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Abstract

In this paper, we propose a change detection method of bitemporal multispectral images based on the D-S theory
and fuzzy c-means (FCM) algorithm. Firstly, the uncertainty and certainty regions are determined by thresholding
method applied to the magnitudes of difference image (MDI) and spectral angle information (SAl) of bitemporal
images. Secondly, the FCM algorithm is applied to the MDI and SAl in the uncertainty region, respectively. Then, the
basic probability assignment (BPA) functions of changed and unchanged classes are obtained by the fuzzy
membership values from the FCM algorithm. In addition, the optimal value of fuzzy exponent of FCM is adaptively
determined by conflict degree between the MDI and SAl in uncertainty region. Finally, the D-S theory is applied to
obtain the new fuzzy partition matrix for uncertainty region and further the change map is obtained. Experiments on
bitemporal Landsat TM images and bitemporal SPOT images validate that the proposed method is effective.
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1 Introduction

Change detection is referred to observing and process-
ing the same area of multitemporal images at different
time. It can provide monitoring information of change for
government and has been applied to many domains such
as forestry monitoring, natural diaster monitoring, and
the urban development [1, 2]. In general, change detec-
tion technique can be divided into two main categories:
unsupervised [3—-14] and supervised change detection
methods [15, 16].

Among the unsupervised change detection methods,
change vectors analysis (CVA) techniques are widely used
[3, 6, 13]. The technique firstly computes the difference
image (DI), and the magnitudes of DI (MDI) are seg-
mented into unchanged and changed classes. Like other
unsupervised change detection methods, how to select
a suitable threshold is an open problem for CVA tech-
niques. Furthermore, even if a better threshold for a cer-
tain unsupervised change detection method is obtained,
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the region around the threshold is still difficult to judge
the pixels’ class (change and unchange). This problem is
partially due to the loss of information associated with the
difference and magnitude operators, which do not allow
to exploit all the information of the original feature space
in the change detection process [4].

Another important change detection methods are
transform-based methods. These methods include princi-
ple component analysis [17], multivariate alteration detec-
tion [18], and chi-squared transform methods [19, 20].
The most advantage of these methods is in reducing data
redundancy between bands and emphasizing different
information in derived components. However, it is diffi-
cult for interpreting and labeling the change information
on the transformed images.

In the past few years, many pattern recognition algo-
rithms, such as support vector machine [4] and deep
learning neural networks [11], have been applied for the
change detection of remotely sensed images. In these
algorithms, fuzzy c-means (FCM) algorithms, which can
get the degree of uncertainty of feature data belonging
to each class and expresses the intermediate property of
their memberships, have been widely used in the change
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detection [8, 10, 12, 21-24]. Gong et al. in [10] proposed
a change detection method based on the combination of
FCM and Markov random field (MRF). The method has a
good computational performance by modifying the mem-
bership instead of modifying the objective function. In
addition, the membership of each pixel are constructed
by a novel form of MRF energy function. In [21], FCM
and GustafsonCKessel clustering algorithms were used for
change detection. At the same time, the 8-neighbor and
12-neighbor pixels as spatial information are used in the
FCM. In addition, the genetic algorithm and simulated
annealing were used to optimize the object function of
FCM to further enhance the CD performance. In [23], the
integration of FCM and MREF is applied to change detec-
tion in multispectral and multitemporal remote sensing
images. In this study, MRF is used to model the spa-
tial gray level attributes of the multispectral difference
image.

The advantage of FCM algorithms need not to deter-
mine the threshold. However, there are two shortcomings
for the FCM algorithm applied to the MDI. One is the
loss of the original spectral information because of only
the single information being used, which causes the FCM
algorithm to be the worse result in the uncertainty region
(around the threshold). Another problem is that the fuzzy
exponent of FCM is not easily determined, which is gen-
erally acquired by try and error method or empirical
knowledge. The methods make the FCM have no gen-
erality for change detection. In order to overcome the
above shortcomings, we use the magnitude and spectral
angle information of bitemporal image in the uncertainty
region. Then, we use the D-S theory to fuse the results
from the magnitude and spectral angle in order to reduce
the uncertainty. This is because the D-S theory has the
advantage of processing uncertainty and fusing the differ-
ent information [25, 26]. In addition, the fuzzy exponent
of FCM objective function is adaptively determined by the
total conflict degree between the MDI and spectral angle
information (SAI) of uncertainty region in bitemporal
images.

