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Abstract

Time-frequency (TF) representation has found wide use in many challenging signal processing tasks including
classification, interference rejection, and retrieval. Advances in TF analysis methods have led to the development of
powerful techniques, which use non-negative matrix factorization (NMF) to adaptively decompose the TF data into TF
basis components and coefficients. In this paper, standard NMF is modified for TF data, such that the improved TF bases
can be used for signal classification applications with overlapping classes and data retrieval. The new method, called
jointly learnt NMF (JLNMF) method, identifies both distinct and shared TF bases and is able to use the decomposed
bases to successfully retrieve and separate the class-specific information from data. The paper provides the framework
of the proposed JLNMF cost function and proposes a projected gradient framework to solve for limit point stationarity
solutions. The developed algorithm has been applied to a synthetic data retrieval experiment and epileptic spikes in
EEG signals of infantile spasms and discrimination of pathological voice disorder. The experimental results verified that
JINMF successfully identified the class-specific information, thus enhancing data separation performance.

Keywords: Time-frequency analysis, Non-negative matrix factorization, Data retrieval, Data localization

1 Introduction

Automated decision-making systems have to deal with
natural signals that are mostly nonstationary in nature,
meaning that their statistics vary over time and frequency.
Time-frequency (TF) analysis [1, 2] has been widely used
over the past decades to characterize the nonstationary
content of signals in the joint time and frequency domain.
However, the main limitation of the TF-methods is the
high dimensionality of the representation. Therefore, in
order to effectively analyze natural signals in artificial
intelligence and decision-making applications, it is nec-
essary to develop dimensionality reduction techniques
that can remove the redundant data and capture the
essential features of the TF representation. Among such
techniques, TF decomposition is an effective approach,
where a matrix decomposition scheme is used to adap-
tively decompose the TF data into representing TF bases
for further analysis [3-9].
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Given the non-negative nature of TF data, non-negative
matrix (NMF) decomposition has received favorable
attention and been widely used for TF feature extraction
applications. Several variants of NMF have been proposed
over the past decade. Those methods impose additional
constraints, such as localization or sparsity, on the NMF
cost function to construct improved NMF decomposi-
tions. For example, Zafeiriou et al. [10] and Nikitidis
et al. [11] have proposed a discriminative NMF, which
adds additional constraints to maximize the between-
class scatter and minimize the within-class scatter in the
subspace spanned by the bases in order to improve the
discrimination power of the decomposed TF bases. How-
ever, those methods are designed to classify the data to
only one class at a time, and cannot separate the informa-
tion as needed in data retrieval applications. In this paper,
we developed a jointly learnt NMF (JLNMF) method to
jointly learn the class-specific TF bases that are discrim-
inant to each class as well as the ones that are shared
between classes, and use the discriminant class-specific
TF bases to identify how much of each class presents in
a test data. To make this happen, a set of new constraints
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is enforced on the NMF cost function as explained in the
present work.

The rest of the paper is organized as follows. The back-
ground and theoretical framework of the proposed algo-
rithm is reviewed in Section 2. Section 3 introduces the
proposed JLNMF algorithm and develops an optimiza-
tion strategy to solve the proposed JLNMF cost function.
Section 4 investigates the properties of the proposed
JLNMEF algorithm and presents the conducted experi-
mental study and verifies the efficiency of JLNMF for
data retrieval and information localization applications.
Finally, concluding remarks are drawn in Section 5.

2 Theoretical framework

2.1 Time-frequency matrix decomposition

The TF representation of a signal simultaneously repre-
sents the signal’s energy distribution over time and fre-
quency domains. For a signal, x(m), its TF representation
can be denoted by a matrix V1, where M is the number
of time samples in signal x(m) and N is the number of fre-
quency bins (i.e., frequency resolution). For example, the
value of V(n,m),forn =1,...,Nand m = 1, ..., M, indi-
cates the amount of signal energy at time sample m and
frequency of n. The application of a matrix decomposition
technique with r coefficients on the TF matrix of V can be
written as following:

r
Vnsxm = WnsrHrsxn = Z Wihl'T
i=1
s.t. a given constraint on W and H (1)

where the decomposed TF matrices, W, and H,x
(with r << N, M) contain the TF bases and the corre-
sponding coefficients of the linear combinations of the TF
bases required to reconstruct each TF data, respectively,
and are defined as Wxx, = [wy wy --- w,] and Hyxpr =
(i hy --- )T, In Eq. (1), TF matrix (V) is reduced to
base and coefficient vectors ({w;};,—;, ., and {hiT}i=1,...,r’
respectively) subject to a given constraint on W and H.

Among well-known matrix decomposition techniques
(e.g., principal component analysis, independent compo-
nent analysis, and NMF), NMF is the only technique that
guarantees the non-negativity of the decomposed matri-
ces (i.e, W > 0 and H > 0) and has been widely
used in TF decomposition applications. NMF derives the
TF bases and coefficients (i.e,, W and H, respectively)
by minimizing the least-square cost function as shown
below:

minf(W,H) = |V — WH]||%, 2
W,H
subject to W>0,H>0

NMEF optimization starts with an initial estimate of W and
H, and performs an iterative optimization to minimize
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the cost function in Eq. (2). In [12], Lee and Seung intro-
duce two updating algorithms using the least square error
and the Kullback-Leibler (KL) divergence as the cost func-
tions. The equations, using the least square error method,
are as follows:

t T
WD — W | VH® and H®HD
WOHOHOT’ 3)
® WDy
= H . 5
WEHDT W E+D H®)

In these equations, { . ) and % are element-wise mul-
tiplication and division of two matrices. Various alter-
native minimization strategies for NMF decomposition
have been proposed [12-14]. In this work, we use a pro-
jected gradient bound-constrained optimization approach
in [15]. The gradient-based NMF is computationally
competitive and offers better convergence properties
than [12].

