(
med

(
rq,1:P

)− fq
(
x(k)
))⎞⎠ .

(13)

4.2 Adaptive LOS/NLOSmixture two-stepWLS
localization using theWSE loss function

While the previous proposed method is the iteration-
based method, the closed-form location estimator is
developed in this section. This proposed closed-form
method is referred to as the ATWLS method. The WLS
estimator in LOS/NLOSmixture environments, where the
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weight is derived by mathematical analysis, has not yet
been investigated. In (3), this algorithm substitutes the
sample mean of ri,1:P into ri if the testing result that the
sensor belongs to the LOS sensor is valid or replaces
the sample median of ri,1:P inside ri when the sensor is
determined to be the LOS/NLOS sensor as follows:

b̂i = 0.5
(
xi2 + yi2 − (ri,SE)2) , i ∈ �

b̂q = 0.5
(
xq2 + yq2 − (rq,SA)2) , q ∈ �c (14)

where rq,SA = med(rq,1:P). The covariance matrix (weight
matrix) of b̂ =[ b̂1, · · · , b̂M]T should be determined to
derive the WLS estimator. Since 1

P
∑P

j=1 ri,j = di +
1
P
∑P

j=1 ni,j, the error statistics of b̂i (defined as �b̂i) is
found from (14) as follows:

�b̂i = −1
2

⎧⎪⎨
⎪⎩
2di
P

P∑
j=1

ni,j +
⎛
⎝ 1
P

P∑
j=1

ni,j

⎞
⎠2
⎫⎪⎬
⎪⎭ ,

� −di
P

P∑
j=1

ni,j,

� − ri,SE
P

P∑
j=1

ni,j, i ∈ �. (15)

In the derivation from the first to the second equation of
(15), the LOS noise was assumed to be sufficiently small,
and from the second to the third equation, ri,SE was sub-
stituted into di because di is the unknown value. Then,
σ 2
b̂i

is found as r2i,SEσ
2
i

P for the sensors determined to be
LOS sensor. Meanwhile, when rq,SA = med(rq,1:P) =
dq+med(nq,1:P), the noise of b̂q (�b̂q) for the sensors pre-
dicted to be the LOS/NLOS sensor is obtained from (14)
as follows:

�b̂q = −1
2

{
2dqmed(nq,1:P) + (med(nq,1:P)

)2} ,
� −rq,SA · med(nq,1:P), q ∈ �c. (16)

In (16), rq,SA was substituted instead of dq and a suffi-
ciently small LOS noise condition was assumed. As in the
previously proposed methods, σ 2

b̂q
can be approximated

as π
2
r2q,SAσ 2

q
P when the contamination ratio does not exceed

50 %. The first-step WLS estimator is then obtained by

minimizing the sum of WSE loss functions based on the
sample mean and sample median as follows:

min
∑
i∈�

1
σ 2
b̂i

(̂
bi − aTi x

)2 +
∑
q∈�c

1
σ 2
b̂q

(̂
bq − aTq x

)2
(17)

where aTi is the ith row of A. Then, the first-step WLS
estimator is obtained as shown below:

x̂1 =
(
ATC−1

b̂
A
)−1

ATC−1
b̂

b̂, (18)

where

[
Cb̂
]
i,j =

⎧⎪⎨
⎪⎩

r2i,SEσ
2
i

P , if i = jand LOS sensor,
π
2
r2i,SAσ 2

i
P , if i = jand LOS/NLOS sensor,

0, if i �= j.