The main contributions of our wok are as follows: (1)
the certainty and uncertainty regions are determined by
fusing the results of MDI and SAIL (2) The fuzzy expo-
nent of FCM objective function is adaptively determined
by conflict degree of evidence between MDI and SAL (3)
D-S theory is applied to increase the reliability of change
detection in the uncertainty region.

In the following sections, we first briefly introduce the
principle of D-S theory. Secondly, the FCM algorithm is
introduced. Then, our proposed change detection method
is described. After that, the experiments on two bitem-
poral remotely sensed images are conducted to evalu-
ate our proposed method. Finally, the conclusions are
given.
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2 D-Stheory
The Dempster-Shafer (D-S) theory was developed by
Arthur P. Dempster [27] and generalized by Glenn Shafer
[28]. The D-S theory, also known as the theory of belief
functions, is a generalization of the Bayesian theory
of subjective probability. Whereas the Bayesian theory
requires probabilities for each question of interest, belief
functions allow us to base belief degrees for one ques-
tion on probabilities to a related question. These degrees
of belief may or may not have the mathematical proper-
ties of probabilities. This theory is a mathematical theory
of evidence [27] based on belief functions and plausible
reasoning, which is used to combine separate pieces of
information (evidence) to calculate the probability of an
event.

In D-S theory, there is a fixed set of Q mutually exclusive
and exhaustive elements, called the frame of discernment,
which is symbolized by:

0= {HI)HZ)' . )HQ}

The representation scheme, ©, defines the working
space for the desired application since it consists of all
propositions for which the information sources can pro-
vide evidence.

Define function m be the reflection from the set 2© to
the range [0,1] and satisfies the following:

{ m(p) =0,
DLazez0 M(A) =1
m(A) is defined as the basic probability assignment
(BPA) function of hypothesis A.
The belief and plausibility functions are derived from
the BPA function, and are respectively defined by

(1)

bel(¢) =0, @)
bel(A) = Y 5.4 m(B),YA C ©
pl(¢) =0, 3)
PlA) = Y prasy m(B),YA C ©

BPA from different information sources, mz(j =
1,---,d), are combined with Dempster’s orthogonal rule.
The result is a new distribution, m(Ay) = (ml & m2
-+ @ md)(Ag), which incorporates the joint information
provided by the sources and can be represented as follows:

ZAlﬂAgmAd:Ak ngjgd mj(Aj)

m(Ay) = K (4)
K = Z 1_[ m;(Aj) (5)
A1NAy-Ag=¢ \1<j<d

K is often interpreted as a measure of conflict between
the different sources and is introduced as a normalization
factor. The larger K is the more the sources are conflict-
ing and the less sense has their combination. The factor K
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indicates the amount of evidential conflict. If K = 0, this
shows complete compatibility, and if 0 < K < 1, it shows
partial compatibility. Finally, the orthogonal sum does not
exist when K = 1. In this case, the sources are totally con-
tradictory, and it is no longer possible to combine them. In
the cases of sources highly conflicting, the normalization
used in the Dempster combination rule can be mistaking,
since it artificially increases the masses of the compromise
hypotheses.

3 FCM
Fuzzy c-means was firstly proposed by Dunn [29] and
generalized by Bezdek [30]. The FCM algorithm classi-
fies images by grouping points with similar features into
clusters. FCM algorithm is the improvement of K-means
algorithm. In change detection problem, FCM algorithm
is a soft partition for changed and unchanged class. The
idea of FCM is that make the object in the same clus-
ter have the largest similarity and least similarity between
different clusters. The algorithm iteratively minimizes a
objective function which depends on the pixels to the
cluster centers in the feature domain.

Let a dataset {x,r<}},(l‘[:1 € R% to be partitioned into c clus-
ters, then the definition of objective function is as follows:

¢ N
Jo = > LuG RV Ixe —vill® ©)
i=1 k=1
where the element u(i, k) of fuzzy partition matrix is the
membership of the kth sample corresponding to the cen-
ter v; of ith class, u(i,k) €[0,1] and Y ;_, u(i,k) = 1, g
is the weighted exponent on each fuzzy membership and
q € (1,00).
The objective function in (6) is minimized using the
following alternate iterations:

iy ) = ! %

2
¢ Ixe—=vill \ @D
j=1 (le:fvl'l\)
2 [ ) X
s ek

(8)

4 Change detection based on FCM algorithm and
D-S theory

Let X; and X, e RM1*H2xB he two temporal images

consisting of B bands, where H; and Hj are the height

and the width of the image, respectively. We assume that

both images have been co-registered and radiometrically

corrected.