2.2 Need for jointly learnt NMF (JLNMF) method
In order to apply the TF matrix decomposition approach
for classification of overlapping information, and data
retrieval applications, NMF is separately applied on the TF
data of each class (i.e., V1 and V3 in Fig. 1a) to decompose
class-specific TF bases (i.e., W1 and W3) and create an
overall TF basis matrix, consisting of all the class-specific
TF bases. Then, a new test TF data is decomposed over
the overall TF basis matrix to obtain the corresponding
coefficients (i.e., th and h2T ) of the linear combinations
of the class-specific TF bases required to reconstruct the
new TF data. Finally, the TF bases of each class and the
corresponding coefficients can be used to reconstruct the
part of the test data that belongs to each class (i.e., VTestl
and \A/Testz). Figure 1a shows a general schematic of this
approach for a two-group classification scenario.

The approach in Fig. 1a is effective if the decomposed
TF bases are not only representative of the TF structure

A The Standard NMF for TF Data Classification

Test Data R
Signal A V, W hf Vi,
I¢] TF i NMF ! ‘T Wi Tes
h
WW, 2 S
Signal B \A W, [WW.] o Ve
—| TF NMF Wl
i " ]
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b The Proposed JLNMF for TF Data Classification
. Test Data
Signal A . v, W, hl Woh [y
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Fig. 1 a, b The general block diagram of data separation using
standard NMF and the proposed JLNMF, respectively
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of each class but also discriminative to the TF struc-
tures from different classes. Inspired by image recognition
applications, much outstanding research on the design of
discriminant NMF techniques has been reported [11, 16].
For the most part, those methods have focused on increas-
ing the discrimination by enforcing a penalty to maximize
the discrimination between the decomposed bases of dif-
ferent classes. However, the decomposed bases could be
shared between classes, and it is not always possible to
identify class-specific TF bases as not necessarily there is
a unique relationship between the decomposed bases and
class labels. As a result, those methods could be effec-
tive in improving the accuracy rate in image classification
applications, but cannot be employed in challenging signal
processing applications, including classification of over-
lapping classes, and data retrieval. In this paper, a novel
JLNMF method is proposed to decompose discriminant
and class-specific TF bases. This new approach enforces
the discrimination between the TF bases of different
classes by modeling the similarities between classes with
a set of shared TF bases (i.e., W; in Fig. 1b) and decom-
poses class-specific TF bases (i.e., W1, and W5,) to model
the distinct TF structure of each class. Decomposing a
new data, with overlapping classes, over the entire dis-
criminant and shared TF bases will identify the portion
of the data that belongs to each class, and the corre-
sponding coefficients can be used to successfully retrieve
and separate the data from each class (i.e., \A/Testld and
VTestZd)' Figure 1b shows a general schematic of the pro-
posed JLNMF approach for a two-group classification
scenario.

The idea of including shared TF bases to enhance the
discrimination power is inspired by an assumption made
by the classification techniques, where they find a discrim-
inating pattern between classes by dividing the feature
space into non-overlapping subspaces, which each repre-
sents one of the classes. Although, this approach might
be satisfactory in cases that the signals can be assumed
to be completely separable in the feature space, and it
seems to be too optimistic in applications where a natural
and unavoidable overlap exists between different classes.
In most real-world applications, specially in biomedical
applications, the nature of signals from different classes
is very similar, and there could only be slight changes
in the TF patterns of signals from different classes. Nat-
ural similarities between different classes may result in
some overlaps in the feature space, and the extracted fea-
tures may not necessarily represent the discriminating
structures in each class. This may cause some overlaps
in the feature space, and thereby may degrade the per-
formance of the classification task. Hence, identifying
and removing those shared components in the TF bases
from a classification task can improve the discrimina-
tion power between the remaining class-specific features.
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In order to improve the discrimination power of the TF
bases of each class, in the present work, we account for
those similarities between classes by inclusion of shared
TF bases in the formulation of the NMF decomposi-
tion. It is worth mentioning that in a work by [17], the
authors have proposed a non-negative matrix partial co-
factorization approach for retrieving the information of
drum track from a compound music of a drum and har-
mony track. The authors use pure drum music from a
different source and assume that all the TF bases of the
drum music are shared with the compound music. Then
the two music (i.e., drum and compound music) are simul-
taneously decomposed by enforcing the constraint that all
the bases of the drum track are shared with the music
compound and there are only distinct bases of harmony
tracks in the music compound. Basically, there is only W/;
and W in the proposed model by Yoo et al. instead of
W;, W14, and Wy,. Hence, the model by Yoo et al. can
be considered as a subset of the developed framework in
the present work and can be considered only if the infor-
mation of one of the classes is fully shared with the other
class.

3 Jointly learnt NMF (JLNMF) method

3.1 Formulation of JLNMF

In order to identify TF bases representing each class (see
Fig. 1a), using standard NMF, each TF data is separately
decomposed to its TF bases and coefficients as follows:

V1 = WHj, and Vo = WyHjy, (4)

The standard approach decomposes the data of each
class without any information from the other class by
performing the following least square cost functions:

min f(W1,Hy) = ||[V; — WiH; %, and
Wi,Hy
subject to W1>0,H; >0
: 2
min f(Ws, Hy) = [[V2 — WaHa |z,
W3,Hj

subject to Wo>0,Hy>0

(5)

However, in most real-world applications, data from
different classes share some common structures, which
do not contribute to the distinguished characteristics of
the classes. We account for such bases by dividing base
matrix W into two parts of W,; and W, where the for-
mer corresponds to the discriminant class-specific TF
bases, and the latter represents the shared TF bases (see
Fig. 1b). Using the new notation, Eq. (4) can be rewritten
as follows:

V= [Wld + Wf] Hi, and V, = [Wzd + Wj] H,, (6)
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The relationship between W1, W14, and W is formu-
lated as follows:

NXxr __ N Xr N Xr
Wi =W, +Wj

1 2 7, 1. 2 .
=1 1dW1d“'W1‘ZO"'0]+[0"'0‘”/ Wi "'M/rf]
(7)

where r = ry + rj equals to the total number of discrimi-
nant and shared components (i.e., r4 and rj, respectively).
Then, we can get the following:

T T
WL, W; =0and WL,W; =0 ®)

To find an approximate solution for Eq. (6), the cost
function in Eq. (5) is modified to jointly learn for W,
W4, and W; matrices as shown in Fig. 2.

