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Abstract

This article summarizes and extends the recently proposed concept of Significance-Aware (SA) filtering for nonlinear
acoustic echo cancellation. The core idea of SA filtering is to decompose the estimation of the nonlinear echo path into
beneficially interacting subsystems, each of which can be adapted with high computational efficiency. The previously
proposed SA Hammerstein Group Models (SA-HGMs) decompose the nonlinear acoustic echo path into a direct-path
part, modeled by a Hammerstein Group Model (HGM) and a complementary part, modeled by a very efficient
Hammerstein model. In this article, we furthermore propose a novel Equalization-based SA (ESA) structure, where the
echo path is equalized by a linear filter to allow for an estimation of the loudspeaker nonlinearities by very small and
efficient models. Additionally, we provide a novel in-depth analysis of the computational complexity of the previously
proposed SA and the novel ESA filters and compare both SA filtering approaches to each other, to adaptive HGMs,
and to linear filters, where fast partitioned-block frequency-domain realizations of the competing filter structures are
considered. Finally, the echo reduction performance of the proposed SA filtering approaches is verified using real
recordings from a commercially available smartphone. Beyond the scope of previous publications on SA-HGMs, the
ability of the SA filters to generalize for double-talk situations is explicitly considered as well. The low complexity as
well as the good echo reduction performance of both SA filters illustrate the potential of SA filtering in practice.

Keywords: Significance-aware, Equalization-based significance-aware, Efficiency, Nonlinear acoustic echo
cancellation, Hammerstein group model, Hammerstein model

1 Introduction
Since the first adaptive linear echo canceler for network
echoes in telephone lines [1], linear echo cancellation
has evolved to a key ingredient of almost any full-duplex
speech communication system. This has resulted in amul-
titude of approaches to efficiently model, parametrize,
and estimate even complex linear systems, such as the
acoustic echo paths in hands-free wideband telecommu-
nication scenarios [2]. With increasingly common nonlin-
ear distortions produced by miniaturized amplifiers and
loudspeakers in modern portable devices, dedicated non-
linear echo path models have emerged as an important
topic of research and motivated sophisticated approaches
for nonlinear Acoustic Echo Cancellation (AEC) based
on Volterra filters [3–5], artificial neural networks [6, 7],
Functional Link Adaptive Filters (FLAFs) [8, 9], or kernel
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methods [10, 11]. A very simple, yet effective model for
nonlinear acoustic echo paths is the cascade of a memo-
ryless preprocessor (modeling loudspeaker signal distor-
tions) and a subsequent linear system (modeling sound
propagation through air) [12]. Due to its simplicity, this
so-called Hammerstein Model (HM) has been frequently
employed [13–22] and will also be used in this contribu-
tion. So will be a group of B parallel HMs, referred to
as Hammerstein Group Model (HGM) in the following.
The recently proposed efficient Significance-Aware HGM
(SA-HGM) [20] combines the advantages of HMs and
HGMs and was extended to an efficient partitioned-block
frequency-domain realization in [22].
Beyond previous work, this article introduces a novel

variant of the Significance-Aware (SA) filtering concept
denoted as Equalization-based SA (ESA) filtering which
complements the existing efficient frequency-domain
realization in [22]. Thereby, highly efficient SA filters
can be derived for higher-order nonlinear systems—even
without block partitioning. Furthermore, a novel in-depth
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analysis of the computational complexity of the previously
proposed SA filtering concepts is provided and contrasted
with the computational complexity of the novel ESA filter-
ing concept, adaptive HGMs, and conventional adaptive
linear filters. Beyond previous investigations [22], this
article also assesses the ability of the considered echo path
models to generalize for double-talk situations, in which
the models cannot be adapted to the current input sig-
nal. The performance in such situations reflects how well
the estimated system models the physical system to be
identified.
The remainder of this paper is structured as fol-

lows: after introducing the notation in Section 2, fre-
quently used echo path models and their adaptation are
reviewed in Sections 3.1 and 3.2, respectively. After-
wards, the recently proposed Partitioned-Block SA-HGM
(PBSA-HGM) is summarized in Section 4.1, before intro-
ducing the novel ESA filtering concept in Section 4.2,
which results in an Equalization-based Significance-
Aware HM (ESA-HM). Then, the computational com-
plexity of the SA filters (PBSA-HGM and ESA-HM) is
analyzed and compared to the complexity for adapting a
linear model and an HGM in Section 5.1. An experimen-
tal verification of the efficacy of the novel ESA-HM in
comparison to other approaches in terms of echo reduc-
tion performance is given in Section 5.2. Finally, the
manuscript is complemented by a summary of the main
results in Section 6.

2 Notation
Throughout this article, vectors will be typeset in bold-
face lowercase letters, e.g., a, and matrices in uppercase
boldface, e.g., A. The complex conjugate, transposed, and
Hermitian-transposed of a vector a (column vector by
default) will be written as a∗, aT, and aH, respectively.
Besides,A�B,A�B, and |A|2 denote element-wisemulti-
plication (Hadamard product), element-wise division, and
element-wise magnitude-squaring of matrices or vectors
of the same size, respectively. Furthermore, 〈a,b〉 stands
for the scalar product aHb. Special matrices are theM×M
identity matrix IM, theM×M all-zero matrix 0M, and the
windowing matrices

W01 =
[
0M 0M
0M IM

]
and W10 =

[
IM 0M
0M 0M

]
, (1)

setting the first or second half of a length-2M vector
to zero, respectively. Furthermore, F and FH denote the
Nth-order Discrete Fourier Transform (DFT) matrix and
its inverse, respectively. Besides, a(k) ∗ b(k) and a(k) �
b(k) denote linear and cyclic convolution between time
series a(k) and b(k), respectively, where k is the discrete-
time sample index. Analogously to vectors, 〈a(k), b(k)〉 =∑∞

k=−∞ a(k)b∗(k) denotes the scalar product between the
time series a(k) and b(k). For a real-valued scalar a, �a	

refers to the smallest integer number larger than or equal
to a, also known as ceiling function.

