
EURASIP Journal on Advances
in Signal Processing

Kim EURASIP Journal on Advances in Signal
Processing  (2016) 2016:91 
DOI 10.1186/s13634-016-0389-0

RESEARCH Open Access

Probabilistic distance-based quantizer
design for distributed estimation
Yoon Hak Kim

Abstract

We consider an iterative design of independently operating local quantizers at nodes that should cooperate without
interaction to achieve application objectives for distributed estimation systems. We suggest as a new cost function a
probabilistic distance between the posterior distribution and its quantized one expressed as the Kullback Leibler (KL)
divergence. We first present the analysis that minimizing the KL divergence in the cyclic generalized Lloyd design
framework is equivalent to maximizing the logarithmic quantized posterior distribution on the average which can be
further computationally reduced in our iterative design. We propose an iterative design algorithm that seeks to
maximize the simplified version of the posterior quantized distribution and discuss that our algorithm converges to a
global optimum due to the convexity of the cost function and generates the most informative quantized
measurements. We also provide an independent encoding technique that enables minimization of the cost function
and can be efficiently simplified for a practical use of power-constrained nodes. We finally demonstrate through
extensive experiments an obvious advantage of improved estimation performance as compared with the typical
designs and the novel design techniques previously published.

Keywords: Distributed compression, Distributed source coding (DSC), Quantizer design, Posterior distribution, KL
divergence, Generalized Lloyd algorithm, Source localization, Sensor networks

Abbreviations: ARE, Asymptotic relative efficiency; DOQ, Distributed optimized quantizer; DSC, Distributed source
coding; EDQ, Equally distance-divided quantizer; KL, Kullback Leibler; LE, Localization error; LSQ, Localization-specific
quantizer; ML, Maximum likelihood; PDQ, Probabilistic distance-based quantizer; PDQ-R, Probabilistic distance-based
quantizer-reduced; R-D, Rate-distortion; SFQ, Score-functional quantizer; SNR, Signal-to-noise ratio

1 Introduction
In distributed estimation systems where spatially sep-
arated sensor nodes are battery-powered and operate
under strict limitations on wireless communication band-
width, the sensor nodes measure the parameter of inter-
est, quantize their measurements, and send the quantized
data to a fusion node which then performs estimation of
the parameter. It is reported that the rate-distortion per-
formance can be greatly improved by adopting efficient
quantizers at nodes as compared with simple uniform
quantizers.
In distributed source coding (DSC) framework where

nodes at different locations collect data and transmit them
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to a fusion node, practical design techniques for quantiz-
ers have been reported [1–3]: to achieve the Wyner-Ziv
bound, trellis codes for DSC that are computationally
efficient were proposed in [1]. An iterative design for
quantizer in the Lloyd algorithm framework was shown
to further reduce the distortion by producing the non-
regular scalar quantizers, implying that several disjoint
intervals can be mapped to a single codeword [2]. In
addition, since various practical design algorithms have
been developed in the Lloyd algorithm framework, they
can be typically affected by initialization of quantizers,
leading to numerous poor local optima. Thus, to over-
come this, an iterative algorithm was proposed by using a
deterministic annealing technique for a robust DSC sys-
tem [3]. An iterative algorithm for construction of the
optimal quantization partitions was studied in distributed
estimation systems [4] where computation of the estima-
tor function used in encoding of such partitions may be
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practically prohibitive. To avoid the encoding complexity,
a suboptimal approach (i.e., linear estimator) was con-
sidered for quantizer design [5]. Under the assumption
of one-bit message from nodes to fusion node, univer-
sal decentralized estimation schemes were investigated
[6] and distributed estimators were derived for pragmatic
signal models [7]. A brief investigation for quantization
in distributed estimation and classification systems was
presented in [8].
Since standard quantization focuses on minimization of