In this figure, the dark gray boxes represent the shared
structures in each class and the light gray boxes represent
the distinct structure in each class; for example, the recon-
structed data, \71, consists of the discriminant and shared
parts (i.e., Vy; and \71,-, respectively). Similar to stan-
dard NMF, the modified cost function has to minimize
the reconstruction error (see arrows I and II in Fig. 2).
The between-class discrimination is enforced by maxi-
mizing the error between the discriminant components
of the two classes (see arrow III in Fig. 2). To minimize
any similarities between shared and discriminant compo-
nents of each class, the error between discriminant and
shared components was maximized (see arrows IV and V

Fig. 2 The block diagram of the discriminant TFM quantification
approach
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in Fig. 2). Therefore, the new cost function is formulated
as follows:

min
W14, W2q,Wj,H1,Hy
=/ (V1,[Wi+ W,]Hy)
+f (Va, [Waa + W;| Ha)
— 8f (W14H1, W Ho)
— A (W1sHy, WiH1)
— A (WayH2, WjH2),
subject to W14 >0, Wy, > 0, W; > 0,H; > 0,H >0
)
where § and A are positive constants that control the
trade-off between minimizing the reconstruction error
and maximizing the discrimination power. The order of

the terms in Eq. (9) follows the numbering of the arrows
in Fig. 2.

g (Wdlx WZd: W}) Hl, Hz)

3.2 Optimization of JLNMF

To minimize the new cost function, g in Eq. (9), the partial
derivatives of g with respect to each unknown variable is
obtained and set equal to zero as follows:

Vg(W)) = ([Wis + W;] Hy — V1) Hf
+ ([Waa + W;]Hy — Vo) H}
+ A (WiHy — WiH; ) HY
+ 1 (WouHy — WiH) H) =0

(10)

Vg(Wia) = ([Wia + W] Hy — Vi) HT
— 8 (WigHy — Wy Hy) HY
— 2 (WigH; — WH;)Hf =0

(11)

Vg(Way) = ([Way + W] Hy — Vo) Hy
+ 8 (W1gHy — WogHy) Hy
— A (WasHy — WiH) H) =0

(12)

Vg(Hy) = [Wia + W;]" ([Wig + W) Hi — Vi)
- SWF{d (WigH1 — Wy Hy)
— )LW;Fd (WldHl — WjHl) =0
(13)

Vg(Hy) = [Wag + W] ([Wag + W] Hy — V3)
+ 8W, (W1gHy — Wo,Hp)
— AW, (Wa Hy — WiH) = 0
(14)
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Simplifying Eqgs. (10)-(14) and using Eq. (8), the follow-
ing equations are derived:

Vg(Wj) = (1— )W, (H1H1T T HZHE)
+ (14 1) W H HE
+ (14 1) Wo HoHY
—ViH] — V,H] =0

(15)

Vg(Wig) = (1= 6 — ) Wiy (HiH])

+ (1 + 1) WHH] (16)

+ 8Wy HoH — ViH] =0

Vg(Waq) = (1= 8 — ) Wy (HoHJ)

+ (1 + ) W;HoH] (17)

+8W H H] — V,HI =0

Vg(Hy) = ((1 =8 = ) W, Wis + W' W;) Hy

— (Wi + W) Vi +8W],W,H, =0
(18)

Ve(Hy) = ((1 —5— WL Wy, + W/.TW,«) H,

— (Waa+ W) Vy +8WL WyH; =0
(19)

When solving for each variable in Egs. (15)-(19), we
keep the rest of the variables fixed and optimize the
cost function of Eq. (9). For example, in Eq. (15), W;
is the variable that the equation in being solved for,
and the terms (HiH] + HyH]) and (1 + 1) W,HH] +
1+Ar) Wde2H;F — Vle — VgHE are constant matri-
ces. Thus, using the same proof that was shown in [12]
to get the NMF solutions in Eq. (3), it can be concluded
that Eq. (9) is convergent and non-increasing when alter-
natively one matrix is improved while the other matrices
are fixed, and the solution of the optimization problem in
Eq. (9) can be solved by iteratively solving the following
sub-problems [18, 19]:

WY;H) = argmin g (Wl, ng), W;k), H(lk), Hék))
subject to W14,>0
(20)
k+1 . k+1 k k k
Wéd ) — argmin g (WY ),WZ,W]( ),H(O,Hé ))
subject to Wy,;>0
(21)
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W}(kﬂ) = argmin g (Wﬁk“),Wﬁk“),Wj, HY()rHék))
subject to W;>0

(22)
Hikﬂ) = arg min
subject to H; >0 (23)
g (Wik-&-l)’ ng-ﬁ—l), W;kﬂ), H, Hék))
Hgkﬂ) = arg min
subject to Hy>0
g <W§k+1)’ Wg(-‘rl), W](kﬂ), H(1k+1), Hz)
(24)

Although the optimization problem of Eq. (9) is not
convex over variables W;, W14, Wy, Hi, and Hy, the sub-
problems in Egs. (20) to (24) are convex and can be solved
using projected gradient methods as follows.

