
EURASIP Journal on Advances
in Signal Processing

Abouzahir et al. EURASIP Journal on Advances in Signal
Processing (2016) 2016:88
DOI 10.1186/s13634-016-0386-3

RESEARCH Open Access

Large-scale monocular FastSLAM2.0
acceleration on an embedded heterogeneous
architecture
Mohamed Abouzahir1*, Abdelhafid Elouardi1, Samir Bouaziz1, Rachid Latif2 and Abdelouahed Tajer3

Abstract

Simultaneous localization and mapping (SLAM) is widely used in many robotic applications and autonomous
navigation. This paper presents a study of FastSLAM2.0 computational complexity based on amonocular vision system.
The algorithm is intended to operate with many particles in a large-scale environment. FastSLAM2.0 was partitioned
into functional blocks allowing a hardware software matching on a CPU-GPGPU-based SoC architecture. Performances
in terms of processing time and localization accuracy were evaluated using a real indoor dataset. Results demonstrate
that an optimized and efficient CPU-GPGPU partitioning allows performing accurate localization results and
high-speed execution of a monocular FastSLAM2.0-based embedded system operating under real-time constraints.

Keywords: Monocular FastSLAM2.0, CPU, GPGPU, Heterogeneous architecture, Hardware software matching

1 Introduction
Simultaneous localization and mapping (SLAM) algo-
rithms are computationally intensive. Therefore, there is
a general need, in case of embedded systems, to have an
architecture that allows a software optimization for effi-
cient and scalable implementation. Computer systems, in
the early days of their creation, have contained one kind
of processors designed to run general computing tasks.
Performance improvement of such computers was relied
to Moore’s law which predicts doubling transistor density
every 18 months. However, this trend has reached a cer-
tain maturity. It is no longer possible to gain performance
by increasing transistor density because adding more
transistors also adds high complexity, heat, and memory
issues. In order to surpass these issues and to reach high
performances, a new trend now is to include other pro-
cessing elements in a single chip area. These new systems
gain performance not by adding only the same type of
processing units but implementing also dissimilar proces-
sors incorporating specialized capabilities dedicated for
handling specific tasks. These systems are referred to as
heterogeneous system architectures (HSAs). Such systems

*Correspondence: mohamed.abouzahir@u-psud.fr
1Institut d’Electronique Fondamentale, Université Paris-Sud, 91405 Orsay,
France
Full list of author information is available at the end of the article

allow development of applications that seamlessly inte-
grate CPUs with the most prevalent processing elements:
GPUs. Heterogeneous architectures of such systems can
be exploited to accelerate execution time of SLAM algo-
rithms and make them operating in real-time constraints.
This article presents an algorithm architecturematching

of FastSLAM2.0 algorithm on a heterogeneous architec-
ture integrating a CPU and a GPGPU. Only few works
deal with the implementation of FastSLAM2.0 on such
embedded systems. Authors in [1] presented a hardware
software co-design approach of the importance weight
calculation and particle update on a NIOS II processor.
Moyers et al. [2] presented a fixed-point version of Fast-
SLAM 2.0 algorithm and describes its implementation on
a configurable and extensible very long instruction word
(VLIW) processor. Chau et al. [3] presented a heteroge-
neous implementation of adaptive particle filters based
on an field-programmable gate array (FPGA) and a CPU
for mobile robot localization and people tracking applica-
tions. There is no full implementation of FastSLAM2.0 on
an embedded CPU-GPGPU published to this date. In the
state of the art, we found that only the particle filter, as an
algorithm of its own used for filtering, has recently been
studied. Tosun et al. [4] presents a parallelization of parti-
cle filter-based localization and mapping on a multi-core

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13634-016-0386-3-x&domain=pdf
mailto: mohamed.abouzahir@u-psud.fr
http://creativecommons.org/licenses/by/4.0/

Abouzahir et al. EURASIP Journal on Advances in Signal Processing (2016) 2016:88 Page 2 of 20

architecture. Maskell et al. [5] presents a parallel resam-
pling on an FPGA and [6] presents a GPU implementation
of a general particle filter algorithm.
The work presented in [7] proposed a method to accel-

erate robot localization and mapping of FastSLAM1.0
algorithm. Authors exploit general purpose parallel com-
puting on NVIDIA GPUs. However, this work only
focuses on accelerating one task of the entire Fast-
SLAM1.0 algorithm: the particle weight computation as a
part of the resampling step on GPU where the other tasks
of FastSLAM1.0 are executed on CPU. They also opti-
mized memory access using textures. Furthermore, they
evaluated their implementation on a desktop machine
using a high-end GPU (NVIDIA GeForce GTX 660) and a
CPU (Intel Core i5-3570K). Their tests have shown signif-
icant performance improvements according to the naive
implementation on CPU.
In contrast, the purpose of our contribution is to present

an efficient partitioning of amonocular FastSLAM2.0 on a
heterogeneous embedded architecture and to provide the
first complete GPGPU implementation of the algorithm
with a focus on general purpose processing unite. Themain
contributions are

• The algorithm implemented in our work is slightly
different from literature. Eade and Drummond [8]
used only a single camera; the particle poses are
predicted from images via visual odometry using a
specific camera motion model. They tested the
algorithm on a short sequence with few images for
small environments. They claimed that the
implemented algorithm is not yet ready for use in
large-scale environments and significant challenges
must be adopted. In our work, we used odometry to
predict the particles poses and a single monocular
camera for vision task. Some improvements are
adopted in order to test the algorithm in large-scale
environments. More details are given in Section 2.

• Our work proposes a full parallel implementation of
FastSLAM2.0 on a GPU. Such implementation has
not been reported before in any previous work. All
main steps of the algorithm (functional blocks) have
been accelerated on a GPU using the GPGPU
concept. Zhang and Martin [7] accelerated only the
particle weight calculation. This was a challenge to
map the entire algorithm on a GPU.

• Zhang and Martin [7] used a high-end NVIDIA GPU
of a desktop machine. Our work investigated a
parallel GPGPU implementation of a heavy
computationally algorithm (monocular
FastSLAM2.0) on an embedded architecture. This
rises a new challenge to investigate whether by
adopting the same optimization strategies as those
used for high-end GPU is suitable to design an

embedded system-based SLAM applications. This
challenge is due to constraints of the used
architecture-based system on chip (NVIDIA Tegra
K1 SoC) such as sharing the same physical memory
between CPU and GPU. This required a special
attention and imposed new demands to our works.

Organization of this paper is as follows: in Section 2, a
state of the art about SLAM algorithms is presented with
a description of image processing used for features extrac-
tion and matching. In the same section, the monocular
FastSLAM2.0 algorithm is presented. Section 3 presents
our methodology adopted in this work to evaluate the
algorithm on a heterogeneous embedded architecture. In
Section 4, a description of the target embedded architec-
ture is provided with a brief background about hardware
and material used for embedded GPGPU programming.
The GPGPU implementation as well as the adopted par-
titioning model and the performed optimization is given
in the same section. Section 5 is devoted to experi-
mental results and provides a detailed discussion about
the algorithm complexity and performances comparison.
Section 6 summarizes results and gives a conclusion about
this work.

2 Localization andmapping
SLAM algorithms allow autonomous navigation of robots
in unknown environments. Localization and mapping
represent a concurrent problem that cannot be solved
independently. Indeed, if a mobile robot follows an
unknown trajectory in an unknown environment, the esti-
mation of the robot’s pose and the explored map becomes
more complicated. In such situation, no information is
previously known by the mobile robot which is supposed
to create a map and to localize itself according to this map.
Before the robot can estimate the position of a given land-
mark, it needs to know from which location this landmark
was observed. At the same time, it is difficult to estimate
the actual position of the robot without a map. A good
map is necessary for localization while an accurate pose
estimate is needed for map reconstruction.
A SLAM algorithm relies on sensor data to concur-

rently estimate both map and robot pose. Two sensors
are usually used: proprioceptive and exteroceptive sen-
sors. Throughout this work, we used a monocular camera
as an exteroceptive sensor to observe environment and
odometers as proprioceptive sensors to estimate robot
pose.