a local metric (e.g., reconstruction error of local sensor
readings), it should be modified to optimize at each step
a global metric such as estimation error: more specifi-
cally, the two main tasks in the Lloyd design framework
(i.e., quantization partition construction and the corre-
sponding codeword computation) should be dedicated to
minimizing the estimation error. However, the design dif-
ficulty arises since the quantization partitions constructed
to minimize the estimation error are not generally inde-
pendently encodable at each node: that is, encoding (or
mapping) of local measurements into one of the quanti-
zation partitions would be possible after computing the
global metric, which is not accessible at each node where
only local measurements are available.
To circumvent the difficulty, a distributional distance

between the distributions under two hypotheses was sug-
gested as a global metric for quantizer design to yield
a manageable design procedure [9]. A distance-based
metric to measure the loss due to quantization was
adopted for uniform or nonuniform quantizers in the
high-resolution regime [10]. A vector quantization tech-
nique thatminimizes the Kullback Leibler (KL) divergence
was proposed for distribution matching [11]. An iterative
design algorithm that maximizes the minimum asymp-
totic relative efficiency (ARE) was proposed, illustrating
that the score-functional quantizer (SFQ) would be opti-
mal so as to maximize the minimumARE for distributions
with the monotonicity property [12]. For acoustic sen-
sor networks, a distance error at nodes was proposed
in the functional quantization framework to ensure con-
vergence in an iterative process [13]. A weighted sum of
both of the metrics was proposed as a cost function (i.e.,
local + λ × global) along with a search for proper weights
that guarantee construction of the encodable quantization
partitions whilemaintaining the non-increasing cost func-
tion at iterations [14], showing a significant performance
gain over typical designs. To reduce design complexity,
efficient algorithms that allow us to search sequentially
the boundary values of the quantization intervals in scalar
quantizers have been developed [15, 16].
It was also observed in [17] that multiple disjoint quan-

tization bins at nodes can be merged to a single bin or a
single codeword without performance loss for distributed
estimation systems. The merging technique determines

the true bin transmitted from the node of interest by tak-
ing into account the measurements from other nodes,
hence achieving a significant rate reduction. In addition,
an iterative quantizer design algorithm was proposed [18]
to incorporate non-regularity into design process, imply-
ing the correspondence between multiple disjoint parti-
tions and a single codeword: specifically, the bins (e.g.,
intervals in scalar quantizers) are regarded as the elements
that will be processed for mapping to their corresponding
codewords (or reconstruction values), resulting in disjoint
Voronoi regions (e.g., union of multiple intervals in scalar
quantizers). Recently, a novel encoding scheme of assign-
ing multiple codewords to each quantization partition
was proposed to implement a low-weight independent
encoding of the optimal partitions [19].
In this paper, we consider an iterative design of inde-

pendently operating local quantizers at nodes in the Lloyd
algorithm framework. Instead of directly minimizing the
estimation error, we choose to use an indirect metric
related to the posterior distribution. Specifically, we define
quantization of the posterior distribution and focus on
minimizing the probabilistic distance between the pos-
terior distribution and its quantized version as a global
cost function. We first express the cost function as the
KL divergence which typically causes a high computa-
tional cost. We develop a feasible design procedure by
presenting the analysis that minimizing the KL divergence
is equivalently reduced to maximizing the logarithmic
quantized posterior distribution on the average which is
properly further simplified as a new cost function, yielding
a substantial reduction in design complexity. We discuss
that the proposed algorithm converges to a global opti-
mum due to the convexity of the cost function in the
quantized posterior distribution [20], which is experimen-
tally examined by showing that our design operates robust
under various test conditions. We also show that the pro-
posed quantizer generates themost informative quantized
measurements, which would be efficiently used by estima-
tion techniques at fusion node to improve the estimation
performance.
We highlight that the independent encoding minimiz-