The first-step WLS estimate (18) can be further
improved using the two-step WLS estimator [2, 3], which
is represented as follows:

x̂2 = (HTC−1
ĥ

H)−1HTC−1
ĥ

ĥ (19)

where

ĥ = [
[ x̂1]21 [ x̂1]22 [ x̂1]3

]T ,Cĥ = diag[ 2x 2y 1]
×(ATC−1

b̂
A)−1diag[ 2x 2y 1] , and

H =
⎛
⎝ 1 0

0 1
1 1

⎞
⎠ ,

[ ·]k means the kth element of [ ·], and x, y are substi-
tuted as [ x1]1 , [ x1]2 in the computation of Cĥ. Namely,
the localization performance can be improved using the
second-step solution since it adopts the error distribution
of the first-step estimate. The final closed-form two-step
WLS source location estimate is found as follows:

x̂f =
[
sgn([ x̂1]1 )

√
[ x̂2]1 sgn([ x̂1]2 )

√
[ x̂2]2

]T
(20)

where sgn(·) denotes the sign function.

4.3 The ATWLS algorithm in the presence of sensor
position error

Sensor position error may exist in practical environments
and leads to degraded localization performance [26, 27].
In this section, we present a localization algorithm that
can be applied to environments with sensor position
errors. The measurement equation when the sensor posi-
tion errors exist is represented as follows [26]:

ri,j =
√

(x − xoi )2 + (y − yoi )2 + ni,j (21)
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where xoi and yoi are the true coordinates of the ith sen-
sor and the erroneous sensor positions are represented
as xi = xoi + �xi, yi = yoi + �yi, [�xi,�yi]T denote
the sensor position error of the ith sensor. Squaring (21)
and substituting xoi = xi − �xi, yoi = yi − �yi yield the
following [26]:

x2i + y2i − r2i,j
2

− [ xi yi −0.5
]⎡⎣ x

y
R

⎤
⎦

= (xi − x)�xi + (yi − y)�yi − dini,j
(i = 1, · · · ,M, j = 1, · · · ,P).

(22)

The second-order noise terms were neglected in the
derivation of (22) because they are assumed to be small
values; (22) can then be represented in a matrix form as

Qx + ej = tj, j = 1, · · · ,P (23)

where ej =[e1,j, · · ·, eM,j]T ,ei,j = (xi−x)�xi+(yi−y)�yi−
dini,j, x =[ x y R ]T ,

Q =
⎛
⎜⎝

x1 y1 −0.5
...

...
...

xM yM −0.5

⎞
⎟⎠ , and tj = 1

2

⎛
⎜⎝

x21 + y21 − r21,j
...

x2M + y2M − r2M,j

⎞
⎟⎠ .

The localization algorithm performs the testing
described in (8) and determines the position using the
two-step WLS estimator as in Section 4.2. The error
covariance matrix in the first-step WLS estimator is
determined as follows:

[ Ĉt]i,j =

⎧⎪⎨
⎪⎩

r2i,SEσ 2
i

P + r2i,SEσ
2
�s, if i=j and LOS sensor,

π
2
r2i,SAσ 2

i
P + r2i,SAσ 2

�s, ifi = jand LOS/NLOS sensor,
0, if i �= j.

(24)

where t̂ =[ t̂1, · · · , t̂M]T , t̂i = 0.5
(
xi2 + yi2 − (ri,SE)2), if

i ∈ �, t̂q = 0.5
(
xq2 + yq2 − (rq,SA)2), if q ∈ �c and

σ 2
�s is the variance of the sensor position error. In (24),

we substitute the sample mean and median value into
di (i = 1, · · · ,M) because the true distance values are
unknown. It is assumed that σ 2

�xi = σ 2
�yi = σ 2

�s and
�xi,�yi and ni,j are uncorrelated in the derivation of (24),
where σ 2

�xi , σ
2
�yi are the variances of x, y position error

of the ith sensor. The algorithms used in this paper are
summarized in Table 1 as follows.