2.1 Image processing
Monocular SLAM algorithms use visual landmarks
extracted from images to map the environment and to
improve the robot localization. Landmarks are extracted
using feature detectors. In our implementation, we used

Abouzahir et al. EURASIP Journal on Advances in Signal Processing (2016) 2016:88 Page 3 of 20

FAST detector (features from accelerated segment test)
[9]. It is less time consuming and suitable for real-time
applications. FAST corner detector uses a circle of 16 pix-
els (radius= 3 pixels) to classify whether a candidate point
p is actually a corner (observation in the context of map-
ping). If a set of n (n = 9, 10, 11 or 12) contiguous pixels
in the circle are all brighter than the intensity of the candi-
date pixel p (denoted by Ip) plus a threshold value t (Ip+ t)
or all darker than the intensity of the candidate pixel p
minus the threshold value t (Ip − t), then p is classified as
a corner (Fig. 1).
SLAM systems need to detect previously observed

landmarks in a reliable and robust way. Therefore, the
extracted landmarks are identified by a simple descrip-
tor which consists of a window of pixels around the
observed landmark. Matching between observation and
landmarks is achieved using a correlation-based similar-
ity measure. We used the zero mean sum of squared
differences (ZMSSD) metric in order to compute the
similarity between descriptors of both landmarks (lmk)
and extracted features. Equation 1 defines the ZMSSD
formula.∑

i,j

(
Ilmk(i, j) − md − Ip(x + i, y + j) + mp

)2 (1)

2.2 FastSLAM2.0
FastSLAM2.0 [10] is based on the particle filter
(Algorithm 3) . Uncertainty of the robot pose is modeled
by a number of different particles. Each particle has its
own map. It has been proved that FastSLAM2.0 runs
successfully in a very large environment and can surpass

Fig. 1 FAST corner detection

many problems that decrease consistency of localiza-
tion and mapping. The main steps of the algorithm are
described below:

2.2.1 Prediction
Prediction task propagates the current state of particles in
the filter using motion model (2). The model incorporates
odometer data ut (nl, nr), where nl and nr are respectively
the left and right wheel encoder data [11]. st

(
sx, sy, sθ

)
is

the particle pose, δs = nl+nr
2 and δθ = nl−nr

2b are respec-
tively longitudinal and angular displacements, and b is the
wheel base.

f (st−1,ut) = smt = smt−1 +

⎛
⎜⎜⎝

δs cos
(
sθ + δθ

2

)
δs sin

(
sθ + δθ

2

)
δθ

⎞
⎟⎟⎠ (2)

Prediction task also predicts uncertainty of the robot
pose. We recall that as stated in [10], the difference
between the FastSLAM2.0 and the previous version is how
actually the particle poses are sampled. As we will see
in Section 2.2.2, the particle poses are updated and sam-
pled from a modified proposal distribution constructed
incrementally using the last observed landmarks. The
problem here is that such proposal distribution is con-
structed starting from an estimation of robot uncertainty,
Pm. A random initialization of this uncertainty can cause
the filter divergence.
Eade and Drummond [8] andMontemerlo et al. [10] did

not give any information about how this initial covariance
matrix is computed. Initializing Pm using an empirical
value is not suitable when using a camera and partial
initialization method since an accurate estimate of uncer-
tainty is needed. This is shown in our previous work [12]:
“Using small number of particles with Pm randomly ini-
tialized, the algorithm can only map a small portion of the
trajectory and is not able to close the loop.” In this work,
we computed Pm incrementally whenever a new parti-
cle pose is predicted to accumulate uncertainty between
images. This better reflects the uncertainty in robot pose
for a good partial initialization. Pm must be initialized
after each image acquisition.
Our work targets an embedded platform. The method

we suggested is time consuming when it is naively imple-
mented on an embedded single core, since Pm must be
computed for every single particle and at every odometry
data acquisition. An efficient optimization will be pro-
posed in Section 4. Algorithm 1 describes the procedure
of computing particle poses and their initial covariance
matrix Pm according to one odometric data acquisition.
Density of particles must well represent the real tra-

jectory (after integrating odometric data, particle den-
sity must cover the real robot pose). Therefore, in the
prediction task, the motion model must be applied with a

Abouzahir et al. EURASIP Journal on Advances in Signal Processing (2016) 2016:88 Page 4 of 20

randomization to reflect the system random error and the
sensor noise (Monte Carlo localization) [13]. In our imple-
mentation, the prediction task is parallelized on GPU.
However, the random number generation is difficult to
be implemented in parallel on a GPU. According to [14],
a random number generation should perform well on a
single processor. Thus, providing high precision random
numbers becomes more difficult when dealing with par-
allel architectures. Some studies [15, 16] proposed well-
known techniques to spread random streams through
a parallel implementation using different strategies, but
they are not yet suitable for use in Monte Carlo localiza-
tion and remain an ongoing research topic [14, 17, 18]. A
solution for this problemwill be proposed in Section 4.2.2.

Algorithm 1: Particle pose and initial covariance
matrix prediction
Pm = 0
for each particle m do

smt = f (smt−1,ut);
Gu = ∂ f

∂(sx,sy,sθ)
;

Gp = ∂ f
∂(δs,δθ)

;
Pm = GpPmGT

p + GuQGT
u ;

end

2.2.2 Sampling a pose: particle update
Particle diversity is an important factor that determines
the estimation accuracy. The algorithm uses a technique
to deal with sample impoverishment. A new proposal dis-
tribution (set of particles generated after integrating the
control data) is computed using the most recent measure-
ment [10]. Then, a new particle pose is sampled; this is
illustrated in Algorithm 2. The proposal distribution con-
struction procedure can be parallelized on GPU pipelines,
since each operation can be done independently for each
particle.

Algorithm 2: Particle update
for each particle m do

μm
0 = smt , �m

0 = Pm;
for n ← 1 to N do

�m
n =

[
HT
p Z−1

n Hp + (
�m

n−1
)−1

]−1
;

μm
n = μm

n−1 + �m
n HT

p Z−1
n (zt − ẑt);

end
smt ∼ N

(
μm
n ,�m

n
)
;

end

2.2.3 Estimation
During the estimation step, if a landmark is matched
with a current observation, its position in the image(
û,v̂

)
is predicted using the pinhole model (3). Innovation

between the predicted pose and the observation (u, v) is

computed. The extended Kalman filter (EKF) corrects the
inverse depth parameterization (ρ, θ ,φ) of the matched
landmark and its covariance matrix. Likelihood (the prob-
ability to observe the matched landmark from a given
particle pose) is computed according to the observation.
Since each particle has its own map, the operation men-
tioned above can be done independently and hence the
estimation task can be parallelized on GPU.

h =
(
u
v

)
=

(
cu + fku

xa,cam
za,cam

cv + fkv
ya,cam
za,cam

)
(3)

Algorithm 3:Monocular FastSLAM 2.0
while 1 do

Prediction;
for each odometric acquisition do

ut ← (δs, δθ);
Predict particle pose and its covariance matrix.
See Algorithm 1;

end
Image Processing;
(uk , vk) ← Fast Corner Detector;
select high particle weight st ;
for Each Landmark do

ẑn
(
ûn, v̂n

) ← h (st ,Xn) ;
zmssd

((
ûn, v̂n

)
, (uk , vk)

)
Select landmark with

small zssd;
end
Particle Update;
smt ∼ N(μm

n ,�m
n) Sample new particle pose. See

Algorithm 2;
Estimation;
for Each Particle do

for Each Landmark do
(X,C)mn ← kalman

(
Xm
n ,Cm

n , ẑn, zn
)

compute weight ωm

end
end
Initialization;
for Each Particle do

Compute (xi, yi, θi,ϕi, ρi) Inverse depth
parametrization;

end
Resampling;
Importance resampling;

end

2.2.4 Initialization
During mapping, SLAM algorithms need to know ini-
tial landmark positions and the covariance matrix. This
seems easy with SLAM algorithms based on LASER sen-
sors since the observation model is invertible [13]. How-
ever, in the case of a monocular vision algorithm, the

Abouzahir et al. EURASIP Journal on Advances in Signal Processing (2016) 2016:88 Page 5 of 20

landmark initialization is not obvious. A monocular cam-
era is a projective sensor which cannot provide depth
of a landmark in a scene. In order to estimate depth of
a landmark, and so its position in the scene, the land-
mark must be tracked in more than one frame. In our
implementation, we used the inverse depth initialization
method [19].
This method allows adding a landmark from the first

view. Initial coordinates of a landmark are (xi, yi, θi,ϕi, ρi),
where xi and yi are the first view camera poses, θi is the
azimuth, ϕi is the elevation, and ρi is the inverse depth.
This is depicted in Fig. 2.

2.2.5 Resampling
Resampling task deletes very improbable trajectories
in order to maintain a constant number of particles
and to prevent particle depletion. This depends on
the weight of each particle computed in the estima-
tion step [20]. In our implementation, the most time-
consuming parts in the resampling step are parallelized
on GPU pipelines. First, the total weight update task, in
essence, starts before the resampling task and updates
total particle weights based on likelihood computed in
the estimation phase. The resulting weight is the prod-
uct of likelihoods derived from each matched land-
mark

(
wM
t = wM

t ∗ ∏Nm
i=1 ωi

)
. The weight normalization

and weight summation
(
win = 1

ws
,ws = ∑M

i=1 wi
)
are also

parallelized on GPU. Computation of the minimum num-
ber of effective particles before resampling can also be

implemented in parallel
(
Neff = 1∑M

i=1 w2
i

)
.