ing the global cost function can be accomplished and also
provide an efficient approximation to the encoding tech-
nique to avoid a computational burden at each node in
practical use while maintaining a reasonable estimation
performance. Note that most of the previous work con-
duct encoding of local measurements by simply comput-
ing the local Euclidean distance between sensor readings
and codewords. We finally demonstrate through exten-
sive simulations that the proposed algorithm performs
well with respect to the previously developed techniques
[14, 18] owing to the two main advantages of our pro-
posed algorithm such as the global optimality and the
encoding technique designed to optimize the system-wide
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metric. In this work, it is assumed that the sensor nodes do
not exchange data with each other; they send their mea-
surements to a fusion node via reliable communication
links.
This paper is organized as follows. The problem for-

mulation of the quantizer design is given in Section 2.
A new cost function is introduced and properly incor-
porated into our iterative design algorithm in Section 3.
Discussions of performance of the proposed algorithm
and design complexity for our encoding technique are
provided in Section 3.1 and Section 3.2. An application
example for the proposed algorithm is briefly presented in
Section 4. Simulation results are given in Section 5, and
the conclusions are found in Section 6.

2 Problem formulation
We consider a distributed estimation system where M
sensor nodes are randomly deployed at known spatial
locations, xi ∈ R2, i = 1, . . . ,M. Each node senses the
signals generated from the unknown parameter θ ⊂ RN

and sends its measurement to a fusion node for estimation
of the parameter. Assuming the sensing model fi(θ , xi)
employed at node i, the measurement at node i denoted
by zi can be expressed as follows:

zi(θ) = fi (θ , xi) + ωi, i = 1, . . . ,M (1)

where the measurement noise ωi is assumed to be approx-
imated by normal distribution N(0, σ 2

i ), and the measure-
ments are also assumed to be statistically independent of
each other given the parameter; that is, p(z1, · · · zM|θ) =∏M

i = 1 p(zi|θ). Each node uses an Ri-bit quantizer with
quantization level Li = 2Ri and the dynamic range
Di = [

zmin
i zmax

i
]
. Note that the quantization range

Di can be determined for nodes, based on their respective
sensing ranges. Each node quantizes its measurement and
generates the codeword ẑi for zi according to its encoding
rule (e.g., minimum Euclidean distance rule). For exam-
ple, if the measurement zi belongs to the jth quantization
partition Vj

i by using its encoding rule, the node i will
transmit the jth codeword ẑji to a fusion node which pro-
duces an estimate of the parameter, θ̂ from the received
quantized measurements, ẑi, i = 1, . . . ,M from all
nodes.
Notation: A large proportion of our notation will

be introduced as needed. However, a couple of basic
notations will be given now: the bold characters zM1
and ẑM1 indicate a vector of measurements (z1, · · · , zM)

and a vector of codewords (ẑ1, · · · , ẑM), respectively,
and the parameter θ is treated as a vector of param-
eters (θ1, · · · , θN ). In addition, zM1/i is the shortened
notation for a vector of M − 1 measurements

(z1, · · · , zi − 1, zi + 1, · · · , zM), implying that the subscript
i indicates the element omitted from the set of measure-
ments.

2.1 Criteria for quantizer optimization
Obviously, quantizers optimized in the Lloyd framework
for distributed estimation systems should seek to mini-
mize the estimation error, ‖ θ − θ̂ ‖2 which a function
of all of the codewords generated fromM nodes involved.
Thus, the quantization partitions and their corresponding
codewords are iteratively generated to reduce the estima-
tion error at each step while such quantization partitions
remain independently encodable at each node.
To ensure the independent encoding and minimiza-

tion of the estimation error which are the two crucial
conditions for quantizer design algorithms in distributed
estimation systems, several global metrics related to the
estimation error were previously developed: the distri-
butional distance [9] for distributed detection and the
global distance function for distributed estimation [13]. In
this perspective, we suggest quantization of the posterior
distribution p(θ |zM1 ) and seek to design local quantizers
that minimize the probabilistic distance between p(θ |zM1 )