Table 1 Summary of the localization algorithms

Algorithm Solution

LS (median) (ATA)−1AT {med(b1:P)}

ANLOS x(k+1) = x(k) +
(∑

i∈�
1

σ 2
i,SE

{
g(k)
i g(k)

i
T
}

+∑q∈�c
1

σ 2
q,SA

{
g(k)
q g(k)

q
T
})−1

×
(∑

i∈� g(k)
i

1
σ 2
i,SE

(ri,SE − fi(x(k)))

+∑q∈�c g(k)
q

1
σ 2
q,SA

(med(rq,1:P) − fq(x(k)))

)

ATLS (ATA)−1AT b̂

Gauss-Newton
(median)

x(k+1) = x(k) +
(∑M

q=1
1

σ 2
q,SA

{
g(k)
q g(k)

q
T
})−1

×
(∑M

q=1 g
(k)
q

1
σ 2
q,SA

(med(rq,1:P) − fq(x(k)))

)

M-estimator minx

{∑M
i=1 ρ(ri(x))

}
ρ(t)= 1

2 t
2 if |t| ≤ γ , ρ(t) = γ |t| − 1

2γ 2 elseif |t| > γ ,

ri(x) =[ med(b1:P)]i −[Ax]i , [ ·]i denotes the ith
component of [ ·],
γ is the tuning constant (γ > 0).

ATWLS (ATCb̂
−1A)−1ATCb̂

−1b̂

LMedS (1) Calculate the m subsets of three measurements.

(2) For each subset S, compute a location by trilateration

in closed-form LS solution ([ x̂LS, ŷLS]T ).

(3) For each solution, the residues Rs are

obtained as Rs =[ (r1 − r̂1)2, (r2 − r̂2)2, · · · ,
(rM − r̂M)2]T

where r̂i = √
(̂xLS − xi)2 + (̂yLS − yi)2

(i = 1, · · · ,M)

and the median of the residues is obtained.

(4) Find the minimummedian of the residues.

5 Simulation results
In this section, the MSE performances of the proposed
LOS/NLOSmixture source localizationmethods are com-
pared with those of the M-estimator [16] and LMedS
estimator [28]. In this simulation settings, the source was
assumed to be located within a 400-m2 region to deter-
mine the performance over the entire area. Note that the
number of sensors used in this experiment was seven.
Next, ten different source locations were generated with a
uniform distribution and sensors fixed, as shown in Fig. 1.
Two hundred Monte-Carlo simulations were performed
for each given standard deviation of the NLOS noise. The
standard deviation of the LOS noise of all of the sensors
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Fig. 1 Sources utilized in the simulation when the number of sensors
is seven (white circle as sensors, asterisks as sources)

2 4 6 8 10
−24

−22

−20

−18

−16

−14

−12

−10

Standard Deviation of NLOS Noise (m)

M
S

E
 a

ve
ra

ge
 (

dB
m

2 )

 

 

LS (Median)
ATLS
ANLOS
AWLS (one−step)
Gauss−Newton
(Median)
M−estimator
ATWLS
LMedS

2 4 6 8 10
−14

−12

−10

−8

−6

−4

−2

0

Standard Deviation of NLOS Noise (m)

M
S

E
 a

ve
ra

ge
 (

dB
m

2 )

 

 

LS (Median)
ATLS
ANLOS
AWLS (one−step)
Gauss−Newton
(Median)
M−estimator
ATWLS
LMedS

a

b

Fig. 2 Comparison of MSE averages of the proposed estimators with
that of existing methods when sensor 3 is the LOS/NLOS sensor and
the remaining sensors are the LOS sensors

was assumed to be identical. In addition, the single and
omni-directional source was assumed to be in the sta-
tionary state. The MSE average was calculated as follows:

MSE average =∑10
i=1
∑200

k=1[ ( x̂k(i) − x(i))2+ ( ŷk(i) − y(i))2]
10 × 200

(25)

where x̂ k(i), ŷ k(i) is the estimated position of the source
in the ith position set and kth iteration and x(i) and y(i)
indicate the ith true position of the source.
Figure 1 illustrates a deployment of sensors, in which