The proposed method includes three main parts (as
shown in Fig. 1): (1) the uncertainty and certainty regions
are determined by combining the threshold of MDI with
the one of SAI; (2) construction of mass function based on
FCM algorithm and then D-S evidence combination for
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Fig. 1 The diagram of proposed change detection method

the MDI and SAI in uncertainty regions; and (3) param-
eter optimization based on conflict index. The following
sections give the description of these three main parts.

4.1 The determination of uncertainty and certainty region
Let M and S represent the MDI and SAI of X; and Xo,
respectively. The pixel values at location (i, j) of MDI and
SAI are denoted by M(i, ) and S(i, /), respectively, and are
expressed as follows:

MGp) = |3 (Xulif) — Xap(ir ) ©)

B
b=1
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Y2 (Xl )Xap (i, )

L XS X3 )
(10)

S(i,j) = arccos

where X1, (i, /) and X5, (i, ) represent the value of the bth
band of images X; and Xj at location (i, j), respectively.

We reformulate M and S as a column vector by lexico-
graphically ordering the pixels on the image and denote
the two matrices by M and S, respectively. The values of
M(p) and S(p) are the pth element of column vector of
MDI and SAI, respectively.

In this work, we only cope with abrupt change detection;
therefore, there are two classes: unchanged and changed
classes. Based on Bayes rule, we adopt expectation maxi-
mization (EM) algorithm to find the threshold T; of MDI.
In general, a magnitude value that is close to the threshold,
the much uncertainty it is.

The threshold value T)s represents a reasonable ref-
erence point for identifying uncertainty and certainty
regions. According to this observation, the desired set
of pixels with a high probability to be correctly assigned
to one of the two classes, i.e., certainty regions, is con-
structed as follows [4, 31]:

(1) The region where the values of MDI are less than
Tam — 81 is considered unchanged class.

(2) The region where the values of MDI are larger than
T + 83 is considered changed class.

In the definition, §; and 8, are both positive constants,
whose values should be selected in order to obtain a high
probability that patterns in MDI have a correct label. It is
worth noting that, in general, the margin can be approx-
imated as symmetric with respect to the threshold; thus,
we can assume §; = 8y = §. A reasonable strategy for
selecting the value of § is to relate it to the dynamic range
of the difference image. The choice of § should make the
value of Tj1— 8 be greater than zero. Generally, § is chosen
to be less than 15 % of dynamic range of MDL In [31], the
authors chose the § to be a constant value. Shao et al. in
[24] chosen the parameters Ty; — 81 and T + > to be the
mean of unchanged region and changed region based on
the threshold Ty, respectively.

Although we can choose uncertainty and certainty
regions based on the method in [4, 24, 31], the above
methods only use the MDI information and this informa-
tion cannot be enough to reflect the change and unchange
information, which will lead to some labels to be mis-
classified in certainty region. In order to further decrease
misclassified pixels in the certainty regions based on Bayes
rule with change vectors, we use another feature, spectral
angle information, to refine the certainty and uncertainty
regions set obtained from MDI.
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In this work, we apply Otsu’s thresholding method to
determine the threshold of spectral angle [32]. The SAI
includes two types of classes: changed and unchange pix-
els. The Otsu’s algorithm then calculates the optimum
threshold separating the two classes so that their com-
bined spread (intra-class variance) is minimal, or equiva-
lently (because the sum of pairwise squared distances is
constant), so that their inter-class variance is maximal.