and its quantized distribution which can be expressed
as the KL divergence [20]. We show that using the dis-
tance as a new cost function provides several benefits
for quantizer design in distributed estimation: first, min-
imizing the probabilistic distance results in quantizers
that generate the codewords maximizing the logarithmic
quantized posterior distribution log p(θ |ẑM1 ) on the aver-
age, thus improving the estimation accuracy. Second, the
independent encoding can be efficiently performed since
the probabilistic distance is computed based on p(θ |zM1 )

andM quantizers, not requiring the actual measurements
at the other nodes. Third, it could allow us to estab-
lish a global encoding of local measurements into their
quantization partitions which would not be achieved by
typical encoding rules (e.g., minimum Euclidian distance
rule) used for previous novel design techniques. The ben-
efits of our algorithm will be elaborated in the following
sections.

3 Quantizer design algorithm
We consider for a given rate Ri, i = 1, · · · ,M the
problem of designing independent local quantizers that
minimize the KL divergence between the posterior distri-
bution p(θ |zM1 ) and its quantized one denoted by q(θ |zM1 )

which is defined from quantization of p(θ |zM1 ): formally,

q
(
θ |zM1

) = p
(
θ |ẑM1

)
, Qi(zi) = ẑi, i = 1, · · · ,M

(2)

where Qi indicates the quantizer employed at node i.
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First, we simplify our metric denoted by
DKL

[
p

(
θ |zM1

) ||q (
θ |zM1

)]
to avoid unnecessary computa-

tions for quantizer design at each node. By definition of
the KL divergence, we have

DKL =
∑
θ

p(θ)
∑
zM1

p
(
zM1 |θ) log p (

θ |zM1
)

log q
(
θ |zM1

)

= Eθ ,zM1
log p

(
θ |zM1

) − Eθ ,zM1
log q

(
θ |zM1

)
(3)

Noting that the first term is irrelevant to minimization of
the metric over quantizers Qi, we can find the quantiz-
ers Q∗ = [Q1, · · · ,QM] minimizing the KL divergence as
follows:

Q∗ = arg max
Q1,··· ,QM

Eθ ,zM1
log q

(
θ |zM1

)

= arg max
Q1,··· ,QM

EzM1 Eθ |zM1 log q(θ |zM1 ) (4)

Thus, our problem is reduced to that of designing a set of
quantizers that maximize the metric Eθ ,zM1

log q
(
θ |zM1

)
.

It should be noticed that we optimize a quantizer at
each node, while quantizers for the other nodes remain
unchanged. This is done successively for each sensor node
and repeated over all nodes until a stopping criterion is
satisfied. This notion allows us to make a further simpli-
fication of the metric for faster computation by removing
irrelevant terms:

Eθ ,zM1
log q

(
θ |zM1

)
= Eθ ,zM1

[
log q

(
zM1 |θ) + log p(θ) − log q

(
zM1

)]
= Eθ ,zM1

[
log q

(
zM1/i|θ

)
+ log p(θ) + log q(zi|θ) − log q

(
zM1

)]
(5)

∝ Eθ ,zM1

[
log q(zi|θ) − log q

(
zM1

)]
(6)

where (5) follows from independence of zM1 given the
parameter and (6) follows from the observation that the
first and the second terms in (5) are irrelevant for quan-
tizer design at node i. Note that q = p

(
ẑji|θ

)
when zi

is assigned to the jth quantization partition or the jth
codeword.
Now, we are in a position to consider the quantizer

design process in the generalized Lloyd design framework.
First, we construct the Voronoi region so as to maximize
(6) as follows:

Vj
i = {zi : Eθ

[
p(zi|θ)

(
log p(ẑji|θ) − EzM1/i|θ log p

(
ẑM1/i, zi = ẑji

))]

≥ Eθ

[
p(zi|θ)

(
log p

(
ẑki |θ

)
− EzM1/i|θ log p

(
ẑM1/i, zi = ẑki

))]
, ∀k 	= j}

(7)

where p
(
ẑji|θ

)
is given by p

(
zi = ẑji|θ

)
∼ N

(
fi(θ), σ 2

i
)
.