Fig. 2 Inverse depth parameterization of a landmark

3 Evaluationmethodology
Our evaluation methodology consists on analyzing the
algorithm and its dependencies. We identify the process-
ing tasks that require considerable amount of time by
evaluating their processing times. The algorithm is then
partitioned into functional blocks (FBs) performing spe-
cific tasks. In order to have a bounded processing time,
a threshold is fixed for each parameter. Functional blocks
that impose the most important processing time are then
optimized.
Such evaluation methodology is widely adopted when

dealing with the implementation of compute-intensive
algorithms such as SLAM. In [21, 22], Dine et al. adopted
the same evaluation methodology to study the embed-
dability of the graph-based SLAM. In [23], the same
methodology is used for an efficient implementation of
the EKF-based SLAM on a low power-multiprocessor
architecture.

3.1 Real dataset-based evaluation
SLAM algorithms are interesting applications when it
comes to explore in a real indoor/outdoor environment.
Evaluation of SLAM algorithms requires a set of different
sensor data which are necessary for benchmarking. Sensor
data can be obtained either by using a real instrumented
robot or an available dataset. In our evaluation, we used
a real indoor dataset [24]. This dataset provides a set of
different sensor data. We have used data of encoders and
a monocular camera.

3.2 Functional block partitioning
The algorithm is analyzed in terms of instruction and
operation order which allows defining functional blocks
(FB) described in Fig. 3. FB1 processes odometric data to
calculate the future particle state and compute the related
covariance matrix. Images are processed by FB2. This
task extracts features from an image using FAST detec-
tor and performs a matching task between observations
and landmarks. In our implementation, the matching task
is performed according to the particle that has the high
importance weight as proposed in [25]. Particles pose are
then enhanced in FB3 based on the matched landmark
computed in FB2. FB4 updates matched landmarks in FB2
using EKF. FB5 computes the initial inverse depth param-
eters for each new landmark. FB6 resamples new set of
particles.

3.3 Algorithm dependencies and threshold definition
FB1 depends on the number of integrated odometric
data at each iteration. FB2 depends on the number of
landmarks in the particle map, the number of extracted
features and the size of both images and corner descrip-
tor. FB3 depends on the number of matched landmarks.
FB4 depends on the number of matched landmarks to be

Abouzahir et al. EURASIP Journal on Advances in Signal Processing (2016) 2016:88 Page 6 of 20

Fig. 3 Functional block partitioning

corrected. FB5 depends on the number of newly observed
landmarks to be initialized. FB6 depends on the number
of likelihoods computed in FB4 and the number of used
particles.
In our experiments, we set a threshold value for each

parameter in order to bound the processing time of each
FB. We set the thresholds as follows:

• Number of odometric data is unbounded. It is related
to encoder frequency used in experiment.

• Image size is fixed by dataset used in experiment:
320 × 240 pixels.

• Size of descriptor: 16 × 16 pixels.
• Maximum number of landmarks for each particle is

set to 500. Note that this value is decreased for even
larger number of particles to avoid exhausting
memory.

• Maximum number of extracted features: 60.
• Maximum number of matched landmarks: 40.
• Maximum number of landmarks being initialized: 40.

3.4 Running times
Processing times of FBs depend on many parameters.
Their dependencies determine the number of occurrences
of a functional block per one iteration of the “while” loop
(Algorithm 3). Processing times reported in this paper

were computed relatively to the Mean of Occurrences per
Time Stamps (MOTS). If a functional block FBx is exe-
cuted NFBx times in a single iteration, the MOTS is given
by Eq. 4 where n is the number of iterations. Therefore,
the mean of processing time t′FBx of a functional block FBx
is given by Eq. 5. tFBx is the execution time (an average
of 10 runs of the algorithm for 500 iterations) of a single
execution of FBx.

MOTS = 1
n

(n∑
i=1

Ni
FBx

)
(4)

t
′
FBx = MOTS ∗ tFBx (5)

A GPGPU execution consists of three phases: data
transfer to GPU, kernel execution, and data transfer back
fromGPU to CPU phase after kernel execution.We would
like to note that we have deliberately overlapped data
transfer and GPU execution phases in the time measure-
ment to take into account the overhead of GPU-CPU data
transfer.

4 Hardware softwarematching
Signal processing community has always been interested
in implementing algorithms they developed. Evolution of
the heterogeneous architectures and tools has allowed

Abouzahir et al. EURASIP Journal on Advances in Signal Processing (2016) 2016:88 Page 7 of 20

designing complex systems that we have not even dare to
consider few years ago. We have gradually moved from
a separate study of algorithms and architectures, to a
more formalized approach taking into account simultane-
ously algorithm and system architecture for an efficient
matching. Algorithm architecture matching consists of a
simultaneous study of the algorithm and the architecture
in order to perform an optimized implementation of the
algorithm taking into account different constraints (real
time and embeddability).
Throughout this work, we aim to implement the Fast-

SLAM2.0 algorithm on a heterogeneous embedded archi-
tecture. This requires a process to map the algorithm
on the target architecture. A homogeneous implementa-
tion of FastSLAM2.0 algorithm was previously performed
on a low power embedded architecture [26]. Neverthe-
less, such architecture do not have a suitable GPU to
use for general purpose computing. New solutions have
appeared using GPUs for general purpose computing.
This is proved in the modern systems implementing het-
erogeneous architectures (HSA) allowing the use of GPUs
and CPUs together. Sequential tasks run on CPU while
the computational-intensive tasks are handled by GPU.
In this article, an heterogeneous implementation of Fast-
SLAM2.0 algorithm is performed using a modern embed-
ded system on chip: the NVIDIA Jetson Tegra K1.

4.1 Hardware description
Tegra K1 is a recent system on a chip (SoC) developed by
NVIDIA for mobile devices and multimedia applications.
Figure 4 shows the block diagram of this system. K1 pro-
cessor integrates a quad-core ARM Cortex A15 CPU and
an NVIDIA Kepler GPU with 192 NVIDIA CUDA cores.
Specifications of this architecture are gathered in Table 1.

4.1.1 Embedded GPGPU programming
Embedded GPU resources can be accessed by a pro-
grammer using various programming languages. CUDA
presents the user with a C language for direct applica-
tion development on NVIDIA GPUs which restrict code
portability specifically to NVIDIA hardwares.
Tegra K1 is selected to evaluate our implementation.

OpenCL on such architecture is not available. Moreover,
it is important to note here that at the time of writing
this paper, OpenCL drivers for other boards with embed-
ded GPUs are not available in the public realm. Embedded
boards that have the software support to use OpenCL
for GPGPU programming contain GPUs with only low
numbers of cores which are not really dedicated to high-
performance computing. In [27], authors used OpenCL
on a Vivante GC2000 GPU with 4 SIMD cores on the
i.MX6 Sabre Lite development board. In [28], Maghazeh
et al. used OpenCL on a Mali-T628 MP6 with 8 cores on
the ODROID board and on a MALI-T604-MP4 GPU with

4 cores on the ARNDAL board. Therefore, using OpenCL
in our work is not a good choice. Such boards with
powerless embedded GPGPU may not be a good choice
for a computationally intensive algorithm. As and when
such boards, with a powerful embedded GPU and their
respective software drivers supporting OpenCL, become
available, it will be worthwhile to consider OpenCL as a
programming language.
This work adopts OpenGL for developments. The

majority of current embedded GPUs support OpenGL
which is independent to a specific architecture. Adopting
OpenGL for general purpose computing requires a prior
experience in graphic programming. Although, it provides
code portability between different embedded GPUs which
makes the resulting implementation independent and
allows conducting a comparative study between differ-
ent embedded GPU architectures. Recent works adopted
OpenGL for GPGPU programing. Hendeby et al. [6] used
OpenGL for general purpose GPU particle filter. Weinlich
et al. [29] and Oliveira et al. [30] presented a compari-
son between different GPGPU programming languages:
OpenCL, OpenGL, and NVIDIA CUDA. They proved
that by adopting the same optimization strategy among
these languages, the gap is slightly different among them
in terms of acceleration.
To use OpenGL for GPGPU, a typical GPGPU applica-

tion program is based on three phases: (i) upload a suitable
shader; (ii) allocate appropriate processing units for vertex
and fragment shader; (iii) draw a suitable quad to trigger
computation and download results.

4.1.2 Unified-shading architecture
Tegra K1 contains a recent GPGPU that adopts a unified
shader architecture (Fig. 4). Unified shading architecture
hardware is composed of an array of computing units
(192 CUDA cores) which are capable of handling any
type of shading tasks instead of dedicated vertex and frag-
ment processor as in old GPUs. All computing units have
the same characteristics. They can run either a fragment
shader or a vertex shader. With a heavy vertex workload,
we could allocate most computing units to run a vertex
shader. In the case of a low vertex workload and a heavy
fragment load, more computing units could be allocated
to run fragment shader. In our work, we allocate more
processing units to run the fragment shader to perform
the desired parallel processing.