Suppose the threshold of SAI by Otsu’s method be Tf.
Let certainty region P; includes two subsets: unchanged
region P, and changed region P,. That is P; = P, |JP..
Then, we refine the certainty region as follows:

Pu={pM(p) < Tn—6 and Sp) <Tsh (1)

Pe={plMp) > Ty +5 and S = Ts)_| (12)

1
According to the properties of MDI and SAI the pseu-
dolabels of pixels in X are assigned as follows:
| _|ow ME)<Tu—38 and Sp) < Ts
W= we, ifMp)>Tyu+8 and S(p) > Ts
(13)

Based on Egs. (11) and (12), the uncertainty region is
defined as Pf =1{1,2, - ,H; x Hy} — P;. Concretely, the
entire uncertainty region includes three parts (as shown
in (Fig. 2)): uncertainty regions 1-3. Uncertainty region
1 includes the locations where the values of MDI are
between T — 8 and Ty +§. Uncertainty region 2 includes
the locations where the values of MDI are smaller than
T — 81 and the values of SAI are greater than T's. Uncer-
tainty region 3 includes the locations where the values
of MDI are greater than T); + § and the values of SAI
are smaller than Ts. The labels of pixels belong to the
uncertain set P} are obtained by the D-S theory and FCM
algorithm.

4.2 Construction of mass function based on FCM and D-S
evidence combination

When the FCM algorithm is applied to the MDI and SAI
of uncertainty region, we obtain the fuzzy partition matrix
Uy and Us, respectively. Because the value of partition
matrix represents the membership of a sample belong-
ing to a class, we can directly use the membership value
of partition matrix as the BPA or mass function of D-S
theory.

In change detection problem, the frame of discernment
® = {u, c}, where u represents unchanged class and c rep-
resents changed class. In our work, we consider the simple
hypotheses and double hypotheses [33].
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Fig. 2 Example of distributions of MDI and SAI and the definition of uncertainty region. The P(M) and P(S) represent the frequency of value of MDI

For simple hypotheses, the mass function for the kth
element of MDI and SAI in uncertainty region be mlf .

my(A) = up (i, k) (14)
m(Ai) = us(i, k) (15)
where i = u,c corresponds unchanged and changed

classes.

For double hypotheses, there is a high ambiguity in
assigning a pixel to unchanged class or changed class. In
this case, the certain pixel’s absolute of difference fuzzy
membership is a smaller thresholding value (The thresh-
old is set to be 0.1 in our work). The mass function for
MDI and SAI can be represented as:

mh (A U A = upr(u, k) x upr(c, k) (16)

mk (A, UAL) = us(u, k) x us(c, k) 17)
After the mass functions for MDI and SAI are obtained
by Egs. (14-17), the combination rule is used by Eq. (4).
When the D-S evidence combination is finished, the type
of final decision output belongs to the one with the highest
evidence value,

m(Ac(k)) < m(A,k)
otherwise

Wy,

F(k) = { (18)

Ccr

4.3 Parameter optimization based on conflict index

In the FCM objection function, the fuzzy exponent is
not easily determined. In general, suitable fuzzy exponent
can resist noise and balance fuzzy membership of fuzzy

partition matrix. But how to select a suitable fuzzy expo-
nent parameter is still an open problem. At present, the
parameter is mainly selected by try and error method or
empirical knowledge.

In this work, the appropriate fuzzy exponent q; for MDI
and g, for SAI of FCM can be chosen based on grid search
method. During the choice of the parameter, we abide on
the following rule: the better the values of q; and ¢ are,
the less the sum of conflict between the MDI and SAI on
uncertainty region is.

Define the conflict index of uncertainty region as con-
flict index (CI), which is represented as follows:

ny + ny
Ny,

Cl=

(19)

where N, is the total number of pixels in uncertainty
region, and #; and ny are defined in uncertainty region as
follows:

nm = {N(k)“’lM(l;k) = MM(Q'; k) and MS(Lk) < MS(Z, k)}
(20)

ny = {N(k) |MM(11 k) < MM(Q" k) and MS(L k) > MS(Q') k)}
(21)
where N (k) represents the number of pixels whose fuzzy

membership for MDI and SAI are conflict in the uncer-
tainty region.




Shi et al. EURASIP Journal on Advances in Signal Processing (2016) 2016:96

When the range of g1 and ¢ are set and their steps are
also set, the grid search is applied to find the suitable ¢;
and ¢, according to the minimum value of CI based on
Eq. (19).

5 Theimplementation of proposed method
The implementation steps of proposed change detection
method are as follows:

Step 1: Compute the MDI and SAI of bitemporal
images, respectively.

Step 2: Determine the threshold Ty of MDI and T
of SAI based on Bayesian thresholding and Otsu’s
threshoding methods, respectively.