Second, we compute the codeword corresponding to Vj
i

in a similar manner:

ẑj∗i = argmax
ẑi∈Di

Eθ

⎡
⎢⎣ ∑
zi∈Vj

i

p(zi|θ)
(
log p

(
ẑi|θ

)

−EzM1/i|θ log p(ẑ
M
1/i, zi = ẑi

) ⎤
⎥⎦

(8)

It should be observed that in real situations, local
quantizers should operate independent of other quantiz-
ers. Hence, an independent encoding would be a crucial
requirement for such quantizer designs. We present the
encoding technique that assigns a local measurement zi
to one of the quantizer partitions so as to maximize the
metric employed in the design as follows:

Vj∗
i = arg max

1≤j≤Li
Eθ

[
p(zi|θ)

(
log p

(
ẑji|θ

)

−EzM1/i|θ log p
(
ẑM1/i, zi = ẑji

))] (9)

Obviously, the encoding process in (9) is carried out by
using p(zM1 |θ) and M quantizers without requiring actual
measurements zM1/i at the other nodes.

3.1 Remarks on optimality and performance
Since the proposed algorithm is conducted in the general-
ized Lloyd design framework, it would suffer from numer-
ous poor local optima. However, the metric (3) is shown
to be convex in the quantized distribution q(θ |zM1 ) given
p(θ |zM1 ) (see [20] for the proof), implying that any local
minimum must be a global minimum. In addition, the
quantized distribution is uniquely determined by quan-
tizers (refer to (2)) and designing quantizers that reduce
the metric at each step is equivalent to finding the cor-
responding quantized distributions. Thus, it is concluded
that our algorithm always results in quantizers that glob-
ally minimize the metric and thus provide robustness to
various design factors.
It has been also shown from (4) that minimizing DKL

over quantizers is equivalent to maximizing the average
logarithmic quantized posterior distribution. For exam-
ple, suppose that given two different sets ofM quantizers,
say QM

1 and Q̃M
1 where QM

1 indicates our proposed quan-
tizers given by (4), a certain parameter θ is sensed by
M nodes, which in turn generate ẑM1 and ˆ̃zM1 , respec-
tively. Then, it can be stated that the proposed quantizers
generate better quantized measurements in a sense that
log p(θ |ẑM1 ) ≥ log p(θ |ˆ̃zM1 ) on the average. In a different
perspective, the performance of the proposed quantizers
would be further examined by rewriting our metric for
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each zM1 and simplifying it in the high-resolution regime
as follows:

Q∗ = arg max
Q1,··· ,QM

∑
θ

p
(
θ |zM1

)
log q

(
θ |zM1

)

= arg max
Q1,··· ,QM

∑
θ

p
(
θ |zM1

)
log p

(
θ |ẑM1

)
(10)

≈ arg max
Q1,··· ,QM

∑
θ

p
(
θ |ẑM1

)
log p

(
θ |ẑM1

)
(11)

= arg min
Q1,··· ,QM

H
(
θ |ẑM1 = QM

1
(
zM1

))
(12)

where (10) follows from the definition of q
(
θ |zM1

)
, (11)

is derived from the high-resolution assumption, and (12)
is obtained from the definition of the conditional entropy
H

(
θ |ẑM1

)
. Since the entropy can be minimized by choos-

ing themost informative distributions p
(
θ |ẑM1

)
, our quan-

tizers would generate the most informative quantized
measurements, yielding a good estimation accuracy which
will be investigated by conducting extensive experiments
in Section 5.