4.2 CPU-GPGPU partitioning
The HSA studied in our work allows the use of GPU
and CPU together to enhance the global processing time.
Using FB partitioning, we propose a distributed imple-
mentation of the monocular FastSLAM2.0. Functional
blocks that require significant processing time are paral-
lelized on GPU while sequential blocks are implemented

Abouzahir et al. EURASIP Journal on Advances in Signal Processing (2016) 2016:88 Page 8 of 20

Fig. 4 Tegra K1 block diagram [33]

on CPU. Algorithm 4 describes the CPU-GPGPU parti-
tioning of FastSLAM2.0. The implementation of each FB
is described in the following sections.

Algorithm 4: CPU-GPGPU partitioning
while 1 do

ut ← Odometric data;
zt ← Camera data;
CPU GPGPU
Time stamping
Image processing

Prediction
Particle update
Estimation
Resampling
Initialization

Updating particles map
end

4.2.1 CPU implementation of image processing task (FB2)
In image processing task, landmark detection is done
using the FAST detector. We used an instance of the algo-
rithm that is already optimized using machine learning
[9]. Matching task is performed once using the highest
weighted particle [25]. However, it can be parallelized
according to the number of detected observations. In

Table 1 NVIDIA Tegra K1 specifications

GPU CPU

192 NVIDIA CUDA cores Quad-core ARM Cortex-A15

Clock speed: 852 MHz Clock speed: 2.3 GHz

OpenGL version: 4.4 OS: Linux for Tegra

essence, at each time stamp, only few observations are
detected. Therefore, the matching task is well imple-
mented on ARM quad-core (more processing units are
not needed). Implementing this task on GPU will only
reduce performances. Transfer time will be larger than the
execution time. Furthermore, particles map cannot be all
transferred to GPU memory.

4.2.2 GPGPU implementation of prediction task (FB1)
Particle pose smt = (

sx, sy, sφ
)
is transferred to a texture in

global GPU memory. Each texel in texture memory holds
on one particle state. In our implementation, we preferred
generating random numbers on CPU for each particle
and transfer them to a separate texture on GPU memory.
This allows generating an accurate particle pose to surpass
the problem discussed in Section 2.2.1. We could employ
some techniques to achieve a parallel random number
generation such as those described in [15], but it would
be at the expense of localization accuracy. Poor particle
distribution greatly affects localization results specially in
large-scale environment.
Many encoder data are acquired at each time stamp (one

iteration of the while loop in Algorithm 3). Therefore, the
particle poses must be updated at each received encoder
data to reconstruct properly the trajectory. To implement
this process, a multiple rendering pass is needed. Texture
is used as render target to store the output results for one
prediction operation, and then it is directly used as input
texture for the next operation. Since textures are either
read-only or write-only, three textures are needed for FB1.
One unchanged read-only texture is used for encoder data
u. Two other textures are attached to frame buffer object
(FBO): read-only texture stold for input particle pose and
write-only texture stnew to store predicted pose. The role of
stnew and stold is swapped since the value in stold is no longer
needed once new values have been computed.

Abouzahir et al. EURASIP Journal on Advances in Signal Processing (2016) 2016:88 Page 9 of 20

This is illustrated in Algorithm 5. s is a table that holds
two ping-pong texture identifiers (sold, snew). Role of these
textures is changed within the loop by swap() function.
glDrawBuffer sets writable textures. Two routines glAc-
tiveTexture and glBindTexture set readable textures. N is
the number of odometric data, drawQuad() is a function
that launches computing by drawing a suitable quad. The
initial covariance matrix Pm is computed in the same way
using multiple rendering pass.

Algorithm 5: Prediction using multiple rendering pass
attachement[0] = GL_COLOR_ATTACHMENT0;
attachement[1] = GL_COLOR_ATTACHMENT1;
read = 1, write = 0;
Attach s[0] to attachement[0], and s[1] to
attachement[1];
Transfer particles poses to s[1];
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_RECTANGLE, u);
form ← 1 to N do

Transfer noisy encoders data to texture u;
glDrawBuffer(attachement[write]);
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_RECTANGLE,
s[read]);
drawQuad();
swap(read,write);

end

4.2.3 GPGPU implementation of particle update task (FB3)
Algorithm 2 is parallelized on GPU using multiple render-
ing pass. Each render pass computes the mean distribu-
tion μm

t = (x, y, θ) and its 3 × 3 covariance matrix �m
t

in parallel for each particle. A simple output texture will
not be enough to store the computed values. A solution
is to write to several output textures in one render pass.
Four output textures are needed to store the mean and
the covariance matrix computed for each particle. There-
fore, twelve textures are used for a Gaussian construction
distributed as follows:

• four textures, read-only not changed, are used for
matched landmark parameters
(u, v, x0, y0, ρ, θ ,ϕ,Ct).

• eight textures attached to the color attachment of
FBO where

– four of them are read-only used to hold the
initial Gaussian

(
μ
m,t−1
old ,�m,t−1

old

)
,

– four write-only textures contain result of one
render pass of the updated proposal
distribution

(
μm,t
new,�m,t

new
)
.

This is depicted in Algorithm 6. First, eight ping-pong
textures pingpongTexID are attached to FBO, then
we set the four readable textures held in LdmkTexID
array which contains single landmark parameter. The first
loop transfers

(
μ
m,t−1
old ,�m,t−1

old

)
to four textures already

attached to FBO. The second loop is the main loop
that computes the new proposal distribution using mul-
tiple render pass for N-matched landmarks. We trans-
fer at each iteration of the “For” loop the matched
landmark parameters to textures in LdmkTexID array.
glDrawBuffers routine sets writtable textures where
the new computed Gaussian

(
μm,t
new,�m,t

new
)
will be stored.

The following loop sets readable textures where the old
Gaussian mean and covariance will be read. For the next
render pass, textures where the new computed Gaussian
was written will be read-only, whereas textures that held
the old Gaussian

(
μ
m,t−1
old ,�m,t−1

old

)
will be write-only. This

is done by swap() function.

Algorithm 6: GLSL Gaussian construction
Attach eight ping-pong textures
pingpongTexID[0..7] to FBO;
Set the four readable textures LdmkTexID[0..3];
for i ← 0 to 3 do

Transfer the initial particles Gaussian state
μ
m,t−1
old ,�m,t−1

old to textures pingpongTexID[i];
end
for n ← 1 to N do

Transfer the n landmark state to textures
LdmkTexID;
glDrawBuffers(4,pingpongTexID);
for i ← 0 to 3 do

sets readable textures in pingpongTexID;
end
drawQuad();
swap();

end

It is important to note that we could allocate enough tex-
tures to hold all matched landmark parameters since we
are allowed to input up to 32 textures. This would allow
Gaussian construction to be done in one render pass. This
reduces data transfer at each render pass which allows a
significant improvement. However, unnecessary memory
allocation should be avoided. Such implementation would
increase memory requirements. So, the available on-chip
memory will be almost entirely accessed by these textures.

4.2.4 GPGPU implementation of Estimation task (FB4)
Each render pass corrects one matched landmark in the
map for each particle in parallel. Twelve textures are
needed for FB4. Eight read-only textures are used as

Abouzahir et al. EURASIP Journal on Advances in Signal Processing (2016) 2016:88 Page 10 of 20

inputs to the fragment shader to hold the old matched
landmark state (u, v, x0, y0, ρ, θ ,ϕ,Ct) and the current
state of particles

(
smt ,Pmt

)
. Four write-only textures are

attached to FBO to store the updated landmark state for
each input particle.
The fragment shader implements general extended

Kalman equations to update the landmark state and com-
pute the corresponding likelihood. This is described in
Algorithm 7. Each loop iteration corrects one matched
landmark in the map for each particle in parallel. If
more than one landmark are matched, many iterations are
needed to update them. Results (updated landmark state)
are transferred from textures to CPU.