Step 3: Determine the certainty region P; according
to Egs. (11) and (12), the labels of certainty region
according to Eq. (13) and further determine the
uncertainty region to be P;.

Step 4: Set the grid search range of fuzzy exponent q;
and g2 of FCM algorithm and their increasing steps
Aq1 and Agy for the MDI and SAI of bitemporal
images.

Step 5: Select the initial center of unchanged and
changed classes based on certainty regions. That is,
the means of MDI and SAI in certainty region are
computed in advance based on Eq. (11) and taken as
the initial center of unchanged class. Similarly, the
means of MDI and SAI based on Eq. (12) are used to
be the initial center of changed class.

Step 6: For 7€ = q(fld + Aqpand g5% = qgld + Aga,
apply FCM algorithm to MDI and SAI of uncertainty
region based on Egs. (7) and (8) until the predefined
convergency criterion or maximum iteration number
is reached and then store the partition matrix.

Step 7: Compute the conflict index according to

Eq. (19) and then store it.

Step 8: Repeat steps 6 and 7 until the fuzzy exponent
q1 and g are all reached to the corresponding
maximum value.

Step 9: Find the minimum value of change index.
Step 10: Output the partition matrix of MDI and SAI
corresponding to the minimum value of change index.
Step 11: Apply D-S theory to fuse the partition matrix
of MDI and SAI to obtain the new partition matrix
based on Egs. (4), (5), and (14)-(18).

Step 12: Obtain the labels of uncertainty region
according to the new partition matrix of Step 11.
Step 13: Output change detection results based on
the results of Steps 3 and 12.

6 Experiments

To evaluate the performance of the proposed method,
two remotely sensed datasets were used. Both bitem-
poral multispectral images have been co-registered and
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Fig. 3 The true color images of bitemporal Brazil Landsat TM images
and the ground truth
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Fig. 4 The results of change detection for Brazil dataset

radiometrically corrected beforehand. The change detec-
tion results from the proposed method were compared

Table 1 Change detection performance for Brazil dataset

with those from four unsupervised change detection

methods, namely the EM-CVA method [3], the robust chi- FP FN OE k
squared transform (RCST) method [20], the FCM algo-  EM-CVA 2918 3865 6783 0.753
rithm combined with Markov random field (FCMMREF)  pcs7 5739 1864 4603 0.840
on the MDI [10], and the combination of MDI and FCMMRE 8690 cg3 9283 0723
SAI (hybrid feature vector, HFV) applied with Kittler-

llingworth threshold [14]. In the proposed method, HrY 10299 20 10319 0705
the iteration number of optimization is set to 50, the Proposed 237 870 3407 0.883
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convergency criterion is set to |[Vpew — Vod|| < 0.0001
and the value of § is 0.1. The fuzzy exponent is between
1.5 and 2.5, and both the values of Ag; and Agy are set to
be 0.1.
We adopt the following four measures to assess the
results: the number of false positives (FP, unchanged pixels
0.246
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0.244
0.243
5 0.242
0.241
0.24
0.239
25
25
2
2
ol 15 15 @
(a) The curve of CI versus ql and g2
5500
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w
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3500
3000
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(b) The curve of OE versus ql and g2
0.9
0.88
0.86
= 0.84
0.82
0.8
25
25
2 - a8
2
» 15 15 qz (c) The ground truth
Fig. 6 The true color images of bitemporal Littoral SPOT images and
(¢) The curve of k versus q1 and g2 the ground truth
Fig. 5 The curves of Cl, O, and k versus g1 and g, for Brazil dataset
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wrongly classified as changed), the number of false neg- 6.1 Experiments on Landsat TM imagery

atives (FN, changed pixels that undetected), the overall The first experiment was carried out on a section of 320
error (OE) defined as FP + FN, and the kappa coeffi- pixels x 320 pixels of two multispectral images acquired
cient (k). by a Landsat Thematic Mapper (TM) on a forest in

(e) Proposed

Fig. 7 The results of change detection for Littoral dataset




Shi et al. EURASIP Journal on Advances in Signal Processing (2016) 2016:96

Brazil. The spatial resolution of TM imagery is 30 m.
The acquisition dates of the bitemporal images were July
2000 (the “before” image) and July 2006 (the “after” image)
(Fig. 3a, b), respectively. Because the visible and near
infrared (NIR) bands of TM imagery contain more infor-
mation about forest clearing and are useful for change
detection, the four sensor bands used in the experiment
were three visible bands and a NIR band.