3.2 Reduction of encoding complexity
It should be emphasized that one of the benefits of our
algorithm is the encoding technique that operates on local
measurements and at the same time optimizes our global
metric whereas most of the previous designs employ the
minimum Euclidean distance rule to independently assign
local measurements to the predetermined quantization
partitions. In our design, encoding of zi to one of the par-
titions is independently executed in a system-wide sense
that themetric E log q

(
θ |zM1

)
is maximized, although such

encoding requires a high computational cost at nodes.
In this section, we consider a computational reduction

in the encoding complexity for a practical use of power-
constrained sensor nodes in distributed systems. Noting
that given zi, the region of θ denoted by Aθ (zi) with p(θ ∈
Aθ (zi)|zi) ≈ 1 can be easily constructed, the indepen-
dent encoding in (9) could be approximately conducted as
follows:

Vj∗
i ≈ argmax

j
Eθ∈Aθ

[
p(zi|θ)

(
log p

(
ẑji|θ

)

−EzM1/i∈Bθ |θ log p
(
ẑM1/i, zi = ẑji

))] (13)

where Bθ is a set of the measurements at other nodes and
can be substantially reduced again by using Aθ : that is,
Bθ ≈

{
zM1/i(θ) : θ ∈ Aθ

}
. This further approximation will

reduce the encoding complexity dramatically.

3.3 Summary of algorithm
The design algorithm at node i is summarized as fol-
lows and is iteratively executed over all sensor nodes
i = 1, . . . ,M.

Algorithm 1 Iterative quantizer design algorithm at sen-
sor i
Step1: Initialize the quantizer Qi(zi). Set thresholds ε and
iteration index κ = 1.
Step2: Construct the quantization partition V j

i , j =
1, · · · , Li using (7).
Step3: Compute the codeword for each partition using (8).
Step4: Compute the metric in (6) denoted by Pκ .
Step5: If Pκ−Pκ−1

Pκ
< ε stop; otherwise continue.

Step6 : Replace ẑji by ẑ
j∗
i , Set κ = κ + 1 and go to Step2.

4 Application of quantizer design algorithm
In this section, as an application system of our design
algorithm, we briefly introduce a source localization sys-
tem where M nodes equipped with acoustic amplitude
sensors measure signal energy generated from a source
located at an unknown location θ ∈ R2 and quantize the
measurements before sending them to a fusion node for
localization. In expressing the signal energy measured at
nodes, we adopt an energy decay model which was pro-
posed and experimentally verified in [21] and employed in
[22, 23]. The signal energy measured at node i denoted by
zi can be expressed as follows:

zi(θ) = gi
a

‖θ − xi‖α + wi, (14)

where gi is the gain factor at node i and α is the energy
decay factor which is approximately equal to 2 in free
space. Note that a sound source generates acoustic energy
which will attenuate at a rate inversely proportional to the
square of the distance in free space [24]. The signal energy
a which can be jointly estimated with the source location
[25] is assumed to be known during localization process.
It is also assumed that the measurement noise wi can be
approximated using a normal distribution, N(0, σ 2

i ).

5 Simulation results
In this section, we design the proposed quantizers using
training sets in which source locations are assumed to be
uniformly distributed and the local measurements are col-
lected from the model parameters α = 2, gi = 1, and
a = 50 in a noiseless condition σ 2

i = σ 2 = 0. In testing
our quantizers, we apply two encoding techniques in (9)
and (13), denoted by probabilistic distance-based quan-
tizer (PDQ) and PDQ-reduced (PDQ-R), respectively. In
the experiments, we first consider a sensor network where
M(= 5) sensors are deployed in a 10× 10m2 sensor field.
For each of 100 different sensor configurations, we design
uniform quantizers (Unif Q), Lloyd quantizers (Lloyd Q),
and several novel quantizers for Ri = 2, 3, 4 and evalu-
ate them by generating a test set of 1000 source locations
from the model parameters which were assumed during
quantizer design.
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Experiments are extensively conducted to investigate
the effectiveness of different design algorithms and the
sensitivity to parameter perturbation and variation of
noise level. Furthermore, since typical sensor networks
employ many sensor nodes in a large sensor field, we
also consider a larger sensor field 20 × 20 m2 to test
our algorithm over typical designs. In the experiments,
performance evaluation is carried out by comparing the
average localization error E‖θ − θ̂‖2 computed from the
maximum likelihood (ML) estimation technique for fast
computation.