3 Fundamentals of linear and nonlinear acoustic
echo cancellation

The acoustic echo path of a full-duplex communication
system can be described as illustrated in Fig. 1.
Therein, the discrete-time loudspeaker signal x(k),

where k is the sample index, is interpolated by the D/A
converter, amplified, and played-back via a loudspeaker,
yielding the analog loudspeaker signal xa(t), where t is the
continuous time variable. The subsequent propagation of
the sound waves through the medium air to the micro-
phone can be modeled very accurately by a linear sys-
tem with impulse response ha(t). These acoustic echoes
(far-end components) superimpose with local speakers
and interferences (near-end components), evoking the
continuous-time microphone signal ya(t) and its sampled,
discrete-time representation y(k). In order to provide
good estimates of local (near-end) speakers, two technolo-
gies are typically employed: an AEC unit for removing
the far-end signal components from y(k) and a postfilter
suppressing residual echoes and near-end interferences
[23–32].
In this work, we will not address the latter but focus

on the AEC unit, which provides an echo estimate ŷ(k)
by identifying the acoustic echo path adaptively. The AEC
error signal

e(k) = y(k) − ŷ(k)

is an estimate for the near-end signal, even during double-
talk periods, where both far-end and near-end compo-
nents are present. In periods of vanishing near-end signal
(single-talk periods), e(k) can be used for refining the echo
path estimate. Thus, the AEC unit typically requires a
double-talk detection [33–38]. As double-talk detection

Fig. 1 Acoustic echoes (blue) in a full-duplex voice communication
system (e.g., a smartphone) and the required AEC system
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is out of the scope of this article, we will assume this to
be handled separately, such that the microphone signal
during time intervals used for echo path estimation only
consists of far-end signal components (acoustic echoes).
Furthermore, the AEC unit requires the choice of a suit-
able echo path model and of an adaptation strategy. This
will be addressed in Sections 3.1 and 3.2, respectively.

3.1 From linear to nonlinear echo path models
This section contains a brief overview of frequently
employed echo path models. Strategies for estimating
the model parameters (i.e., filter coefficients) will be
described in Section 3.2.

3.1.1 Linearmodels
The most simple, yet frequently used echo path model is
the linear model, depicted in Fig. 2a.
Therein, the Loudspeaker-Enclosure-Microphone Sys-

tem (LEMS) is modeled by a linear FIR filter with the
input/output relation

y(k) = x(k) ∗ h(k) , (2)

where h(k) is the discrete-time impulse response of the
LEMS. Such models are most suitable for high-quality
audio equipment. On the other hand, energy-efficient and
miniaturized portable devices operating at the limit of
their capabilities (such as portable navigation devices or

Fig. 2 a–d Frequently used echo path models for AEC, where each of
the red blocks represents a fixed number of coefficients of a linear
Finite Impulse Response (FIR) filter

smartphones in hands-free mode) lead to nonlinear dis-
tortions in the played-back signal [12] (see red box in
Fig. 1), which render linear echo path models insufficient.

3.1.2 Hammersteinmodels
Due to the cascaded nature of the acoustic echo path
between x(k) and y(k) (first nonlinear playback equip-
ment, then linear transmission through air), a very simple,
yet effective nonlinear echo path model is given by the
cascade of a memoryless nonlinearity (memoryless pre-
processor) with a subsequent linear system [12–22]. Such
a structure is depicted in Fig. 2b and is referred to as HM
or nonlinear-linear cascade in the literature [39–43]. This
corresponds to the input/output relation

y(k) = h(k) ∗ xNL(k)
= h(k) ∗ f {x (k)} . (3)

In AEC, the memoryless preprocessor xNL(k) =
f {x (k)} typically has to model a saturation introduced by
the amplifier and the loudspeaker. To this end, f {x (k)}
can be chosen from a simple hard limiter to a parametric
preprocessor [14]

xNL(k) =
B∑

b=1
wbfb {x(k)} (4)

with nonlinearity basis functions fb {·} and preproces-
sor weights (parameters) wb, which corresponds to the
block diagram in Fig. 2c. Considering a Bth-order poly-
nomial preprocessor, intermodulation products up to the
order B may be modeled. Examples for such polynomial
preprocessors can be found in [13, 14].

3.1.3 Hammerstein groupmodels
A more complex and more general class of models will be
referred to as HGMs. They consist, as depicted in Fig. 2d,
of a group of B parallel HMs and have individual impulse
responses hb (k) (referred to as kernels) for each branch
b = 1, . . . ,B after the branch’s nonlinearity basis function
fb{·}. This corresponds to the input/output relation

y (k) =
B∑

b=1
hb(k) ∗ fb {x(k)}︸ ︷︷ ︸

xb(k)

, (5)

where xb (k) will be referred to as branch signals in the
following.
Practical examples for such HGMs employ, e.g.,

monomes as nonlinearity basis functions [44, 45] (so-
called power filters) and Legendre polynomials [19–22], as
well as sinusoidal functions [8, 9, 42]. Some of the publica-
tions employing sinusoidal functions also refer to HGMs
as FLAF without memory [8, 9]. Inspired by machine
learning, FLAFs typically express the input/output rela-
tion of (5) differently: instead of individual branch signals,
all branch signals are interleaved and concatenated to a
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larger expanded vector, which is mapped to an echo esti-
mate by linear combination (covers both convolution and
summation in (5)). However, with focus on the appli-
cability of fast convolution methods in this article, the
formulation according to a group of parallel Hammerstein
systems is advantageous.
Furthermore, note that the special case of an HGM

where all hb(k) = wbhbref(k)∀b = 1, . . . ,B are scaled ver-
sions of a reference impulse response hbref (k) in branch
bref can be expressed as an HM. One possible HM rep-
resentation of such an HGM has the reference impulse
response h (k) = hbref (k) and a parametric preproces-
sor according to (4) with the HGM’s nonlinearity basis
functions fb {·} and preprocessor weights

wb =
〈
hbref(k), hb(k)

〉
〈
hbref(k), hbref(k)

〉 . (6)

This correspondence will be essential for the SA filters
in Section 4, where bref = 1 (implying w1 = 1) will be
considered by default.