the radius of the sensor network was set to 10 m. The
localization accuracy as a function of the standard devia-
tion of the NLOS noise is shown in Fig. 2 when the radius
of the sensor network was 10 m. In Fig. 2a, the contam-
ination ratio (ε) was 20 %, the standard deviation of the
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Fig. 3 Comparison of MSE averages of the proposed estimators with
that of existing methods when sensors 3 and 7 are LOS/NLOS sensors
and the remaining sensors are LOS sensors
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Fig. 4 Comparison of MSE averages of the proposed estimators with
that of existing methods when sensors 3, 6, and 7 are LOS/NLOS
sensors and the remaining sensors are LOS sensors
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Fig. 5 Comparison of MSE averages of the proposed estimators with
that of existing methods when sensors 3, 6 and 7 are LOS/NLOS
sensors and the remaining sensors are LOS sensors
(ε : 20 %, σ1 : 0.25 m,μ2 : 1 m)
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Fig. 6 Comparison of MSE averages of the proposed estimators with
that of existing methods when sensors 3, 6 and 7 are LOS/NLOS
sensors and the remaining sensors are LOS sensors
(ε : 20 %, σ1 : 0.25 m,μ2 : 1 m)

LOS noise (σ1) was 0.25 m, the bias of the NLOS noise
(μ2) was 1 m, sensor 3 was the LOS/NLOS sensor, and the
remaining sensors were LOS sensors at which the number
of measurements in each sensor was ten. It is clear that
the MSE averages of the proposed methods, the ANLOS
and ATWLS algorithms, are lower than those of the non-
adaptive LS, adaptive two-step LS (ATLS), adaptive one-
step WLS (AWLS (one-step)), Gauss-Newton methods
using the sample median and M-estimator. In Fig. 2b, the
contamination ratio was 30 %, the standard deviation of
the LOS noise is 0.75 m, and the remaining conditions are
the same as those in Fig. 2a. Figure 2b shows that the MSE
average performances of the proposed methods are much
superior to those of the other methods. The weight matrix
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Fig. 7 Comparison of MSE averages of the proposed estimators with
that of existing methods when sensors 3, 6 and 7 are LOS/NLOS
sensors and the remaining sensors are LOS sensors
(ε : 20 %, σ1 : 0.25 m,μ2 : 1 m)
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Fig. 8 Comparison of MSE averages of the proposed estimators with
that of existing methods when sensors 3, 6 and 7 are LOS/NLOS
sensors and the remaining sensors are LOS sensors
(ε : 20 %, σ1 : 0.25 m,μ2 : 1 m)

for the ATWLS algorithms performs the role of reducing
the MSE average of the ATLS method and the MSE aver-
age performances of the proposed methods are nearly the
same as can be seen from Fig. 2. Figures 3 and 4 assume
the same condition as that in Fig. 2, with the exception that
sensors 3 and 7 are the LOS/NLOS sensors in Fig. 3 and
sensors 3, 6, and 7 are the LOS/NLOS sensors in Fig. 4.
Again, the proposed adaptive methods using theWSE loss
function outperformed the other existing methods from
the results shown in Figs. 3 and 4. Figures 5, 6, 7, and 8
show the variation of the MSE average when the NLOS
bias and contamination ratio is varied. The MSE aver-
age was larger as the contamination ratio and NLOS bias
increased. The localization performance of the ATWLS
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Fig. 9 Comparison of MSE averages of the proposed estimators with
that of existing methods as a function of the standard deviation of
LOS noise (σ1)
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Fig. 10 Comparison of MSE averages of the proposed estimators with
that of existing methods as a function of the number of samples