For a bounded-constrained optimization problem
described as below:

min gU):R" >R (25)
UeR"

subjectto 0 <x; <o0,i=1,...,n

projected gradient methods update the current solution
U® to U+ Dby the following updating rule:

U — p [Um _a® vg(Uo:))]

= max [ (U(t) — oc(t)Vg (U(t))) ,O]

where (¢) is the iteration order, Vg(U) is the projected
gradient of the function g with respect to U, while all the
other matrices are constant, and a® is the step size to
update the matrix. The step size is found as «® = gk,
where k; is the first non-negative integer k for which the
following equation holds:

g (U““)) . (Um) <oVg (Um) (U““) _ U“))
(27)

(26)

where 0 < o < 1 is a scalar parameter that is defined
based on the convexity of the function g(U) [20]. The con-
dition in Eq. (27) ensures the sufficient decrease of the
function value per iteration. Bertsekas [20] has proved
that «® > 0 satisfying Eq. (27) always exists and every
limit point of the solution {U(t) }21 is a stationary point
of Eq. (25). Therefore, by iteratively updating each matrix
using updating rule in Eq. (26), while the other matrices
are constant, we can iteratively solve for W;, W14, Wy,
H;, and Hy, in the sub-problems of Egs. (20) to (24).

3.3 Computation cost considerations
The computation cost for each iteration consists of com-
putation of the gradient functions of Egs. (15)-(19) to



Ghoraani EURASIP Journal on Advances in Signal Processing (2016) 2016:95

update current variables using Eq. (26) and the compu-
tational task of the sub-iteration to find a step size «
such that the condition in Eq. (27) is satisfied. Let us first
consider the computation of W;. The computation of con-
stant matrices H1H], HoH], W1, (HiHT ), Wy, (HoHJ),
V1H1f, and V2HF2r is going to be performed only once per
iteration and the computational cost is of the order of
(0] (?ZM + Nrj + NMr), where r = max(rg, rj). Given that
rg < r,rj < r,and r is a small value compared to N
and M, the computational cost is of the order of O(NMr).
Similarly, the computational cost of the fix matrices at
each iteration for W; and H can be computed respectively
in O(P*M + (r)’N + NMr) and O (¥N + r2M -+ NMr)
operations, which by considering the NMF criterion on r
(r << N, M), are computed to be of the order of O(NMr).

To reduce the computational cost of the decreasing con-
dition in Eq. (27), a similar strategy to [15] was employed.
For any quadratic function g(U/) and vector U, using Tay-
lor series, the following approximation can be considered:

¢ (u(k“)) _g (u<k)) + Vg (u<k>>T (u<k+1> _ u(k>)
+05 (u<k+1) - u(k>)T V2 (u(k>)

% <u<k+1) _ U(k))

(28)

and re-write Eq. (27) as follows:

1-0)Vg (u““)T (u<k+l> -u®)

+05 (u(k+1) _ u(k))T v2g (u(k)>(u(k+1) _ u(k)) <0
(29)

See Appendix for Vzg(Wj), V2g(W1ia), V2g(Waga),
Vzg(Hl), and Vzg(Hz). Using the decreasing condition
of Eq. (29) instead of Eq. (27), g(L[(kH)) does not need
to be computed at every iteration to find a suitable step
size. Although V2g (L/®) has to be computed but it will
happen only once. Hence, the computational cost at each
sub-iteration can be computed in O (kN rfi), 0} (ker), and
O(kMr?) for W, Wy, and H, respectively, where k is the
average number of checking the decreasing condition in
Eq. (27) at each iteration. Since ry; < r, the overall com-
putational cost to solve Eq. (9) is as follows: #iterations x
(O(NMr) + #sub_iterations x O(KNr? + I<Mr2)).

3.4 JLNMF algorithms

The optimization algorithm of the proposed JLNMF
method is summarized in Algorithms 1 and 2. Regarding
the initialization of the algorithm, a common approach for
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NME is initialization of the values of W and H matrices as
non-negative random values. Following the same initial-
ization method, all matrices W1, W1, W}, H1, and H; are
initialized to non-negative random values.

Algorithm 1 Updating base and coefficient matrices using
a projected gradient method

Givenr, rj, A and y

Input: Data {V1, Vy}

1. Initialize W{ > 0, W3" > 0, W > 0, H{" > 0, H{"
> 0 with random values

2. Repeat for t = 1,2, ... (Jointly update the class-specific
and shared TF bases.)

3. Update {WY‘;, Wgt;} by optimizing Eqs. (20) and (21)
using Algorithm 2.

4. Update Wj(t) by optimizing Eq. (22) using Algorithm 2.

5. Update [H(lt), Hg)] by optimizing Eq. (23) and (24)
using Algorithm 2.

6. Until convergence.

Output: The learned class-specific bases {W14, Wo;},
shared common bases {W,}

Algorithm 2 Step size selection of the projected gradient
method
Given 0 < B, < 1
Input: U®
1. Initialize o' by ay_; or 1if £ = 1.
2. if oet(k) satisfies Eq. (29)
. Repeat for k = 1,2, ... (update the step size)
ol
. until Eq. (29) is not satisfied
. else at(k) does not satisfy Eq. (29)
.Repeat fork = 1,2, ...
8. a§k+1’ = ozt(k).ﬂ
9. Until Eq. (29) is satisfied.
10. end if
11. Compute the updated matrix:
Ut = p [U(t) — o Pvgu®].
Output: The updated matrix U¢+D

N s w

3.5 Parameter selection considerations

There are several parameters that need to be selected in
the proposed JLNMF algorithm. The values of ¢ and § are
set to 0.01 and 0.1, respectively, as commonly used in lit-
erature [15], and the values of A and y are dependent on
the application. A suitable value of X and y can be selected
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from the range of [0.05 to 0.20] in order to balance off
between the reconstruction error (i.e., the first two terms
in Eq. 9) and the discrimination power (i.e., the remain-
ing terms). Selection of r is also application depended and
considerations similar to those for NMF can be applied
to adjust r [21-23]. The selection of r; can be adjusted
to increase the discrimination power between classes (i.e.,
maximize the difference between \A/Id and Vzd)» Further-
more, it is worth mentioning that although the proposed
JLNMF algorithm has been formulated in the context
of two classes, the extension of the method to multiple
classes can be simply done. However, since the objective
here is to address the challenges in biomedical signal clas-
sification applications, the paper has focused on two-class
cases (i.e., abnormal vs. normal).