3.1.4 Models with dynamic nonlinearities
A further generalization of HGMs are models, where
the nonlinearity basis functions are nonlinear functions
fb{x(k)} depending on a vector x (k), which is formed from
samples of the input signal x (k). The most prominent
example for such filters are the so-called Volterra filters
[3–5, 40, 46–48], for which fb{x(k)} computes time-lagged
products of samples of x(k) (different elements of x(k))1.
Note that power filters [44, 45] (having amemoryless non-
linearity) represent the special case of the Volterra filters
where only the main diagonal of each Volterra kernel is
populated with non-zero coefficients, corresponding to
the respective kernels of the power filter. Volterra filters
can be seen as a multidimensional Taylor series expansion
of the function x(k) �→ y(k). Alternatively, the mono-
mial basis functions of Volterra filters have also been
replaced by Legendre polynomials [49, 50] or Fourier basis
functions (sinusoids) [51]. Note that for the Fourier-basis
nonlinear filters, the feed-forward structure has also been
complemented by a feedback path, leading to bounded-
input/bounded-output (BIBO)-stable recursive nonlinear
filters [52].
Although the SA filters described in Section 4 will

employ only HGMs and memoryless preprocessors, it is
worth noticing that the SA filtering concept can also be
applied to dynamic nonlinearities fb{x(k)}, involving, e.g.,
Volterra filters instead of HGMs.

3.2 Adaptation strategies
Adaptation of nonlinear models can be performed on dif-
ferent levels. On a basic level, parameters like filter coef-
ficients of a model with a given structure are identified.

To this end, the parameters may be modeled as deter-
ministic parameters, resulting in, e.g., Least-Mean-Square
(LMS) algorithms [53] for adaptation, or as probabilis-
tic parameters, leading to Kalman filter-like algorithms
[15, 19, 21, 54]. On a higher level, themodel structure (e.g.,
filter lengths of linear subsystems or numbers of diagonals
of Volterra kernels) can be estimated via self-configuring
evolutionary algorithms [5, 55–57]. In this article, the
term “adaptation” will refer to the iterative estimation of
filter coefficients modeled as deterministic parameters of
a model with fixed structure.
In this section, the adaptation of the linear subsystems

of the models described in Section 3.1 will be discussed.
As all these models can be expressed as special cases of
a parallel structure like an HGM, the adaptation will be
described for an HGM. Then, the adaptation schemes for
all other models can be derived as special cases of the
HGM case. In particular, two common approaches for
filter adaptation will be revisited: the direct adaptation of
the impulse responses in the time domain by a Normal-
ized Least-Mean-Square (NLMS) algorithm and the adap-
tation of partitioned versions of the impulse responses in
the frequency domain, which allows a smooth trade-off
between computational efficiency and algorithmic delay
(latency) of the digital signal processing system.

3.2.1 Time-domain adaptive filtering
A straightforward identification of the linear filters of an
HGM is possible by iterativelyminimizing a quadratic cost
function derived from the error signal e (k). Most com-
mon algorithms are LMS-, affine projection-, or Recursive
Least-Squares (RLS)-type algorithms [53]. Due to its com-
putational efficiency, the adaptation of an HGM by an
NLMS algorithm, which aims at minimizing the Mean
Squared Error (MSE) in a gradient-descentmanner, will be
considered. The following description is independent of
the actual choice of the nonlinearity basis functions fb {·},
as long as fb {·} are time-invariant (Legendre polynomials
will be employed for the evaluations in Section 5).
An adaptive HGM with such time-invariant nonlinear-

ity basis functions fb {·} first computes the branch signals

xb(k) = fb {x (k)} (7)

and afterwards the echo estimate

ŷ(k) =
B∑

b=1

L−1∑
l=0

xb(k − l) · ĥb,l(k − 1), (8)

where ĥb,l(k − 1) is the lth tap of a length-L estimate of
the impulse response in branch b and has been obtained
at time index k − 1. Then, the error signal

e(k) = y(k) − ŷ(k) (9)
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has to be computed, before performing for each branch b
and filter tap l an update according to

ĥb,l(k) = ĥb,l(k − 1) + μb · e (k)
Exb(k) + δ

xb(k − l), (10)

where 0 < μb < 1 are branch-specific adaptation step-
sizes, Exb(k) = ∑L−1

l=0 |xb(k − l)|2 are the branch signal
energies, and δ is a regularization constant for numeri-
cal stability2. An efficient implementation (as assumed for
the complexity analysis in Section 5.1) decomposes (10)
by determining branch powers

Pxb (k) = (xb(k))2 (11)

to compute the branch energies

Exb (k) = Exb(k − 1) + Pxb(k) − Pxb(k − L), (12)

computes normalized errors

enorm,b(k) = μbe(k)
/(

Exb (k) + δ
)
, (13)

and finally updates the filter coefficients according to

ĥb,l(k) = ĥb,l (k − 1) + enorm,b(k) xb (k − l). (14)

This allows to adaptively identify the individual
branches of HGMs but also covers the identification of
single HMs and linear models as special cases.