The reference map concerning the location of the forest
clearing was created manually (Fig. 3¢c). This ground truth
map includes 16,826 changed pixels. Figure 4a—e shows
the change detection results from the EM-CVA, RCST,
FCMMRE, HFV, and proposed methods.

From the perspective of Fig. 4e, the change map of pro-
posed method is closer than other methods to the ground
truth data.

Table 1 presents the FP, FN, OE, and « values from the
four state-of-the-art methods and the proposed method.
The proposed method gave the best results with a change
detection error of 3407 pixels. Although the FN values of
our proposed method are higher than that of FCMMRF
and HFV methods, our proposed method has the lowest
FP values compared to other four state-of-the-art meth-
ods. In addition, our method has the lowest OE values
in all the compared methods. Furthermore, we can also
see from the last column that our proposed method has
highest k value, concretely, higher 0.13, 0.04, 0.16, and
0.18 than EM-CVA, RCST, FCMMRE, and HFV methods,
respectively. The comparisons show that the proposed
method has the best comprehensive performance than
other state-of-the-art methods.

For the effect of fuzzy exponent on the change detec-
tion, Fig. 5a—c gives the curves of CI, OE, and k versus
q1 and go. It can be seen that the parameters ¢q; and
q2 corresponding to the minimum of CI can also obtain
the highest OE and k. This shows that the parameters
optimization based on the conflict index (CI) is effective.

6.2 Experiments on SPOT imagery

The second dataset consists of a 400 pixels x 400
pixels section of two multispectral images of Kalideos
Littoral acquired by a SPOT sensor from CNES in
July 2006 (“before”) and July 2009 (“after”) (Fig. 6).
The multispectral images were pansharpened by the

Table 2 Change detection performance for Littoral dataset

Methods FP FN OE k

EM-CVA 7918 3883 11,801 0.705
RCST 5020 5822 10,842 0.702
FCMMRF 3419 6057 9476 0.730
HFV 11,103 1427 12,530 0.716

Proposed 2255 6558 8813 0.739
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Gram-Schmidt spectral sharpening algorithm. The spa-
tial resolution of final images is 2.5 m. The visible
bands were used in the experiments because these
bands contain useful information about the variations of
vegetation.
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Fig. 8 The curves of Cl, O, and k versus g1 and g; for Littoral dataset
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The ground reference shown in Fig. 6¢c was obtained
from manual analysis of the two temporal images. The ref-
erence map includes 21,338 changed pixels. Figure 7a—e
shows the change detection results from the four state-
of-the-art and our methods. Table 2 presents the FP, FN,
OE, and « values from the four state-of-the-art and the
proposed methods.

The best results of our method has a change detection
error of 8813 pixels, with 2255 FP and 6558 FN values.
Compared to EM-CVA, RCST, and FCMMRF and HFV
methods, the proposed method gives the lowest FP val-
ues but the highest FN values. In addition, the proposed
method produces the lowest overall errors and the largest
k value. From these experimental results, we can conclude
that proposed method outperforms all the state-of-the-
art methods and is effective in change detection for this
dataset.

For the effect of fuzzy exponent on the change detec-
tion, Fig. 8a—c gives the curves of CI, OE, and k versus q;
and ¢5. It can be seen that the parameters g; and g5 corre-
sponding to the minimum of CI cannot obtain the highest
OE and k. From Fig. 8b, ¢, we can see that the lowest
OE value and largest k value are 8441 and 0.7624, respec-
tively. Compared to the result of proposed, we can see that
the difference of OE and k with the best value is 372 and
0.02. The performance of the proposed method is closer
to the best value. This shows that proposed method is
effective.

7 Conclusions

An unsupervised change detection method was proposed
based on FCM algorithm and D-S theory, which has two
features: (1) the magnitude of change vector analysis of
bitemporal multispectral images with their spectral angle
mapper information is fused for improving the precision
of change detection based on D-S theory and (2) the fuzzy
exponent parameter of FCM algorithm is adaptively deter-
mined based on the grid search. Experiments on the Brazil
and Littoral datasets show that our proposed method
outperforms four state-of-the-art methods.
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