Algorithm 7: GLSL estimation
for n = 1 to N do

Compute in parallel for each particle the
updated state of the n landmarks:

• Transfer the matched landmark state
(u, v, x0, y0, ρ, θ ,ϕ,Ct) to four read-only
input textures;

• Draw a filled rectangle to trigger the
computation

• Download the corrected landmark state from
four write-only output textures to CPU

end

4.2.5 GPGPU implementation of inverse depth initialization
task (FB5)

Five initial landmark parameters are calculated for all par-
ticles (xi, yi, θi,ϕi, ρi). The inverse depth parameter ρ has
a constant value ρ = 0.25 [19]; hence, it is initialized
on CPU. However, (xi, yi, θi,ϕi) are computed on GPU.
Landmark position in current frame and particle poses
are transferred to GPU via textures. Only two textures are
needed for FB5: one read-only texture with RGBA inter-
nal format that holds the particle pose (one particle per
texel R = xp,G = yp,B = θp,A = 0) and one write-
only texture attached to the frame buffer object to store
initialized landmark parameters (one landmark per texel:
R = xi,G = yi,B = θi,A = ϕi). Landmark poses in image
are loaded to the shader as a uniform value. To exemplify
GLSL source code, Algorithm 8 describes fragment shader
code needed for inverse depth initialization.
sampler2DRect is a specific pointer to the active texture

unit. Hence, partPose points out input particle poses. The
first line of the algorithm makes a texture look-up and
retrieves the particle pose stored in a four-dimensional
vector pos_particle. The next two lines compute consec-
utively the camera pose and the landmark position in
the environment. The first view camera pose (xi, yi), the

azimuth θi, and the elevation φi are stored in a specific
variable referred to as gl_FragColor.

Algorithm 8: Fragment shader inverse depth initializa-
tion
uniform sampler2DRect partPose;
uniform vec3 trans, uniform vec2 uv, uniform mat3
rot vec3 pos_cam, pos_lmk, vec4 pos_particle;
voidmain(void) {
pos_particle = texture2DRect(partPose,
gl_TexCoord[0].st);
pos_came = rot*trans;
pos_lmk = compute_world_Ldmk_pose(uv);
gl_FragColor.x = pos_cam.x + pos_particle.x;
gl_FragColor.y = pos_cam.y + pos_particle.y;
gl_FragColor.z= - atan((pos_cam.x -
pos_lmk.x)/(pos_cam.z - pos_lmk.z));
gl_FragColor.w = atan(pos_lmk.y/sqrt
(pow(pos_lmk.x -pos_cam.x,2) + pow(pos_lmk.z -
pos_cam.z,2)));
}

4.2.6 GPGPU implementation of resampling task (FB6)
Implementation of FB6 is similar to FB1. One texture
read-only contains the input likelihood score and two tex-
tures contain wold and wnew attached to frame buffer (in
this case, wnew = score∗wold). We switch roles of textures
from read-only to write-only textures. The normalized
weight is computed in one render pass; input texture that
stores the updated weight is loaded to the shader and
the sum of weights is loaded as a uniform value. Weight
summation is a reduction-type operation that can be also
implemented in parallel on GPGPU by mapping aM × M
texture to 1×1 texture. The algorithm reduces recursively
the output region size by computing the local summation
of each 2× 2 group of elements in one shader and writing
it to the corresponding output location.
Figure 5 summarizes the first reduction step for a 4 × 4

input texture. The left texture shows the input texture.
The gray area is the range of the output texels (which will
be located in another texture). The right texture shows
result of the first reduction pass. Each output texel con-
tains the local summation of a corresponding 2× 2 region
in the input texture. Computation of the minimum num-
ber of effective particles before resampling is also imple-
mented in the same way. To implement this on GPGPU,
reduction is performed in a ping-pong manner. Three dif-
ferent textures are required: one input texture containing
input weights w and two temporary textures to perform
the reduction itself.

4.3 Partitioningmodel
The proposed distributed implementation on TK1 is
described in Fig. 6. The overall block diagram of the

Abouzahir et al. EURASIP Journal on Advances in Signal Processing (2016) 2016:88 Page 11 of 20

Fig. 5 Implementation of the weight summation on GPU. This is
recursively repeated until aM × M texture is reduced to 1 × 1 scalar
texture

massively parallel architecture is detailed in Fig. 7. It con-
sists of a set of processing elements (PEs) operating in
parallel and communicating with GPU memory. Figure 8
illustrates the case of four independent PEs correspond-
ing to FB1, operating on odometric data. Figure 9 shows
the internal block diagram of the ith processing element
corresponding to FB4. This block describes the ordinary
EKF update of the jth matched landmark relatives to the
ith particle. The bottleneck in such heterogeneous imple-
mentation is the transfer time between CPU-GPGPU and
memory access in the GPU side. This greatly reduces per-
formances that can be obtained from HSA systems. Our
parallel model has bandwidth advantage bymanaging data
transfer and memory access in an efficient way.

4.3.1 Data transfer management
Data transfer is managed by PBO (pixel buffer object)
through asynchronous DMA transfer. CPU involves only
loading data to PBO but not data transfer from PBO
to textures. Instead, the memory controller manages
data transfer from PBO to textures performing a DMA
transfer operation without wasting CPU cycles. Without

DMA, CPU is typically fully occupied during the transfer
operation since data transfer comes before and after each
GPGPU kernel execution. Thus, the CPU is unavailable
to perform other tasks. The CPU needs to perform a
time stamping task and processes images at the frame
rate while arranging and updating the particle map. Using
DMA, the CPU initiates first the transfer, then it performs
time stamping and image processing tasks while the trans-
fer is in progress. This is an advantage allowing efficient
processing between CPU and GPU together. Figure 10
shows bandwidth improvement of PBO over generic data
transfers on TK1. PBO-accelerated transfer is faster than
the conventional transfer (1.2 GB/s against 640 MB/s).

4.3.2 Optimizingmemory access
GPU memory access is optimized using texture memory
which fully leverage the parallel processing power. In our
implementation and during kernel computation, texture
memory access patterns has a spatial locality. In other
words, a processing unit running a fragment shader is
likely to read from an address near the address that nearby
processing unit read. Texture memory is cached on a chip
and has a specialized caching scheme optimized for spa-
tial locality which provides effective bandwidth advantage
and reduce memory access.

5 Experimental results
In this section, we analyze the processing times of the
proposed heterogeneous implementation discussed in
Section 4. The experimental tests as well as the evalu-
ation of processing times were based on our method-
ology discussed in Section 3. First, all processing times
reported in our work as well as the localization results
are obtained using a real dataset (Section 3.1). Second, we
separately evaluate each functional block to synthesize the
full FastSLAM2.0 implementation results (Section 3.2).
Third, since each FB has parameter dependencies, evalu-
ation was conducted based on a set of defined thresholds

Fig. 6 Heterogeneous distribution of FastSLAM2.0

Abouzahir et al. EURASIP Journal on Advances in Signal Processing (2016) 2016:88 Page 12 of 20

Fig. 7 Internal block diagram of the massively parallel architecture

to bound the computation time (Section 3.3). Finally, a
FB may occur once or more time in a single iteration
depending on its parameters. We report the mean of pro-
cessing time t′FBx and tFBx respectively, computed relatively
for the MOTS and for a single occurrence (Section 3.4).

5.1 Algorithm evaluation
The aim of this section is to evaluate FastSLAM2.0 on an
embedded architecture and to determine the number of
particles needed for a monocular FastSLAM2.0 to oper-
ate well in a large-scale environment (Fig. 11). Results

are shown in Fig. 12. Since odometry data are very noisy,
the odometric trajectory reconstructed by the prediction
step (red line) diverges. FastSLAM2.0 (green line) pro-
vided a trajectory which follows the ground truth (blue
line) along the explored area. A high number of parti-
cles in a monocular FastSLAM2.0 system is necessary
to maintain a reasonable estimate of pose and landmark
uncertainties. This greatly decreases the error of localiza-
tion specially when exploring a large area (more details
are given in Section 5.2). To evaluate the quality of local-
ization, we measure the euclidean error between the real

Fig. 8 Processing element distribution of FB1

Abouzahir et al. EURASIP Journal on Advances in Signal Processing (2016) 2016:88 Page 13 of 20

Fig. 9 The ith processing element of FB4

robot pose and the estimated pose (6). Figure 13 shows
the effect of the particle number on the localization
error. The error decreases as the number of particles
increases.

d =
√

(xGT − sx)2 + (
yGT − sy

)2 (6)

(
sx, sy

)
is the estimated robot pose and (xGT, yGT) is the

reference pose.