3.2.2 Partitioned-block frequency-domain adaptive
filtering

Partitioned-block convolution: A linear convolution
can be realized despite large filter lengths L with a low
input/output delay efficiently by block-based processing
methods like Partitioned-Block Frequency-Domain Fil-
tering (PBFDF) [56, 58–60], also known as multidelay
convolution [61]. In the following, only a uniform parti-
tioning with frame shiftM and frame size N = 2M will be
considered.
In this case, the input signal x(k), the impulse response

h (k), and the output signal y(k) are partitioned into
length-N vectors

x(κ) = [x(κM − N + 1), . . . , x(κM)]T (15)

h(p) = [
h(pM), . . . , h(pM + M − 1), 0, . . . , 0

]T (16)

y(κ) = [
0, . . . , 0, y(κM − M + 1), . . . , y (κM)

]T ,
(17)

respectively, where κ is the frame index for block pro-
cessing and p is the index of the impulse response parti-
tion. After a DFT, represented by the DFT matrix F, the
transformed versions of the signal vectors and impulse
response partitions are referred to as

x(κ) = Fx(κ) (18)

h(p) = Fh(p). (19)

As illustrated in Fig. 3 for P = 2 partitions, performing
fast DFT-domain convolution between each pair of h(p)

Fig. 3 Example for partitioned block convolution using P = 2 blocks
for partitioning the Impulse Response (IR) h(k): the summation during
convolution is split into P = 2 partial sums of lengthM. Each partition
of h(k) produces a sequence ofM samples of its contribution to the
convolutive product in an overlap-save manner in the DFT domain,
where the block length is N = 2M. Summing up the second half of
these partial results (free from cyclic convolution artifacts) yields a
block ofM output samples (see [22])

and x(κ−p) and summing up the respective partial results
yields

y(κ) = W01

y◦(κ)︷ ︸︸ ︷
FH

P−1∑
p=0

x (κ − p) � h(p)

︸ ︷︷ ︸
y◦(κ)

, (20)

where P = ⌈ L
M

⌉
is the number of non-zero impulse

response partitions and where the windowing matrixW01
according to (1) suppresses additionally computed sam-
ples in y◦(κ), which result from the previous frame and
may contain cyclic convolution artifacts.
Note that such a PBFDF scheme is computationally effi-

cient because each input signal frame’s DFT has to be
computed only once.

Partitioned-block frequency-domain adaptive filtering
(PBFDAF): In the following, partitioned-block convolu-
tion will be utilized during the adaptation of an HGM
with DFT-domain filter estimates ĥ

(p)
b (κ) for partition p

in branch b at time frame κ . As for the time-domain
description in Section 3.2.1, we will assume that the non-
linearity basis functions fb {·} are chosen in advance (e.g.,
as monomials or Legendre polynomials)—the validity of
the following section is independent of the actual choice.
Iteratively minimizing the MSE by adapting ĥ

(p)
b (κ) in a

gradient-descentmanner with instantaneous estimates for
the gradient can be realized by the NLMS algorithm. All
computations required for modeling a Partitioned-Block
HGM (PB-HGM) and adapting it via a Frequency-domain
Normalized Least-Mean-Square (FNLMS) algorithm can
be summarized as follows: first, the set of new sam-
ples of each branch signal xb(k) has to be computed and
appended to the already available samples of the branch
signal for a given frame (for overlap-save processing),
yielding the branch signal vectors
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xb(κ) =
[

[ 0M, IM] xb(κ − 1)[
fb {x (κ)} , . . . , fb {x (κ + M − 1)}]T

]
,

(21)

which are then transformed into the DFT domain accord-
ing to

xb(κ) = Fxb (κ). (22)

This allows the computation of the DFT-domain error
signal vector

e(κ) = F

⎛
⎜⎜⎝y(κ) − W01FHŷ◦

(κ)︸ ︷︷ ︸
ŷ(κ)

⎞
⎟⎟⎠ , (23)

where, analogously to (20),

ŷ◦
(κ) =

B∑
b=1

P−1∑
p=0

xb(κ − p) � ĥ
(p)
b (κ − 1) (24)

is the intermediate DFT-domain microphone signal esti-
mate with cyclic convolution artifacts of the partitioned-
block convolution and ŷ(κ) is the final time-domain esti-
mate containing M zeros and the M most recent samples
of ŷ(k). Similar to the time-domain adaptation, branch
signal Power Spectral Density (PSD) vectors

sxb(κ) = γEsxb(κ − 1) + (1 − γE)
∣∣xb(κ)

∣∣2 (25)

are calculated in the DFT domain by recursively smooth-
ing the element-wise squared magnitudes

∣∣xb(κ)
∣∣2 with

0 ≤ γE < 1. In the following, γE = 0.9 will be employed
as default. Based on sxb(κ), normalized branch signals are
computed according to

xnorm,b(κ) = (
xb(κ)

)∗ �
(
μb �

(
sxb(κ) + δ

))
, (26)

before performing the actual filter update according to

h̃(p)
b (κ) = ĥ

(p)
b (κ − 1) + xnorm,b(κ − p) � e(κ). (27)

Additionally, the temporal support of the filters can be
limited explicitly to the partition lengthM

ĥ
(p)
b (κ) = FW10FH

(
h̃(p)
b (κ)

)
︸ ︷︷ ︸

ĥ(p)
b (κ)

. (28)

This is equivalent to the classical formulation of the so-
called constrained update, where the constraint (zeros in
time domain) is imposed on the update (see [61]). Yet, the
computation of ĥ(p)

b (κ) as a byproduct of the filter con-
straint in (28) will be beneficial for the SA filtering later
on.
As for time-domain adaptive filtering, the algorithm

for adapting an HGM in the partitioned-block frequency
domain covers the adaptation of an HM (an HGM with
B = 1 and f1 {x(k)} = f {x(k)}) and a linear model (an

HGM with B = 1 and x1(k) = f1 {x(k)} = f {x(k)} =
x(k)). Furthermore, the non-partitioned FNLMS algo-
rithm, derived in many textbooks, e.g., [53, 62], results
from the aforementioned partitioned-block description
for P = 1 with sufficiently large N = 2L. Adapting a
model with the block partitioning will be referred to as
Partitioned-Block Frequency-domain Normalized Least
Mean Squares (PB-FNLMS) algorithm.