4 Experiments with JLNMF

4.1 Synthetic data

4.1.1 Visualization of JINMF

The performance of the proposed JLNMEF is visualized
and compared to the standard NMF through a synthetic
example. In this example, two non-stationary signals are
generated, x(m) and y(m), by combining a set of non-
stationary components in the form of «g (i1, o) sin(2w (f +
Om)m) where g(u, o) is a Gaussian function with mean p
and variance of o, and the set («, i, 0, f, 0) is the parame-
ter for each component (a) to (g). The parameters of each
component are manipulated to generate components (a)
through (d) (see Fig. 3) as the shared structure by the
two signals, components (e) and (f) as the distinct struc-
ture of signal x(m), and the chirp component (g) as the
distinct structure of signal y(m). In this figure, parameters
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(o, u,0,f,0) for components (a) to (g) are, respectively, as
follows: (1, 1.2, 0.05, 0.325, 0), (1,1.2, 0.05, 0.075, 0), (1, 3.4,
0.04, 0.125, 0), (1, 5.6, 0.03, 0.325, 0), (3, 0.9, 0.001, 0.450,
0), (3, 3.5, 0.001,0.213, 0), and (1, 5.3, 0.05, 0.005, 0.245),
and Spectrogram with FFT size of 1024 points and Kaiser
window with parameter of 5, length of 256 samples, and
220 samples overlap, is used to construct the TF represen-
tations. Each TF data (i.e., V1 and V;) was decomposed
using standard NMF method with r = 6, and the decom-
posed TF basis and coefficient matrices were obtained and
displayed in Fig. 3¢, d. It can be seen that NMF adaptively
breaks down the non-stationary signal into TF basis and
coefficient matrices representing the spectral and tempo-
ral information of the signal, respectively. For example,
the first TF basis in W represents the spectral charac-
teristics of components (f) and (c) in the TF signal Vi,
and the corresponding TF coefficient in H; represents the
temporal locations of those components in the TF signal.
The best scenario for this decomposition would be if the
decomposed TF bases represent the discriminant struc-
tures of each TF signal separate from the shared ones.
Then the discriminant TF bases would be powerful in dif-
ferentiating between the two signals. However, there is
no separation between the TF bases that represent the
shared structure (i.e., components (a)-(d)) and the dis-
tinct structure of each signal; for example, TF basis 1 of
x(m), contains the frequency structure of components (e)
and (b), and similarly TF basis 2 models the components
(a), (b), and (e). A similar behavior can be seen in the TF
bases of signal y(m).

We repeated the process using the proposed JLNMF
with r = 6 and r; = 3. The values of o and 8 were set to
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Fig. 3 The TF representations (b) of two non-stationary signals from class 1 and class 2 data (a) are decomposed into TF bases and coefficients (c
and d, respectively) using standard NMF
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0.01 and 0.1, respectively, as commonly used in literature
[15], and a value of 0.05 was selected for A and y. As can
be seen in Fig. 44, the first three (i.e., r; = 3) components
of the decomposed TF bases W1, and Wy, respectively,
represent the distinct structure of signals x(m) and y(m),
and the last three (7)) are zero (see Eq. (7) for the structures
of W, and W; with respect to W). The shared structure is
represented in the last three (r;=3) of the shared TF bases
W;. It is interesting to point out that although r; was set
to be three, the method adaptively identifies that only two
distinct TF bases are sufficient to model the discriminate
structure in x(m), and finds an empty (all zero) for the
one of the TF basis vectors in Wy;. Additionally, unlike
standard NMF TF bases, none of the JLNMF TF bases rep-
resents both the shared and distinct TF structure of the
original signals x(m) and y(m). Comparing the decom-
posed TF basis and coefficient matrices of the proposed
JLNMEF and standard NMF (Figs. 3¢, d and 4a, b), it can be
observed that the JLNMF coefficients are noticeably more
localized. Furthermore, the discriminant TF structures of
signals x(m) and y(m) are successfully reconstructed as
Wi14H; and W;H,, respectively, as shown in Fig. 4c. The
shared structures are also successfully reconstructed as
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W;H; and W4H; for each signal as shown in Fig. 4d. This
example demonstrates that the proposed JLNMF success-
fully separates the shared components and the distinct
class-specific structures of each TF data. The only way to
make this separation happen in the standard NMF is by
identifying the TF bases of W1 and W that are correlated
as the shared TF bases, and the uncorrelated ones as the
class-specific TF bases. However, as can be seen in Fig. 3c,
the standard NMF TF bases are a mixture of shared and
distinct structures and the TF bases of the two classes are
correlated, and thereby, the standard NMF cannot achieve
the results shown in Fig. 4.

4.1.2 Properties of INMF

It is desirable that the extracted discriminant bases are
robust to signal processing operations, which are not
expected to affect the classification task. This section
examines the properties of JLNMF for amplitude scale and
time shift.

Amplitude scaling: If y(m) is the amplitude scaled ver-
sion of signal x(m), such that y(m) = ax(m), the TEFM of
the signal y(m), Va, can be written as V, = a®V, where
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Fig. 4 Visualization of the JLINMF method on data shown in Fig. 33, b. a The decomposed TF bases. b The corresponding coefficients. € The
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V; is the TFM data of signal x(m) and a is the ampli-
tude scale. Since the amplitude scaling does not affect the
TF structure of the signal, it is expected that JLNMF does
not identify any discriminant TF bases. To put it into test,
an amplified version of signal x(m) in Fig. 3a was gener-
ated and JLNMF was applied to the original and scaled TF
data, and as expected, both of the discriminant matrices,
W14 and Wy, were obtained empty, demonstrating that
JLNMF was successful in identifying that there were no
distinct differences between the two data, and verifying
that JLNMEF is invariant to amplitude scaling.