5.2 Particle-wise GPU parallelization
Montemerlo et al. [10] implemented the FastSLAM2.0-
based laser range finder that provides range and bearing
of a landmark in a scene. Such algorithm can converge
with few particles. The SLAM algorithm implemented in
our work uses a monocular camera (bearing-only sen-
sor) to observe the environment. The number of particles
in such system is necessary to maintain reasonable esti-
mates of pose and landmark uncertainty as stated in [8]. In

Fig. 10 CPU-GPU data transfer time

Abouzahir et al. EURASIP Journal on Advances in Signal Processing (2016) 2016:88 Page 14 of 20

Fig. 11 Trajectory of the explored indoor environment

Fig. 12 FastSLAM2.0 results on Rawseeds dataset

Abouzahir et al. EURASIP Journal on Advances in Signal Processing (2016) 2016:88 Page 15 of 20

Fig. 13 Evolution of the localization error

addition, Eade and Drummond [8] conduct experiments
with 50, 250, and 1000 particles to evaluate the impact of
the number of particles on landmarks and pose estima-
tion. They showed that 50 particles are sufficient for a very
short sequence with few images. However, more detailed
and rigorous analysis will be necessary for long trajec-
tories and large environments. There remains significant
challenges to tackle with FastSLAM2.0-based bearing-
only sensor intended to operate in large geographic scales.
The exact number of particles necessary is not yet defined
which may increase with environment complexity.
In our evaluation (Section 5.1), we have used a very

long indoor sequence with 5000 images. To close the loop
over this larger trajectory, the number of particles must be
increased for an accurate estimate of uncertainties. Our
tests show that the monocular system can close the loop
over this large trajectory (Fig. 12) using more than 500
particles. The more the number of particles increases, the
more the landmark estimates are accurate and localization
error decreases (Fig. 13).

5.3 Processing time evaluation
The one-core, quad-core, and CPU-GPGPU implementa-
tions were run and time evaluated for 500 iterations using
Rawseeds dataset discussed in Section 5.1. Computing
performances on one-core and quad-core CPU are used
as a baseline to analyze the GPGPU acceleration results.
As discussed in Section 5.2, a large number of particles is
needed to achieve an accurate localization results. There-
fore, we choose to conduct experiments with the number
of particles that gives more accurate results.
Figure 14 presents the workload of each FB when run-

ning the one-core implementation with 4096 particles.
FB1 is a time-consuming functional block. FB1 occurs

several times in one iteration as many encoder data are
acquired to reconstruct robot trajectory using motion
model. Also, computing the initial covariance matrix Pm
is time consuming. It increases as the number of odomet-
ric data increases between two consecutivemeasurements
(image acquisitions). FB3 and FB4 occur only when there
is at least one matched landmark. Therefore, their com-
plexity depends on the number of matched landmarks.
FB5 occurs only when there is a new landmark to add in
the map. FB6 resamples particles only when there is at
least one likelihood computed in FB4 to reflect observa-
tion on particle poses.
Table 2 synthesizes a comparison of processing times

and global acceleration of each major kernel function
obtained after parallelization when running the algorithm

Fig. 14 FBs workload on Rawseeds dataset

Abouzahir et al. EURASIP Journal on Advances in Signal Processing (2016) 2016:88 Page 16 of 20

Table 2 Mean of processing times of functional blocks on Rawseeds dataset

Functional blocks (FBs) Mean of processing time per one occurrence tFBx (ms) MOTS Mean of processing times t
′
FBx

(ms) Speedup

One-core Quad-core CPU-GPU One-core Quad-core CPU-GPU –

– – Quad-CPU GPU – – – Quad-CPU GPU

FB2 6.38 4.83 4.83 - 1 6.38 4.83 4.83 – 1.32

FB1 272.03 150.19 – 3.42 15.1 4107.8 2267.9 – 51.66 43.9

FB3 11.78 5.72 – 2.28 14.1 166.09 80.71 – 32.17 2.50

FB4 7.12 5.04 – 1.37 14.1 100.50 71.09 – 19.45 3.65

FB5 5.45 2.95 – 0.96 10 55.45 29.58 – 9.65 3.06

FB6 4.7 1.88 – 0.51 5.2 24.87 9.8 – 2.7 3.6

Total 307.46 170.61 13.37 – 4461.09 2463.91 120.46 20.38

with 4096 particles. For a mean of occurrences equal to
15.1, FB1 is executed in 4107.8 ms on one core. In quad-
core implementation, FB1 is executed in 2267.9 ms. FB3
takes place only if there is at least one matched landmark.
For a MOTS equal to 14.1, FB3 is executed in 166.9-ms
on one-core CPU and 80.71 ms on quad-core CPU. After
accelerating FB1 and FB3 on GPU, the average time of
FB1 decreases from 2267.9 to 51.66 ms. This represents
an acceleration of 44 times. For FB3, the average time
dropped from 80.71 to 32.17 ms which results to 2.5 times
improvement. FB4 is executed in 100.5 ms on one-core
CPU, 71.09 ms on quad-core CPU, 19.45 ms on GPU for
a MOTS equal to 14.1. FB5 takes 55.45 ms for a MOTS
equal to 10 on one-core CPU, 29.58 ms on quad core,
and 9.65 ms on GPU. Finally, particles are resampled in
FB6 when a likelihood is computed. FB6 is executed in
24.87 ms on one-core CPU, 9.8 ms on quad-CPU, and
2.7 ms on GPU for a MOTS equal to 5.2. Processing time
of CPU-GPU implementation has been decreased by a
factor of 21.77 compared to OpenMP implementation on
ARM quad core.
We note here that the prediction step (FB1) gets 44×

speedup using GPGPU. This is because the parallel imple-
mentation of this block on GPU is done with much less
data transfer between CPU and GPU. For M particles,
we transfer only M random numbers in single-precision
floating-point format from CPU to GPU and there is no
transfer back to CPU from GPU. Other functional blocks
(FB3, FB4, FB5, and FB6) require data transfer from CPU
to GPU and back from GPU to CPU. In FB3, we trans-
fer at each iteration the particle map (matched landmarks
and their related covariance matrix) to GPU to update
the particle pose. In FB4, we transfer at each iteration the
matched landmarks and their covariance matrix to GPU
to correct their states and we transfer back the updated
landmarks to CPU. For FB5, we transfer unmatched land-
marks to GPU. Once they are initialized, we transfer them
back to CPU. In FB6, we transfer the computed likelihoods
to GPU, then we transfer back to CPU the resampled

particles. This reduces the gain that can be obtained after
parallelization.
For further analysis of the algorithm dependencies,

we run the one-core, quad-core, and CPU-GPGPU
implementations for 500 iterations using a set of different
particles ranging from 24 to 216. Note that a low number of
particles (24) are not enough for accurate localization, not
as much as (214 or 216) are needed. Although, this range
allows a better analysis of dependencies. Figure 15 shows
the processing time against the number of particles in log
scale coordinates to better show results.
As seen before, each FB of the algorithm depends

on many parameters. The complexity of FB3 and FB4
increases as there are many matched landmarks to pro-
cess. The decision to consider whether a landmark is
matched or not is greatly related to uncertainty in robot
pose [31]. As this uncertainty is varying with the num-
ber of particles used, due to the randomization applied
to motion model, the number of matched landmarks is
also varying for each implementation. In other words, the
number of matched landmarks is not necessarily the same,
neither when running the algorithm on one-core, quad-
core, or GPU nor when running it for different numbers
of particles. This is approved in Fig. 15. For the GPGPU
implementation of FB3 and FB4, the number of matched
landmarks with 212 particles is higher than the number
of matched landmarks with 214. Therefore, GPU can pro-
cess FB3 and FB4 with 214 particles even faster than it
processes FB3 and FB4 with 212 particles. This is because
the complexity still rises since FB3 and FB4 are being exe-
cuted sequentially within each computing kernel. Also,
the one-core and quad-core CPU can process FB3 and FB4
slightly faster with 212 than with 210 particles for the same
reason.
The complexity of FB5 increases as there are many new

landmarks to initialize and to add in the map. The deci-
sion whether to add a new landmark or not is also related
to robot pose uncertainty and to the number of particles
used. Therefore, the number of new initialized landmarks

Abouzahir et al. EURASIP Journal on Advances in Signal Processing (2016) 2016:88 Page 17 of 20

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

10
5

FB1

Number of particle

tim
e

in
 (

m
s)

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

FB3

Number of particle

tim
e

in
 (

m
s)

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

FB4

Number of particle

tim
e

in
 (

m
s)

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

FB5

Number of particle

tim
e

in
 (

m
s)

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

FB6

Number of particle

tim
e

in
 (

m
s)

One−Core
Quad−Core
GPU

Fig. 15 FB dependencies on algorithm parameters

is also varying from an implementation to another one.
This is seen in Fig. 15. GPU and quad-core CPU can
process FB5 slightly faster with 212 than with 210 par-
ticles. The number of new landmarks decreases when
implementing the algorithm with 212 particles. When the
number of new landmarks steadily increases, the pro-
cessing time of FB5 scales linearly with the number of
particles, as the case of the one-core implementation of
FB5.
Since the number of matched landmarks is varying, the

number of computed likelihood is also varying. Moreover,
if this likelihood presents an outlier value, it is discarded
and not used in FB6 to resample particles. This strict pol-
icy can decrease the number of the computed likelihoods
and hence the processing time of FB6 also decreases.
Figure 15 shows this dependencies. The processing time
of FB6 GPU implementation decreases with 28 and 212
particles. Also, for FB6 quad-core implementation, the
processing time decreases with 212 particles.
Unlike other functional blocks, FB1 depends only on the

number of odometric data to process at each iteration.
The number of odometric data provided by the sensor at
each iteration is the same and remains independent of the
implementation type that is currently running. Therefore,
the complexity of FB1 scales linearly with the number of
particles (Fig. 15).