4 Significance-aware filtering
Significance-aware (SA) filtering is a generalized system
identification concept which exploits prior knowledge
about the physical system to be identified by decomposing
the adaptive model in a divide-and-conquer manner into
beneficially interacting subsystems.
In particular, the originally proposed SA-HGM [20] per-

forms a temporal decomposition of the acoustic echo
path, as depicted in Fig. 4 for a linear model, into a region
describing the direct-path wavefront and a complemen-
tary region.
This decomposition is then employed, as depicted in

Fig. 5, to model the short direct-path region (carrying a
significant amount of energy) by an HGM and to model
the large complementary region by a computationally effi-
cient HM. Apart from the decomposition into subsystems,
the interaction between the subsystems is a key feature
of SA filtering as well. In particular, the HM subsystem’s
nonlinear preprocessor has the form

xpp(k) = fpp {x(k)} =
B∑

b=1
ŵb (κ) xb(k) (29)

and combines the branch signals xb(k) with frame-wise
updated weights ŵb(κ). These weights ŵb(κ) are esti-
mated from the kernels of the HGM subsystem (will be
explained in Section 4.1.3). Thereby, a nonlinear model
estimated from the direct path is extrapolated to the entire
acoustic echo path.
These two features, the decomposition and the pre-

processor coefficient estimation via an HGM, are key
components of both the recently proposed PBSA-HGM
[22], revisited in Section 4.1, and the novel alternative SA

Fig. 4 Exemplary splitting of the Room Impulse Response (RIR) for SA
filtering into a direct-path (red) and a complementary (blue) region
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Fig. 5 SA-HGM for efficient nonlinear system identification: the
temporal support modeled by the filters is color-coded by the squares
below the IR symbols h∗ .White squares indicate unmodeled temporal
support and red and blue squares represent modeled support
corresponding to the direct path and the complementary region,
respectively. Typically, ŷSA(k) is employed as final echo estimate

filtering structure, which will be denoted by ESA filtering
and will be introduced in Section 4.2.

4.1 Significance-aware Hammerstein groupmodels
SA-HGMs are efficient because the potentially compu-
tationally expensive HGM only has to model a small
temporal support of the acoustic echo path. To realize
this concept while exploiting the benefit of fast frequency-
domain convolution, a partitioned-block variant of the
SA-HGMs, denoted as PBSA-HGM, has recently been
introduced in [22]3. This PBSA-HGM will be briefly
reviewed in the following. Employing the uniform par-
titioning according to Section 3.2.2 leads to an adaptive
HMwith DFT-domain partition estimates ĥ

(p)
(κ) for par-

titions p = 0, . . . ,P − 1 and an adaptive HGM with
DFT-domain estimates ĥ

(pd)
b (κ) for branches b = 1, . . . ,B

but just a single partition with index pd. This partition
with index pd should capture the direct path and thus
a significant portion of the energy transmitted from the
loudspeaker to the microphone. Note that ĥ

(pd)
(κ) mod-

els hd(k) in Fig. 5 and ĥ
(p)

(κ)∀p �= pd jointly model hc(k)
in Fig. 5. In the following, the estimation of ĥ

(p)
(κ) (cov-

ering both hd(k) and hc(k) of Fig. 5) and ĥ
(pd)
b (κ) will be

described in Sections 4.1.1 and 4.1.2, respectively, and the
estimation of the HM’s preprocessor coefficients ŵb(κ)

based on ĥ
(pd)
b (κ) will be explained in Section 4.1.3.

4.1.1 Estimation of the RIR of the HM submodel
In the following, the identification of the HM subsys-
tem’s impulse response partitions will be described. For
this purpose, the preprocessed loudspeaker signal can be
expressed in vector notation as

xpp(κ) =
[

[ 0M, IM] xpp(κ − 1)∑B
b=1 ŵb(κ)[ 0M, IM] xb(κ)

]
, (30)

where xb(κ) are the branch signal vectors of the HGM
submodel. The HM submodel with DFT-domain partition
estimates ĥ

(p)
(κ) yields, analogously to (23), an echo sig-

nal estimate vector

ŷHM(κ) = W01FH
P−1∑
p=0

xpp(κ − p) � ĥ
(p)

(κ − 1), (31)

where xpp(κ) = Fxpp(κ) with xpp(κ) from (30).
The HM submodel’s DFT-domain error vector can then

be computed via

eHM(κ) = F
(
y(κ) − ŷHM(κ)

)
. (32)

Iteratively minimizing the two-norm of eHM(κ) in a
gradient-descent manner by an FNLMS algorithm leads to
the update rule

ĥ
(p)

(κ) = FW10FH
(
ĥ

(p)
(κ − 1)

+xnorm,pp(κ − p) � eHM(κ)
)
,

(33)

where xnorm,pp(κ − p) is the normalized DFT-domain sig-
nal vector computed analogously to (26) from the prepro-
cessed input xpp(κ).

4.1.2 Estimating the HGM submodel
The HGM submodel alone provides an echo estimate

ŷHGM(κ) = W01FH
( B∑
b=1

xb(κ − pd) � ĥ
(pd)
b (κ − 1)

)
,

(34)

which is combined with the complementary-region par-
titions’ echo estimate of the HM submodel according to

ŷSA(κ) = W01FH
( B∑
b=1

xb(κ − pd) � ĥ
(pd)
b (κ − 1)

+
∑

p∈{0,...,P−1}\pd
xpp(κ − p) � ĥ

(p)
(κ − 1)

⎞
⎠ .