method was superior to the existing methods excluding
Fig. 8. In particular, when the contamination ratio was
50 %, the MSE average drastically increased because the
contamination ratio amounts to the breakdown point of
median (50 %). Figure 9 shows the MSE average as a func-
tion of the standard deviation of LOS noise (σ1). The MSE
average increased as the standard deviation of LOS noise
increased and the ATWLS method outperformed the
other existing algorithms. Figure 10 shows the MSE aver-
age as a function of the number of samples. The MSE
average decreased as the number of samples increased
excluding the LMedS method and the proposed ATWLS
method was superior to the other existing algorithms.
Figure 11 shows the MSE average of the proposed algo-
rithms as a function of the number of sensors. In this case,
the number of sensors increases from 5 to 9 and the num-
ber of LOS/NLOS sensors is fixed to three and the number
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Fig. 11 Comparison of MSE averages of the proposed estimators as a
function of the number of sensors (when the number of LOS sensors
increases)
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Fig. 12 Comparison of MSE averages of the proposed estimators as a
function of the number of sensors (when the number of LOS/NLOS
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of LOS sensors is increased. The standard deviation of
the LOS noise was 0.75 m, that of the NLOS noise was
10 m, the bias was 1 m, and the contamination ratio was
30 %.We can see that the MSE averages of the localization
decrease as the number of sensors increases. Meanwhile,
Fig. 12 shows the MSE averages of the proposed methods
as a function of the number of sensors when the number
of the LOS/NLOS sensors increases. The number of the
LOS/NLOS sensors is one when the number of sensors
is five and then increases in parallel with the number
of sensors. The MSE averages of the proposed methods
decrease as the number of LOS/NLOS sensors increases
and the decreasing rate of the MSE averages is lower com-
pared to the case in which the number of LOS sensors
increases. Figure 13 shows the MSE averages as a function
of the radius of the sensor network and the MSE averages
decrease as the radius of the sensor network increases.
The results of Figs. 11, 12, and 13 are consistent with that
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Fig. 13 Comparison of MSE averages of the proposed estimators as a
function of the radius of sensor network
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Fig. 14 Comparison of MSE averages of the proposed estimators with
that of existing methods when the sensor position error exists

of [29]; that is, as the number of sensors are larger, the
geometric dilution of precision (GDOP) is lower, on the
other hand, as the number of sensors is smaller, the GDOP
gets higher. The GDOP metric has been used as the indi-
cator of the localization accuracy for given deployment
of GPS systems and the localization accuracy is higher as
the GDOP is lower. Also, the GDOP is low when the sen-
sors are far apart; on the contrary, the GDOP is high when
the sensors are close together. Figure 14 shows the MSE
averages in the presence of the sensor position error. The
variance of the sensor position error was 0.5 m2, the stan-
dard deviation of the LOS noise was 0.25 m, the bias was
1 m, the contamination ratio was 30 %, and sensors 3, 6,
and 7 were the LOS/NLOS sensors. The localization per-
formance of the ATWLS algorithm with the correction
for the sensor position error described in Section 4.3 is
superior to the ATWLS method without the correction
for the sensor position error. Furthermore, the averaged
computational time of the robust localization methods is
shown in Table 2 to testify whether the proposed closed-
form ATWLS algorithm is more efficient than the other
algorithms with respect to the computational complexity.
The computational time was averaged for 200 iterations.

We can see that the averaged computational time of the
ATWLS algorithm is lower than that of the other robust
localization methods.

Table 2 Comparison of the computational time

Algorithm Computational time (seconds)

ATWLS 3.0 × 10−4

ANLOS 2.1 × 10−3

Gauss-Newton (median) 1.1 × 10−3

M-estimator [16] 1.1 × 10−3

LMedS [28] 2.5 × 10−3
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6 Conclusions
Robust LOS/NLOS mixture TOA source localization
methods for multiple measurements using the error
covariance of the sample mean and sample median were
proposed. The proposed adaptive methods utilized the
loss function as the WSE in which the sample mean was
used when the sensor was identified as the LOS sensor,
while the WSE loss function based on the sample median
was employed when the testing result that the sensor is
in the LOS/NLOS state is valid. The proposed estimators
showed superior MSE average performances compared to
those of the other localization methods using only the
sample median, ATLS, and AWLS (one-step) estimators
when the contamination ratio was moderate. In particular,
the closed-form ATWLS method had similar MSE aver-
age performance to that of the proposed iteration-based
method, preserving the advantages of low computational
complexity and avoidance of the divergence problem of
the solution. In addition, the proposed method was supe-
rior to theM-estimator and LMedS estimator.
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