Actually, such dependencies are inevitable, especially
when dealing with a SLAM based on a probabilistic
approach. A solution is to bound the processing time by
defining a threshold value for each parameter.
To explore the parallel computing power of the embed-

ded GPGPU, we report the overall processing time of
the monocular FastSLAM2.0 for the three implementa-
tions. Different numbers of particles are used to better
study the complexity. When using the same dataset and
the number of particles, the speedup achieved by the
GPU implementation compared to one-core and quad-
core implementations, respectively, is shown in Fig. 16 (in
log scale coordinate).
For few particles (24), CPU implementation performs

better than quad-core and GPU implementations. The
quad-core implementation seems not to perform well for
few numbers of particles (24 and 28). This is due to the
fact that many data are shared between threads and mem-
ory access is sequential among different threads, specially
synchronization barriers among the currently running
threads. This issue is common and well known when deal-
ing with OpenMP implementation. This results to perfor-
mance degradation. In this case, one-core implementation
gets the best performance. Parallelizing withmore threads
on quad-core CPU only worths when the number of par-
ticles increases (210 to 216). We can then achieve the best

Abouzahir et al. EURASIP Journal on Advances in Signal Processing (2016) 2016:88 Page 18 of 20

16 256 1024 4096 16384 65536
10

0

10
1

10
2

10
3

10
4

G
lo

ba
l T

im
e,

 t
(m

s)

0

5

10

15

20

25

30

35

G
lo

ba
l S

pe
ed

−
up

One−Core
Quad−Core
GPU

Fig. 16 Global processing time and overall speedup

performance according to one-core implementation.With
24 particles, GPU implementation also performs worse.
This is due to data transfer time which is more impor-
tant than the processing time. However, for even more
particles, the degree of parallelization becomes important
and hence GPGPU implementation is faster than one-core
and quad-core implementations.
Figure 17 shows the evolution of CPP (cycle per par-

ticle) for different implementations computed with the
following equation:

CPP = f ∗ t
M

M is the number of particles, f is the clock frequency
expressed in Hz, and t is the processing time in s. CPP
serves as a baseline for performance comparison of imple-
mentations on different processing units [32].
For one-core and quad-core implementations, the CPP

value achieves the lowest point with 210 particles. This is
due to the fact that the global processing time t for both
the one-core and quad-core implementations increases
significantly with 212 particles (see Fig. 16). CPU needs
more cycles to process 212 particles than it needs with 210
particles. This is related to memory copy in the resam-
pling step when a particle is duplicated. The memory
copy is a time-consuming operation when there are many

10
1

10
2

10
3

10
4

10
5

0

2

4

6

8

10

12
x 10

6

One−Core
Quad−Core
GPU

Fig. 17 Cycle per particle, Log(M)

Abouzahir et al. EURASIP Journal on Advances in Signal Processing (2016) 2016:88 Page 19 of 20

landmarks in the map. This increases significantly the
global processing time specially when many particles are
used. This is the case when the global processing time
increases significantly with 4096 particles. For even large
number of particles (214 and 215), we decrease the max-
imum number of landmarks in the map of each particle
as mentioned in Section 3.3 to avoid exhausting mem-
ory usage. This reduced the memory copy operation in
the resampling step and hence the global processing time
steadily increases with the number of particles in the filter.
Contrary to GPGPU implementation, the global time

slightly increases with 212 particles. In general, CPP corre-
sponding to GPGPU implementation keeps a lower value
than one-core and multi-core implementations as long as
the number of particles increases.

6 Conclusions
This article proposed an efficient matching of monocu-
lar FastSLAM2.0 algorithm on a heterogeneous embed-
ded architecture. The first complete parallel FastSLAM2.0
implementation in literature on a embedded GPGPU is
described. Using a real dataset, the parallel CPU-GPU
implementation is shown to outperform a quad-core CPU
implementation for many particles while maintaining the
same localization accuracy.
The absolute performance of FastSLAM2.0 on an

embedded GPGPU relies on the number of embedded
cores (i.e., processing elements). As the number of pro-
cessing elements steadily increases and can be expected
to match the number of particles needed for an accurate
monocular FastSLAM2.0 system intended to operate in
large-scale environment, GPGPU is an interesting alterna-
tive architecture for monocular FastSLAM2.0 implemen-
tations. For a fixed number of particles and sufficiently
large number of embedded cores, the parallel implemen-
tation will always be more efficient. Our FastSLAM2.0
GPGPU implementation has achieved up to 20× speedup
with 192 GPGPU cores. It leads to a system that runs in
real time and processes images at the frame rate they were
acquired (30 FPS). This meet performance requirement of
a robot to operate in real time.
It is important to note here that, at the time of writ-

ing this paper, Tegra K1 is the only embedded board that
has a powerful GPGPU with 192 cores. Other boards with
embedded GPUs only contain limited numbers of cores.
As a conclusion, the monocular FastSLAM2.0 is shown to
performwell with high number of particles in a large-scale
environment. A naive implementation of FastSLAM2.0
with high number of particles would increase the local-
ization accuracy but at the expense of robot performance
to operate in real time. Our accelerated implementa-
tion on an embedded GPGPU achieved a compromise
between accurate localization and real-time performance.

Our results demonstrated that an optimized monocular
FastSLAM2.0 partitioned on a heterogeneous embedded
architecture is suitable to have high-speed execution and
accurate results under real-time constraints in large-scale
environments.

Appendix
Table 3 contains the parameter definitions.

Table 3 Parameter definitions

Parameters Definition

zmssd Zero mean sum of squared differences

md Pixels mean of the landmark descriptor

Ilmk Pixel intensity of the landmark descriptor

mp Pixels mean of the corner descriptor

Ip Pixel intensity of corner descriptor

x, y Location in image of the detected corner

i, j Indexes to surrounding pixels in the
descriptor

f Motion model

h Pin-Hol model

ut (nl , nr) Odometry data

st
(
sx , sy , sθ

)
Particle pose

δs , δθ Longitudinal and angular displacement

b Wheels base

Pm Particles initial covariance matrix

Gu Jacobian matrix of motion model f
derived according to st

Gp Jacobian matrix of motion model f
derived according to δs , δθ

Q Motion model noise

M Number of particles

N Number of landmarks

μ Mean of the new proposal distribution

� Covariance matrix of the new proposal
distribution

Hp Jacobian matrix of observation model
(Pin-Hol)

Zn Innovation covariance

zt Measurement

ẑt Measurement prediction(
û, v̂

)
Predicted landmark position in image

(u, v) Landmark position in image

(x, y, ρ ,φ, θ) Landmark inverse depth parametrization(
cu , cv , fku

)
Standard camera calibration

X (xcam, ycam, zcam) Landmark 3D world coordinate

C Landmark covariance matrix

ω Particle weight

Neff Number of effective particles

Abouzahir et al. EURASIP Journal on Advances in Signal Processing (2016) 2016:88 Page 20 of 20

Competing interests
The authors declare that they have no competing interests.

Author details
1Institut d’Electronique Fondamentale, Université Paris-Sud, 91405 Orsay,
France. 2Équipe Signaux-Systèmes et Informatique, ENSA, 1136 Agadir,
Morocco. 3École Nationale des Sciences Appliquées ENSA, 575 Marrakech,
Morocco.