(35)

Minimizing the two-norm of the error signal vector

eSA(κ) = F
(
y(κ) − ŷSA(κ)

)
(36)

by an FNLMS algorithm leads to the update rule

ĥ
(pd)
b (κ) = FW10FH

(
ĥ

(pd)
b (κ − 1)

+xnorm,b(κ − pd) � eSA(κ)
)
,

(37)

where xnorm,b(κ) is the normalized DFT-domain signal
vector computed analogously to (26). The reason for the
application of the windowing in (37) to the actual impulse
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response partitions will become obvious in the following
section.

4.1.3 Estimating the preprocessor of the HM
Finally, the HM’s preprocessor coefficients can be recom-
puted employing the HGM. To avoid overhead due to
complex-valued arithmetic, a direct use of the time-
domain kernels ĥ(pd)

b (κ) (obtained as a byproduct of (37))
is possible to compute instantaneous least squares esti-
mates for the preprocessor weights [20] according to

w̃b(κ) = Cb,1(κ)
/
C1,1(κ) (38)

with

Cb,1(κ) =
〈
ĥ(pd)
b (κ), ĥ(pd)

1 (κ)
〉
. (39)

A subsequent temporal smoothing of these estimates
leads to the final preprocessor coefficients

ŵb(κ + 1) = γwŵb(κ) + (1 − γw)w̃b(κ), (40)

where 0 ≤ γw < 1. In the following, γw = 0.95 will be
employed per default. Note that ŵ1(κ) = 1 ∀κ and there-
fore does not need to be computed at all. As in [20, 22],
the first branch (b = 1) will be assumed to be linear
(f1 {x(t)} = x(t)), such that an entirely linear echo path
model results from a preprocessor with ŵb(κ) = 0 ∀ b > 1.
By the method described in Section 4.1 and its subsec-

tions, the estimation of the nonlinear system has been split
into two beneficially interacting subproblems (HM and
HGM adaptation). The beneficial interaction is achieved
by the preprocessor coefficient refinement based on the
HGM and by the extension of the temporal support of
the HGM employing partitions of the HM. An in-depth
evaluation of the computational complexity of such a
PBSA-HGM will be given in Section 5.1.

4.2 Equalization-based significance-aware Hammerstein
models

Previous applications of the SA concept [20–22] split the
echo path model along the time axis (using knowledge
about a dominating direct-path component), to allow for
an efficient estimation of nonlinear parameters (see also
Section 4.1). This corresponded to a parallel decomposi-
tion of the acoustic echo path (see hc(k) and hd(k) of the
HM submodel block in Fig. 5, where fpp{·} can be shifted
in the parallel branches of hc(k) and hd(k) as well).
In this section, we propose a novel realization of the SA

filtering concept. This realization employs a serial decom-
position (a cascade) of the echo path into a nonlinear
loudspeaker and a subsequent linear RIR, in order to esti-
mate the nonlinear parameters of an HM (which is used

as actual echo path model). The resulting ESA-HM struc-
ture is depicted in Fig. 6. Therein, the topmost branch
contains the actual echo path, which is assumed to have
Hammerstein structure. Below, there are three colored
blocks comprising the novel structure denoted as ESA-
HM.While block α computes the actual echo estimate for
AEC by an HM, and blocks β and γ facilitate the esti-
mation of the nonlinear preprocessor fpp{·} of the HM in
block α. In the following, the ESA-HM will be explained
in a bottom-up manner, starting with block γ and end-
ing with α. To avoid redundancy, the employed adaptive
filtering algorithms, all of which have been described
in previous sections, are not entirely re-written for the
particular filters to be estimated in this section but are
referenced instead.

4.2.1 Equalization of the RIR (block γ )
In block γ (Fig. 6), the ESA-HM directly exploits the
cascaded nature of the nonlinear echo path (memory-
less nonlinearity f {·}, followed by an impulse response
h(k)): the IR h(k) is equalized by an adaptive linear filter
with coefficients ĥeq,l(k) for tap l at time k. This yields a
discrete-time estimate

x̂NL(k − L) =
L−1∑
l=0

ĥeq,l(k − 1) · y(k − l) (41)

of the delayed nonlinearly distorted loudspeaker signal
xNL(k − L). The linear equalizer ĥeq,l(k) is identified by a
PB-FNLMS algorithm (see Section 3.2.2) using the error
signal

eeq(k) = x(k − L) − x̂NL(k − L) . (42)

On the one hand, (41) suggests that x̂NL(k−L) is an esti-
mate for x(k − L), obtained via linear filtering of y(k). On
the other hand, the linear equalizer ĥeq,l(k) cannot equal-
ize the nonlinear components of the LEMS, such that the
nonlinear distortion remains in the equalizer output and
x̂NL(k−L) according to (41) can be seen as an estimate for
the nonlinearly distorted signal xNL(k − L). Thus, while
the inability of impulse responses to model nonlinear sys-
tems hampers the performance of the AEC system in the
first place, this inability is exploited here to estimate an
otherwise inaccessible intermediate signal to guide the
estimation of the nonlinear components (described in the
next paragraphs). Furthermore, the equalization is only as
complex as a single linear AEC system (assuming identical
filter lengths).

4.2.2 Estimating the nonlinearity (block β)
Note that both the RIR and the frequency response
of the loudspeaker (the linear component of the loud-
speaker) have been equalized by the inverse filtering
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Fig. 6 Proposed novel ESA-HM for efficient nonlinear system identification: estimating an equalizing RIR ĥeq,l (k) to obtain an estimate x̂NL(k) of the
nonlinearly distorted loudspeaker signal (block γ ) allows to assess the nonlinear distortions by a very short HGM (block β), which in turn is used to
estimate the preprocessor of the HMmodeling the acoustic echo path (block α)

in block γ (Fig. 6), such that x̂NL(k − L) is time-
aligned with x(k − L). Thus, the nonlinear mapping
between the discrete-time loudspeaker signal x(k − L)

and the estimate of the nonlinear loudspeaker sig-
nal x̂NL(k − L) can be modeled by an adaptive time-
domain HGM with branch kernels ĥb(k) with a very
small temporal support of LSA taps (e.g., LSA = 3).
This corresponds to the input/output relation

ˆ̂xNL(k − L) =
B∑

b=1

LSA−1∑
l=0

x(k − L − l) · ĥb,l(k − 1). (43)

The adaptation of ĥb,l(k) is performed by a time-domain
NLMS algorithm (see Section 3.2.1) operating on the error
signal

eeq,HGM(k) = x̂NL(k − L) − ˆ̂xNL(k − L). (44)

Due to the small number of modeled taps LSA, such a
time-domain algorithm is computationally inexpensive.