5.1 Comparison with traditional quantizers
First, our quantizer is compared with typical standard
designs such as uniform quantizers and Lloyd Q in Fig. 1
where the localization error (meter) is averaged over
100 node configurations for each rate Ri. For a clear
comparison, the overall rate-distortion (R-D) curves are
depicted for the different quantizations. As expected,
PDQ provides a significant performance gain over tradi-
tional quantizers since our proposed algorithm iteratively
finds the probabilistic distance-based mapping that gen-
erates better quantized measurements in a sense of bet-
ter quantized posterior distribution. It should be further
noticed that PDQ-R also shows a considerable perfor-
mance improvement, implying justification of the approx-
imation to derive our low-complexity encoding technique
in (13).

5.2 Performance evaluation: comparison with the
previous novel designs

We further examine the performance of the proposed
design algorithm by comparing with the previous novel
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Fig. 1 Comparison of PDQ with typical design techniques. The
average localization error is plotted vs. the total rate consumed byM
nodes

design techniques such as the localization-specific quan-
tizer (LSQ) in [14] and the distributed optimized quan-
tizer (DOQ) in [18]. Note that both of them have been
developed as distributed source coding (DSC) techniques
for distributed estimation systems and tested for source
localization in acoustic amplitude sensor networks in
the previous work. In designing quantizers, we initial-
ize them with the equally distance-divided quantizer
(EDQ) to avoid possibly poor local minima. Note that
EDQ can be simply designed by uniformly dividing the
sensing distance, not the dynamic range of the mea-
surement. EDQ shows good localization performance so
as to be used as an efficient initialization for quantizer
design [14, 26].
In the experiments, we collect the two test sets from

1000 random source locations with the measurement
noise σi = 0 and σi = 0.15, respectively, for evaluation.
The R-D curves for the design techniques are illustrated
in Fig. 2. Surprisingly, PDQ outperforms LSQ mainly
because our algorithm enables the global encoding (in our
case, probabilistic distance-based encoding) whereas LSQ
operates by a regular encoding (i.e., minimum Euclidean
distance rule). In addition, our quantizer performs well
with respect to DOQ which adopts a non-regular map-
ping with a huge design complexity (see the details in
[18]). Note that our algorithm focuses on minimization
of the probabilistic distance caused by quantization, not
directly optimizing the estimation accuracy. Nonetheless,
PDQ offers a noteworthy performance improvement as
compared with the previous novel designs, which can be
explained from the analysis that our algorithm always
produce a global optimum equipped with the powerful
encoding technique whereas the others suffer from poor
local optima that operate on a local distance rule.
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Fig. 2 Comparison of PDQ (PDQ-R) with novel design techniques. The
average localization error in meter is plotted vs. the total rate (bits)
consumed by five sensors with σ = 0 (left) and σ = 0.15 (right),
respectively
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5.3 Sensitivity analysis of design algorithms
In this section, we first examine the proposed algorithm
by making perturbation of the mode parameters from
those assumed in the design stage. We further need to
investigate the performance of the different design algo-
rithms in the presence of the measurement noise since
the quantizers are designed by using the training sets gen-
erated from the assumption of noiseless measurements
(σ = 0). It could be expected that our proposed algo-
rithm will show a strong robustness to various design
factors since it pursues a global optimum.

5.3.1 Sensitivity of PDQ to parameter perturbation
In this experiment, PDQ is tested under various types
of parameter perturbation. We varied one of the model
parameters (i.e., decay factor α and gain factor gi) from
what was used during the training stage of quantizers for
each test. It is assumed that the true parameters are avail-
able at a fusion node for localization to inspect only the
effect of the quantizer design on the localization perfor-
mance. Note that the assumption is quite reasonable since
the localization algorithms provide good robustness to
the parameter perturbation (see [25]). The experimental
results are given in Table 1. As expected, PDQ shows bet-
ter robustness to variation of the gain factor than that of
the decay factor since the latter causes more severe distor-
tion in local measurements. Obviously, our design oper-
ates very reliably in the presence of a small perturbation of
the model parameters.