Time shift: The property of JLNMF under temporal shift
is examined using the following example. Let us consider
two signals x(m) and y(m) x(m — t). The temporal
shift only shifts the TF structure of the TF data in time
and does not change the TF components of the data (i.e.,
Vy(n,m) = Vi(n, m—1). Hence, JLNMF is not expected to
identify any distinct structural differences between x(m)
and y(m). A signal x(m) and x(m — v) with a time shift of
T = 1.5 s is generated as shown in Fig. 5a, and the TF data
is displayed in Fig. 5b.

JLNMF with r = 9 and r; = 6 was performed on the TF
data, and the decomposed TF bases and coefficients are
displayed in Fig. 5c. The method did not identify any dis-
criminant TF matrices (i.e., W14 and Wy, are both zero).
Hence, V14 and V,y are empty. W; contained the spectral
vectors that are shared between x(m) and x(m — 7), and
H, was equal to Hy (m — 7). As can be seen, the JLNMF
algorithm is invariant to time shifting.
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4.1.3 Data retrieval application using JLNMF algorithm

The developed JLNMF is applied for a data retrieval case,
where there is an overlap of information in the test data.
In order to evaluate the results, a synthetic non-stationary
dataset is generated (see Fig. 6) as inspired by the previous
work in the literature [24, 25]. In this data, the triangles
in the TF representation of classes x and y could be con-
sidered as the distinct structure in each class, and the box
represents the shared structures between the two. Hence,
each class consists of a class-specific distinct structure and
one shared structure. Each signal is defined as the sum of
two components as defined below:

Xtrain () = g(0.5,0.18)sin [2 * 7 (ap + a1m)]
+(0.5,0.18)sin [2 % 7 (bo + bim + bym?)],
(30)

where the parameters of the shared component (ie.,
ap, bp) belong to a uniform distribution U(0,1), a; = 0.25,
b1 = 0.40, and N = 1,000 is the signal length in samples
with a sampling frequency of 1 kHz. Two classes are gen-
erated by selecting by from one of the following uniform
distributions:

—0.30 —0.20
Class 1: U , (31a)
2IN—-1) 2(N—-1)
and
—0.1 —0.
Class 2: U 0.15 , 0.05 (31b)
2N — 1) 2(N — 1)

The TF representation for signals in each class is plotted
in Fig. 6a, b. For training purposes, a total of 300 signals
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Fig. 5 JLNMF temporal shift property. a The original signal along with its shifted version with T = 1.5 s. b The TF data. ¢ The decomposed
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Fig. 6 The TF structures of class 1 (a) and class 2 (b) are shown in this figure. Each class consists of a tone at random frequency uniformly distributed
between 0.15 and 0.3, and a linear chirp signal starting at normalized frequency 0.40 and ending at a random frequency uniformly distributed
between 0.1 and 0.2 for class 1 and between 0.25 and 0.35 for class 2. The test signals € with 100 % overlap between class 1 and 2 signals are

generated

Time

are generated in each class. A test data set is generated by
100 % overlap between the two classes as follows:

Xtest(m) = g(0.5,0.18)sin [2 * 7w (ag + a1m)]
+£(0.5,0.18)sin [2 7 (bo + bym + b21m2)]
+ £(0.5,0.18)sin [2 % 7 (b + bim + byom?)]
(32)

where by and by are selected using Egs. (31a) and (31b),
respectively. The TF representation for signals in each
class is plotted in Fig. 6¢.

A total of 40 test signals are generated, and the train-
ing/classification tasks are performed as follows: (1)
spectrogram with FFT size of 128 points and Kaiser
window with parameter of 5, length of 128 samples,
and 125 samples overlap, is used to construct the
TF matrices of each signal. The dimension of the TF
matrix is 65 x 291. (2) each TF matrix is collapsed
into a vector, v18915x1, and the training data sets are
created as: V§18915x300) = [v1(D)v1(2) --- v1(300)] and

(18915x300)

\% [v2(1) ¥2(2) --- v2(300)]. (3) JLNMEF
is applied to the TF data V; and V; and class-specific
and shared TF bases are decomposed. The parameters
r and r; are selected 40 and 20, respectively, and A and
y are varied over {0.05,0.1,0.15,0.2}. (4) for classifica-
tion purposes, each test data, viest(i)i=1.40, iS projected
over the JLNMF class-specific and shared TF bases
obtained in the previous step. To make this happen,
an overall TF bases, W, is constructed in the form of
[Wia(1) -+ wig(ra) wag(1) -+ wag(rg) wi(r —rj+1) -
w,»(r)], and coefficient vector hg;st(i)i:l;z;o is computed
using the updating rule in Eq. (3). The first r; = 20
elements in 4L (i) contain the corresponding coefficients
of the class-specific TF bases of class 1, the next r; = 20
elements contain the corresponding coefficients of the
class-specific TF bases of class 2, and the last r; = 20
elements contain the corresponding coefficients of the
linear combinations of the shared TF bases. Hence, the

distinct structures of class 1 and class 2 in test data i are
reconstructed as follows:

P14() = w@) - wr)lhT (1 :r4) and
Do (@) = [w(rg + 1) - wrp) L (ry+1:2ry)

(33)

(5) The correlation coefficients between V14(i) and the
original v14(i), and ¥,,4(i) and the original v,;(i), are com-
puted. The average of the correlation values, which we
denote as class-specific recovery percentage (CRP), is
computed as shown in the following equation to assess the
method’s success in identifying and recovering the distinct
structures of each class in the presence of 100 % overlap
(see Fig. 6¢ for the test data).

=300 A . .
C ,
CRP (%) = Y — (Vl";g()) "1d®) 100 (34)
i=1
=300 A . .
C ,
CRP,(%) = Y (Vz‘igg()) vad®) | o0 (35)
i=1

(6) Steps (1)—(5) are repeated 20 times and the aver-
age CPR is reported for each set of A and y over
{0.05,0.1,0.15,0.2}. The average CRP; and CRP; values
are shown in Fig. 7.