4.2.3 Estimating the preprocessor of the HM (between
blocks β and α)

Analogously to the previously proposed SA filtering con-
cept, the parameters of the adaptive HGM in block β in
Fig. 6 (branch kernels ĥb,l(k)) can be employed to deter-
mine the coefficients of the nonlinear preprocessor of the
HM in block α in Fig. 6. Using a preprocessor with the
structure of (29), this is done analogously to Eqs. (38) and
(39) on a frame-wise basis (everyM samples) according to

w̃b(κ) = Cb,1(κ)
/
C1,1(κ) (45)

with

Cb,1(κ) =
LSA−1∑
l=0

ĥb,l(κ · M)ĥ1,l(κ · M), (46)

with the filter taps ĥb,l(k) from the end of time frame
κ , where k = κ · M. As in (40), a subsequent temporal
smoothing of these estimates leads to the final preproces-
sor coefficients

ŵb(κ + 1) = γwŵb(κ) + (1 − γw)w̃b (κ), (47)

where 0 ≤ γw < 1.

4.2.4 Computation of the echo estimate
The HM’s linear subsystem computes the echo estimate in
block α in Fig. 6 similar as in (3) by convolving xpp(k)with
an impulse response estimate ĥHM,l(k) according to

ŷ(k) =
L−1∑
l=0

xpp(k − l)ĥHM,l (k − 1). (48)

For computational efficiency, ĥHM,l(k) is estimated
adaptively by a PB-FNLMS algorithm (see Section 3.2.2)
operating on the error signal

eESA(k) = y(k) − ŷ(k). (49)

The overall computational complexity of this algorithm
is slightly higher than two adaptive linear filters (origi-
nating from blocks α and γ ). A detailed analysis of the
computational complexity of this novel algorithm and
of previously proposed algorithms will be given in the
following in Section 5.1.
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4.3 Structural comparison of SA and ESA filtering
In the following, the similarities and differences between
the previously proposed SA filtering and the novel ESA fil-
tering will be summarized. Note that in this section, the
notation of time-domain filters will be employed, despite
their potential realization as block-partitioned adaptive
filters in the frequency domain.

Similarities Both the SA-HGM and ESA-HM decom-
pose the acoustic echo path into subsystems to facilitate
the efficient estimation of an HGM to estimate the non-
linear components of the echo path. Furthermore, both
the SA-HGM and ESA-HM estimate the preprocessor
coefficients of an HM from identified HGM kernels as
a least squares estimate and use this preprocessor in an
HM with a long subsequent impulse response. Therefore,
both structures are considered as different variants of SA
filtering.

Differences Despite their similarities, the previously
proposed SA filtering and the novel ESA filtering employ
a fundamentally different mechanism for the estimation
of the nonlinearity by an HGM with small temporal sup-
port. As depicted in Fig. 7a, classical SA filtering employs a
parallel decomposition of the echo path into a direct-path
component and a complementary-path component. Can-
celing the complementary-part component of the echo
signal yields the direct-path component of the echo path,

Fig. 7 Decomposition of the echo path into subsystems from which
the nonlinearity is estimated: a parallel decomposition for previously
proposed SA filtering and b serial decomposition (cascade) for the
novel ESA filtering

which is identified efficiently by anHGM for the SA-HGM
(recall Section 4.1). As opposed to this, ESA filtering does
not rely on any temporal decomposition of the echo path,
such that it may be advantageous for non-acoustic system
identification, where a dominant direct-path peak does
not exist. Instead, the cascade of the Hammerstein sys-
tem (a serial decomposition) is employed by augmenting
the LEMS with an equalizer (recall block γ in Fig. 6), as
depicted in Fig. 7b. The resulting overall system ideally
consists of the first component of the Hammerstein echo
path, namely the nonlinearity. This nonlinearity can be
identified by an even shorter HGM than for the originally
proposed SA filtering and does not require knowledge
about any temporal structure of the Hammerstein-shaped
echo path’s linear subsystem. Another difference between
the proposed SA and ESA filters is that the ESA-HM pro-
vides an echo path model with Hammerstein structure
(output eESA(k) in Fig. 6), while the SA-HGM allows to
replace the direct-path region of an echo path model with
Hammerstein structure by an HGM. This corresponds to
the two SA-HGM outputs eHM(k) and eSA(k) in Fig. 5,
respectively.

5 Evaluation
In this section, the novel and the previously proposed SA
filtering concepts will be compared to each other and to
classical adaptive filters in terms of computational com-
plexity (Section 5.1) and echo cancellation performance
(Section 5.2).