5.3.2 Sensitivity of design algorithms to noise level
In this experiment, we study the sensitivity of various
design algorithms to noise level. For each configuration, a
test set of 1000 source locations with signal-to-noise ratio
(SNR) in the range from 40 dB to 100 dB is generated by
varying σ . Assuming the source signal energy a is known,
the SNR is measured at 1 m from the source by using
10 log10

a2
σ 2 . For typical applications, the variance of mea-

surement noise amounts to σ 2 = 0.052 (= 60 dB) and
can be often much higher than 40 dB for practical vehicle
targets [21, 23]. As can be seen in Fig. 3, PDQ performs
quite well with respect to the other novel designs in noisy
cases.

Table 1 Localization error (LE) of PDQ with Ri = 3 due to
variations of the model parameters

Decay factor α 1.8 1.9 2 2.1 2.2

LE (PDQ) 1.5484 0.9270 0.7038 0.9535 1.5936

Gain factor gi 0.8 0.9 1 1.1 1.2

LE (PDQ) 1.2213 0.8614 0.7017 0.7841 0.9928

LE = 1
100

∑100
l = 1 El(‖ x − x̂ ‖2), where El is the average localization error for the lth

five-sensor configuration and is expressed in meter
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Fig. 3 Sensitivity to noise level. The average localization error is
plotted vs. SNR (dB) withM = 5, Ri = 3 and a = 50

5.4 Performance analysis in a larger sensor network:
comparison with traditional quantizers

In this section, we evaluate our design algorithm in larger
sensor networks by comparing with typical designs. In
this experiment, we generate 20 different sensor con-
figurations in a larger sensor field, 20 × 20 m2 for
M = 12, 16, 20. For each sensor configuration, our quan-
tizers are designed with a given rate of Ri = 3 and the
same dynamic range as in the experiments conducted in a
10 × 10 m2 sensor field. The localization results are pro-
vided in Fig. 4. It can be seen that our design algorithm
provides very good performance compared with unform
quantizers and Lloyd quantizers.
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Fig. 4 Performance evaluation in a larger sensor network. The
average localization error is plotted vs. the total number of sensor
nodes in a 20 × 20m2 sensor field with Ri = 3
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It should be mentioned that better performance can
be generally achieved with a larger number of sensors
while the sensor density remains unchanged. In our exper-
iments, the sensor density for M = 20 in 20 × 20 m2 is
given by 20

20×20 = 0.05 which is equal to that for the case
of M = 5 in 10 × 10 m2. This performance gain can be
explained by taking into account the coverage of the sens-
ing range of nodes which would become more efficient
as the sensor field gets larger. In other words, the sen-
sor nodes located around edges show their poor coverage
of the sensing range, leading to performance degradation,
and there are a relatively smaller number of sensor nodes
near the edge in a larger sensor field as compared to a
smaller field with the same sensor density.

6 Conclusions
In this paper, we have proposed an iterative quantizer
design algorithm that seeks to minimize the probabilistic
distance between the posterior distribution and its quan-
tized one. The benefits of our algorithm are illustrated
by the analysis that the independent encoding minimiz-
ing the global probabilistic distance can be implemented
at each node and the global minimum is always guaran-
teed due to the convexity of the probabilistic distance in
our quantizers. In addition, to avoid a computational bur-
den at nodes for encoding process, we have suggested a
low-complexity encoding technique which showed a rea-
sonable performance. We demonstrated through exten-
sive experiments that our proposed algorithm achieved a
significant performance gain over typical designs and pro-
vided a strong competitiveness in comparison with the
previous novel designs in terms of performance assess-
ment. In the future, we will continue to develop creative
perspectives on the quantization techniques that maxi-
mize application objectives for distributed systems.
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