As can be seen, there is a high correlation between
the reconstructed and the original distinct structures of
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Fig. 7 The class-specific recovery percentage (CRP) using the
proposed JLNMF algorithm
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each class, meaning that the proposed JLNMF success-
fully separated the distinct structure of each class from
the shared structure. The performance slightly varied by
the selected value of A and y with (0.10 and 0.05), being
the best average CRP value (97 %) for the given example.
Figure 8 displays the reconstructed class-specific struc-
tures for two examples with (CRP;, CRP3) values of (96 %,
98 %) and (72 %, 99 %) for the example in the top and
bottom, respectively. As can be seen in this plot, although
there is a relatively low correlation between 714(i) and
v14(i), the distinct structure of class 1 has been mostly
recovered. To compare JLNMF with NMF, the experiment
is repeated using standard NMF, where NMF with r = 30
is separately applied to each TF data and the shared TF
bases are identified as the TF bases with a correlation
value of greater than 0.9. The average CRP value of 88 % is
obtained, which is significantly less the CRP value of 97 %,
obtained using the proposed JLNMF method.

4.2 Real data

4.2.1 Localization of epileptic spikes in EEGs

The application of the proposed JLNMF method to
localize the epileptic discharges associated with infantile
spasms in hypsarrhythmia (HYPS) is explored. Infantile
spasms refer to a catastrophic form of epilepsy occur-
ring in infancy that is diagnosed based on the findings of
HYPS in EEG recordings combined with epileptic spasms
[26]. HYPS is characterized by a chaotic and high volt-
age background with multifocal, discharges [27]. How-
ever, identifying this pattern of activity in a conventional
EEG recording is challenging in the presence of HYPS
due to the abundance of epileptiform discharges with
varying focality and morphology [28]. An experienced
electroencephalographer interprets an EEG by inspecting
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and approximating the characteristics of HYPS subjec-
tively rather than through objective quantification. Due
to complex nature of these signals, even experienced
EEG readers tend to interpret HYPS differently, which
can have serious implications in the treatment of the
infant [28]. Several algorithms have been developed to
detect epileptic discharges during epilepsy. Some of those
algorithms include temporal analysis based on template
matching and mimetic analysis methods, or TF method
based on wavelet analysis. However, those methods have
been developed for epileptic discharge detection in EEG
signals associated with other types of epilepsy and not
in the presence HYPS. The existing methods are either
based on supervised classifiers in which the presence of
true spikes has to be readily available and identifiable to
train the algorithm during a learning phase, or they are
template based, which rely on pre-specified spike charac-
teristics such as amplitude and duration of the discharges.
Given the chaotic appearance of EEG during HYPS, the
manual localization of true spikes is not always possible.
The spikes of interest are characteristically non-uniform,
which presents a challenge for temporal-based methods.
Hence, there is a need to develop an semi-supervised
feature extraction and classification method to assist in
localization of spikes with multiple foci and varying mor-
phologies during HYPS.

A 5-min section of awake EEG recording from an infant
with infantile spasms is used to explore the applica-
tion of JLNMF method for semi-supervised localization
of epileptic spikes. The subject consent was obtained
through the Infantile Spasms Registry and Genetic Studies
via a protocol approved by the University of Rochester’s
Research Subjects Review Board. The EEG signals were
recorded based on the international standard 10-20
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Fig. 8 The JLNMF reconstructed class-specific structures for two examples: Example 1 (CRP1=96 % and CRP,=98 %), Example 2 (CRP1=72 %,
CRP,=99 %). See Fig. 6 for the structures of the shared and class-specific components
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system with sampling frequency of 512 Hz. The recording
EEGs were imported to Persyst EEG software (Persyst, San
Diego, CA) for artifact reduction and then were imported
into MATLAB and bandpass filtered (0.5-30 Hz) for
further analysis. All the epilepticform discharges were
manually marked by an epileptologist.

The data is divided into 10-s windows and an epilep-
tologist labels each 10-s EEG window as non-spike (NS)
if there are no epiletiform spikes in that window; other-
wise, the window is marked as possibly-spike (PS). The
objective is to characterize the structure of the epilepti-
form spikes and localize them during each 10-s window.
The localization task is formulated as a classification task,
where the objective is to decompose the class-specific
(i.e., epileptic spikes) and shared bases (i.e., the common
EEG baseline), which can be used to reconstruct the class-
specific data in each class. The distinct structure of the
PS recordings is expected to indicate the spike locations
during the EEG recordings. There are two main chal-
lenges: the first challenge is that the EEG recordings are
strongly non-stationary, which can be addressed by using
the TF data of the EEG recordings to improve the repre-
sentation of the non-stationary information. The second
challenge is the substantial amount of similarity (i.e., over-
lap) between the two NS and PS classes. This is mainly
because the exact locations of the epileptiform spikes are
not specified, and the only available information is that the
PS class contains several spikes at some unknown loca-
tions. The proposed JLNMF method is used to address
this challenge, as it is able to decompose the TF data to the
spike-specific TF bases from the common EEG baseline in
a semi-supervised fashion. The details of the application
of JLNMEF on the EEG recording is as follows:

(1) The TF data is constructed using matching-pursuit
TF (MP-TF) method. MP-TF has a much higher TF reso-
lution compared to spectrogram [2, 8], and can better rep-
resent the spike-related transients and non-stationarity
of the EEG recordings. The resolution of the MP-TF is
selected to be 0.15 Hz in frequency and 2 ms in time.
Since there is no meaningful physiological information
beyond 30 Hz, the frequency domain is limited to that
value. The dimension of the TF matrix is 200 x 5120 for
each 10-s segment. (2) Each 10-s TF matrix is divided into
64 sections and each section is collapsed into a vector,
V16,000x1- The training data set is created by collecting the
collapsed TF vectors of half of the NS and PS data. (3)
JLNME is applied to the TF data and class-specific and
shared TF bases are decomposed. The parameters r and
rj are selected as 40 and 20, respectively, and the values
of 0.10 and 0.05 are, respectively, selected for A and y.
Figure 9a shows the shared (on top) and PS-specific (on
bottom) TF bases. To visualize the TF bases, each decom-
posed base is restructured back to the original size. The
NS-specific TF matrix is found empty, which means that
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JLNMEF does not identify any distinct structure to the NS
class. (4) For classification purposes, each test data is pro-
jected over the JLNMF PS-specific and shared TF bases
obtained in the previous step, and the coefficient vector is
computed using the updating rule in Eq. (3), and the dis-
tinct structures corresponding to the PS-specific TF bases
are reconstructed for all the test data.