Received: 2 July 2015 Accepted: 29 July 2016

References
1. S-A Li, C-C Hsu, W-L Lin, J-P Wang, in IEEE International Conference on

System Science and Engineering (ICSSE). Hardware/software co-design of
particle filter and its application in object tracking (IEEE, New York, 2011),
pp. 87–91

2. M Moyers, D Stevens, V Chouliaras, D Mulvaney, in IEEE International
Conference on Eletronics Circuits and Systems (ICECS), Tunisia.
Implementation of a fixed-point FastSLAM 2.0 algorithm on a
configurable and extensible VLIW processor (IEEE, Sfax, 2009)

3. TC Chau, X Niu, A Eele, W Luk, PY Cheung, J Maciejowski, in Reconfigurable
Computing: Architectures, Tools and Applications. Heterogeneous
reconfigurable system for adaptive particle filters in real-time applications
(Springer, Los Angeles, 2013), pp. 1–12

4. O Tosun, et al, in Intelligent Vehicles Symposium (IV), 2011 IEEE. Parallelization
of particle filter based localization and map matching algorithms on
multicore/manycore architectures (IEEE, Baden-Baden, 2011), pp. 820–826

5. S Maskell, B Alun-Jones, M Macleod, in IEEE Nonlinear Statistical Signal
ProcessingWorkshop. A single instruction multiple data particle filter (IEEE,
Cambridge, 2006), pp. 51–54. doi:10.1109/NSSPW.2006.4378818

6. G Hendeby, R Karlsson, F Gustafsson, Particle filtering: the need for speed.
EURASIP J. Adv. Signal Process. 2010, 22–1229 (2010).
doi:10.1155/2010/181403

7. H Zhang, F Martin, in IEEE International Conference on Technologies for
Practical Robot Applications (TePRA). CUDA accelerated robot localization
and mapping (IEEE, Woburn, 2013), pp. 1–6

8. E Eade, T Drummond, in IEEE Computer Society Conference on Computer
Vision and Pattern Recognition. Scalable monocular slam, vol. 1 (IEEE, New
York, 2006), pp. 469–476. doi:10.1109/CVPR.2006.263

9. E Rosten, R Porter, T Drummond, Faster and better: A machine learning
approach to corner detection. IEEE Trans. Pattern Anal. Mach. Intell. 32(1),
105–119 (2010)

10. M Montemerlo, S Thrun, D Koller, B Wegbreit, in Proceedings of the
Sixteenth International Joint Conference on Artificial Intelligence (IJCAI).
FastSLAM2.0 an improved particle filtering algorithm for simultaneous
localization and mapping that provably converges (IJCAI, Acapulco, 2003)

11. E Seignez, M Kieffer, A Lambert, E Walter, T Maurin, Real-time
bounded-error state estimation for vehicle tracking. IEEE Int. J. Robot. Res.
28, 34–48 (2009)

12. M Abouzahir, A Elouardi, S Bouaziz, R Latif, T Abdelouahed, in 2014 Second
World Conference On Complex Systems (WCCS). An improved
Rao-Blackwellized particle filter based-slam running on an OMAP
embedded architecture (IEEE, Agadir, 2014), pp. 716–721.
doi:10.1109/ICoCS.2014.7061001

13. S Thrun, Probabilistic robotics. Commun. ACM. 45(3), 52–57 (2002)
14. P Hellekalek, Good random number generators are (not so) easy to find.

Math. Comput. Simul. 46(5), 485–505 (1998)
15. A DeMatteis, S Pagnutti, Parallelization of random number generators and

long-range correlations. Numerische Mathematik. 53(5), 595–608 (1988)
16. CJK Tan, The PLFG parallel pseudo-random number generator. Futur.

Gener. Comput. Syst. 18(5), 693–698 (2002)
17. P Hellekalek, in ACM SIGSIM Simulation Digest. Don’t trust parallel Monte

Carlo!, vol. 28 (IEEE Computer Society, Banff, Alberta, 1998), pp. 82–89
18. M Sussman, W Crutchfield, M Papakipos, in Proceedings of the 21st ACM

SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hardware.
Pseudorandom number generation on the GPU (ACM, New York, 2006),
pp. 87–94

19. J Civera, AJ Davison, JMM Montiel, Inverse depth parametrization for
monocular SLAM. IEEE transactions on robotics. 24(5), 932–945 (2008)

20. WG Madow, LH Madow, On the theory of systematic sampling, i. The
Annals of Mathematical Statistics. 15(1), 1–24 (1944).
doi:10.1214/aoms/1177731312

21. A Dine, A Elouardi, B Vincke, S Bouaziz, in 2015 IEEE International
Conference On Robotics and Automation (ICRA). Graph-based slam
embedded implementation on low-cost architectures: a practical
approach, (2015), pp. 4612–4619. doi:10.1109/ICRA.2015.7139838

22. A Dine, A Elouardi, B Vincke, S Bouaziz, in 2015 IEEE 26th International
Conference On Application-specific Systems, Architectures and Processors
(ASAP). Speeding up graph-based slam algorithm: a GPU-based
heterogeneous architecture study (IEEE, Toronto, 2015), pp. 72–73

23. B Vincke, A Elouardi, A Lambert, Real time simultaneous localization and
mapping: towards low-cost multiprocessor embedded systems. EURASIP
J. Embedded Syst. 2012(1), 1–14 (2012)

24. A Bonarini, W Burgard, JD Tardos, in Proceedings of IROS’06Workshop on
Benchmarks in Robotics Research. Rawseeds: Robotics advancement
through web-publishing of sensorial and elaborated extensive data sets
(Proceedings of IROS’06, Beijing, 2006)

25. E EADE, Monocular simultaneous localization and mapping. PhD thesis
(2008)

26. M Abouzahir, A Elouardi, S Bouaziz, R LATIF, A Tajer, in IEEE. The 13th
International Conference on Control, Automation, Robotics and Vision,
ICARCV. FastSLAM2.0 running on a low-cost embedded architecture,
(Marina bay Sands, Singapour, 2014)

27. A Maghazeh, UD Bordoloi, P Eles, Z Peng, in 2013 International Conference
On Embedded Computer Systems: Architectures, Modeling, and Simulation
(SAMOS XIII). General purpose computing on low-power embedded gpus:
has it come of age? (IEEE, Agios Konstantinos, 2013), pp. 1–10

28. L Nardi, B Bodin, MZ Zia, J Mawer, A Nisbet, PH Kelly, AJ Davison, M Luján,
MF O’Boyle, G Riley, et al, in 2015 IEEE International Conference On Robotics
and Automation (ICRA). Introducing slambench, a performance and
accuracy benchmarking methodology for slam (IEEE, Seattle, 2015),
pp. 5783–5790

29. A Weinlich, B Keck, H Scherl, M Kowarschik, J Hornegger, in Proceedings of
the First International Workshop on New Frontiers in High-performance and
Hardware-aware Computing. Comparison of high-speed ray casting on
GPU using CUDA and OpenGL, vol. 1 (Proceedings of HipHaC’08, Lake
Como, 2008), pp. 25–30

30. RS Oliveira, BM Rocha, RM Amorim, FO Campos, W Meira Jr, EM Toledo,
RW dos Santos, in Parallel Processing and Applied Mathematics. Comparing
CUDA, OpenCL and OpenGL implementations of the cardiac
monodomain equations (Springer, Torun, 2011), pp. 111–120

31. M Montemerlo, FastSLAM: a factored solution to the simultaneous
localization and mapping problem with unknown data association. PhD
thesis (2003)

32. M Njiki, A Elouardi, S Bouaziz, O Casula, O Roy, A multi-FPGA
architecture-based real-time TFM ultrasound imaging. J. Real-Time Image
Process (2016). doi:10.1007/s11554-016-0563-5

33. NVIDIA Tegra K1 Embedded Platform Design Guide. http://developer.
download.nvidia.com/embedded/jetson/TK1/docs/3_HWDesignDev/
TegraK1_Embedded_DG_v03.pdf. Accessed Jun 2016

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://dx.doi.org/10.1109/NSSPW.2006.4378818
http://dx.doi.org/10.1155/2010/181403
http://dx.doi.org/10.1109/CVPR.2006.263
http://dx.doi.org/10.1109/ICoCS.2014.7061001
http://dx.doi.org/10.1214/aoms/1177731312
http://dx.doi.org/10.1109/ICRA.2015.7139838
http://dx.doi.org/10.1007/s11554-016-0563-5
http://developer.download.nvidia.com/embedded/jetson/TK1/docs/3_HWDesignDev/TegraK1_Embedded_DG_v03.pdf
http://developer.download.nvidia.com/embedded/jetson/TK1/docs/3_HWDesignDev/TegraK1_Embedded_DG_v03.pdf
http://developer.download.nvidia.com/embedded/jetson/TK1/docs/3_HWDesignDev/TegraK1_Embedded_DG_v03.pdf

	Abstract
	Keywords

	Introduction
	Localization and mapping
	Image processing
	FastSLAM2.0
	Prediction
	Sampling a pose: particle update
	Estimation
	Initialization
	Resampling

	Evaluation methodology
	Real dataset-based evaluation
	Functional block partitioning
	Algorithm dependencies and threshold definition
	Running times

	Hardware software matching
	Hardware description
	Embedded GPGPU programming
	Unified-shading architecture

	CPU-GPGPU partitioning
	CPU implementation of image processing task (FB2)
	GPGPU implementation of prediction task (FB1)
	GPGPU implementation of particle update task (FB3)
	GPGPU implementation of Estimation task (FB4)
	GPGPU implementation of inverse depth initialization task (FB5)
	GPGPU implementation of resampling task (FB6)

	Partitioning model
	Data transfer management
	Optimizing memory access

	Experimental results
	Algorithm evaluation
	Particle-wise GPU parallelization
	Processing time evaluation

	Conclusions
	Appendix
	Competing interests
	Author details
	References