Figure 9c shows the PS-specific reconstructed TF data
for the EEG signals shown in Fig. 9b. The figure shows two
examples: the one on top belongs to a case, where two dis-
tinct spikes are located on the PS-specific reconstructed
TF data (see the two dark vertical lines in Fig. 9c), and
are marked by two red arrows in Fig. 9b. An epileptologist
confirmed that those identified locations are indicating
epileptic spikes. The plots on the bottom of Fig. 9b, ¢
show a case, where the PS-specific reconstructed TF data
does not indicate any spikes as also are confirmed by a
epileptologist. Comparing the two plots in Fig. 9b, it can
be seen that the two EEG signals look very similar; how-
ever, the proposed JLNMF is able to successfully locate the
epileptic spikes. To compare the JLNMF algorithm with
the standard NMF, the TF data of NS and PS classes are
separately decomposed using NMF with » = 40. The TF
bases of each class is shown in Fig. 10. The NS and PS TF
bases are compared to separate the spike-specific TF bases
from the shared ones, but none had a correlation value
of greater than 0.9 and only three had a value of greater
than 0.8. Hence, the standard NMF is unable to locate
any spike-related TF bases without any further analysis,
while JLNMF showed to be successful in identifying the
epileptic spikes. Such a method is deemed to be nec-
essary for reliable evaluation of features associated with
HYPS, which could potentially improve the assessment
of infantile spasms, which is of significant importance in
the therapy, management and ultimately the success of the
prescribed treatment.

4.2.2 Discrimination of pathological voice disorder

Dysphonia or pathological voice disorder refers to speech
problems resulting from a damage to or malformation of
the speech organs. Pathological voice disorder is more
common in people who use their voice professionally,
for example, teachers, lawyers, salespeople, actors, and
singers, and it dramatically affects these professional
groups’ lives both financially and psychosocially. The pur-
pose of the discrimination of pathological voice disorder
is to help patients with pathological problems for mon-
itoring their progress over the course of voice therapy.
We applied the developed JLNMF method to the Mas-
sachusetts Eye and Ear Infirmary (MEEI) voice disorders
database, distributed by Kay Elemetrics Corporation [29].
The database consists of 51 normal and 161 pathologi-
cal speakers whose disorders spanned a variety of organic,
neurological, traumatic, and psychogenic factors. The
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Fig. 9 The TF signals of two classes (NS and PS) are simultaneously decomposed using the JLNMF algorithm. a The shared TF bases between PS and
NS classes (i.e, W; ) and the PS-specific TF bases (Wipike ). b Two EEG recording samples (top with two spikes and bottom with no spikes). € The

speech signal is sampled at 25 kHz and quantized at a res-
olution of 16 bits/sample. In this exploratory experiment,
one speech signal from a normal subject and one from a
pathological subject were used as two classes: normal and
pathology. The TF signals of each class was constructed by
computing the spectrogram with FFT size of 1024 points
and Kaiser window with parameter of 5, length of 256
samples and 220 samples overlap. The two TF signals
were then fed to the JLNMF algorithm to generate three
sets of TF bases: normal-specific TF bases, pathological-
specific TF bases, and shared TF bases. Figure 11 shows
the above procedure along with the decomposed TF bases.
The speech samples and their corresponding TF data are
shown in Fig. 11a—d. The decomposed normal-specific
TF bases, pathological-specific TF bases, and shared TF

bases are shown in Fig. 11e—g, respectively. For a suc-
cessful decomposition, it is expected that the normal
discriminant bases represent stronger formants compared
to the pathological discriminant bases and the shared
bases represent the natural structure of a speech signal [9].
The success of the JLNMF for discrimination of patho-
logical voice disorder was visually investigated from the
decomposed TF bases shown in Fig. 11. As expected, the
pathological discriminant bases (Fig. 11f) present weak
formants, while the normal discriminant bases (Fig. 11e)
have more periodicity in low frequencies and introduce
stronger formants. The shared TF bases (Fig. 11g) rep-
resent the low-frequency TF structures that is common
to any natural speech regardless of being normal or
pathological.
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subject shown in (c). e Normal-specific TF bases. f Pathological-specific TF bases. g Shared-TF bases

5 Conclusions classes. Inspired by this observation, a set of shared TF
In most real-world applications, the nature of signals from  bases along with class-specific TF bases, was considered
different classes are very similar, and there could only be  in the proposed JLNMF algorithm, and a new cost func-
slight changes in the TF patterns of signals from different  tion was introduced to enforce discrimination between
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shared and class-specific TF bases. A projected gradients
framework was performed to optimization the JLNMF
cost function. It was shown that the proposed JLNMF is
invariant to amplitude scaling and time shifting, which is
required for signal recognition applications. The perfor-
mance of the proposed JLNMF was evaluated and com-
pared to the results of standard NMF for data retrieval
and localization applications, verifying the effectiveness of
JLNME.

Appendix

The second derivative of Eq. (9) with respect to one vari-
able while keeping the rest of matrices constant is found
by taking the derivative of Eqgs. (15)—(19):

V2g(W)) = (1— 1) (HMHfd + HZngd) and
V2g(Wig) = (1 — 68 — A) HigH],

V2g(Wy) = (1 — 8 — 1) HyyH,, and
Vi(Hy) = 1 -8 — )W, Wis+ WI'W;
VZg(Hyg) = (1—8 — 1) W3, Woy + W/'W;
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