5.1 Computational complexity
This section contains an in-depth analysis of the computa-
tional complexity of the previously discussed adaptive fil-
ters. In practice, the actual computational load of an algo-
rithm is determined by many platform-specific factors,
such as the instruction set, the number of clock cycles for
a particular arithmetic operation, pipelining, and caching
abilities of the processor. Furthermore, especially with
growing amount of data to be processed, the memory
access pattern may significantly impact how well the pro-
cessor exploits its capabilities or waits for new data from
external memory. Nevertheless, the number of FLoating
Point Operations (FLOPs) is still a commonly accepted
indicator for the computational complexity of an algo-
rithm on modern platforms, where the different arith-
metic operations require similar execution time in prin-
ciple. Operations counted as FLOPs will be real-valued
multiplications (RMULs), additions (RADDs), and divi-
sions (RDIVs).
As complex numbers typically have to be implemented

by treating real and imaginary parts individually, complex-
valued arithmetic operations are composed of multi-
ple real-valued operations. In the following, we will
assume the realization of a complex-valued multiplication
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Table 1 Computational effort for the identification of an HGM by a time-domain NLMS algorithm

Computed quantity Equation Multiplicity
Required operations

FFT CMUL CADD RMUL RADD RDIV

Branch signals (7) ∀b n/a n/a n/a n/a n/a n/a

Output signal (8) 0 0 0 BL B(L − 1) 0

Error signal (9) 0 0 0 0 1 0

Input power (11) ∀b 0 0 0 B 0 0

Frame energy (12) ∀b 0 0 0 0 2B 0

Normalized error (13) ∀b 0 0 0 B B B

Filter coefficients (14) ∀b, l 0 0 0 BL BL 0

Accumulated: 0 0 0 2B (L + 1) 2B (L + 1) + 1 B

Total: B (4L + 5) + 1 FLOPs

(CMUL) by four RMULs and two RADDs. Only for FFT
algorithms, where operations performed on the twiddle
factors can be cached, an alternative implementation with
three RMULs and three RADDs will be considered [63].
Thereby, an Nth-order DFT for real-valued time-domain
signals can be implemented by

RMULFFT(N) = 1
2
N log2N − 5

4
N

RMULs and

RADDFFT(N) = 3
2
N log2N − 1

4
N − 4

RADDs [64].

Complexity of adaptive HGM Using these conventions,
Table 1 lists the computational effort of the individual
operations for the adaptation of an HGM in the time-
domain (recall Section 3.2.1).
The first column contains the name of the computed

quantity, the second column contains the correspond-
ing equation number in this article, the third column

indicates how often the equation has to be evaluated,
and the subsequent columns list the number of FFTs,
complex-valued, and real-valued operations for the partic-
ular equation. Below this list, the accumulated number of
individual operations and the total number of FLOPs are
listed as well. Note that these operation counts are given
per output sample for this time-domain algorithm. The
frequency-domain algorithms considered in the following
will be analyzed on a frame-wise basis.

Complexity of adaptive PB-HGM Analogously to
Table 1, the operations for identifying a PB-HGM accord-
ing to Section 3.2.2 in the frequency domain are listed in
Table 2. Therein, NN = ⌈N−1

2
⌉+ 1 denotes the number of

non-redundant frequency bins (DC bin to Nyquist bin),
for which signal processing is done—the remaining bins
can be reconstructed due to the conjugate symmetry.
Recall that the operations for a linear model are included
in this analysis for the special case of B = 1. Furthermore,
the case of a single-partition HGM results for P = 1.

Table 2 Computational effort for the identification of an HGM by a PB-FNLMS algorithm

Computed quantity Equation Multiplicity
Required operations

FFT CMUL CADD RMUL RADD RDIV

Branch signals (21) ∀b n/a n/a n/a n/a n/a n/a

(22) ∀b B 0 0 0 0 0

Output signal (24) 0 BPNN (BP − 1)NN 0 0 0

Error signal (23) 2 0 0 0 N
2 0

Branch PSDs (25) ∀b 0 0 0 4BNN 2BNN 0

Normalized branch signals (26) ∀b 0 0 0 2BNN BNN BNN

Filter coefficients (27) ∀b, p 0 BPNN BPNN 0 0 0

Filter constraint (28) ∀b, p 2BP 0 0 0 0 0

Accumulated: B + 2BP + 2 2BPNN NN(2BP − 1) 6BNN
N
2 + 3BNN BNN

Total: (B (4P + 2) + 4)N log2 N + B
(
8P + 7N

2 + 5PN + 6
)

− 7N
2 − 10 FLOPs
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Table 3 Computational effort for the identification of a PBSA-HGM with a PB-FNLMS algorithm

Computed quantity Equation Multiplicity
Required operations

FFT CMUL CADD RMUL RADD RDIV

Preprocessed input (30) p = 0, . . . , N2 − 1 0 0 0 (B − 1)N/2 (B − 1)N/2 0

HM submodel Table 2, B = 1 2P + 3 2PNN NN(2P − 1) 6NN
N
2 + 3NN NN

HGM submodel Table 2, P = 1 3B + 2 2BNN NN(2B − 1)+NN 6BNN
N
2 + 3BNN BNN

Kernel correlation (39) ∀b 0 0 0 BN/2 B(N/2 − 1) 0

Instantaneous weights (38) ∀b > 1 0 0 0 0 0 B − 1

Smoothing weights (40) ∀b > 1 0 0 0 2(B − 1) B − 1 0

Accumulated:
3B + 2P

+5

2NN

·(B + P)

NN(2B

+2P − 1)

2B − N

2
+

6NN + BN+
6BNN − 2

N

2
+ 3NN+

BN+
3BNN − 1

B + NN+
BNN − 1

Total: (6B + 4P + 10)N log2 N + 8P − 7N
2 + B

(
21N
2 + 17

)
+ 5PN − 16 FLOPs

Complexity of adaptive SA-HGM The two aforemen-
tioned PB-HGM special cases are building blocks for the
complexity analysis of the PBSA-HGM (recall Section
4.1), which is listed in Table 3. The additionalNN additions
for the HGM submodel stem from the fact that the HGM
submodel’s output has to be added to the complementary-
part echo estimate obtained with the HM (recall (35)).

Complexity of adaptive ESA-HM In the same way, the
operations for the novel ESA-HM are listed in Table 4.
These operations consist of one linear frequency-domain
adaptive filter for the HM and one for the echo path
inversion, a very short time-domain HGM for assessing
loudspeaker nonlinearities, determining the preprocessor
weights from the HGM, and evaluating the preprocessor
of the HM.

Comparison For consistency with the echo reduction
performance evaluation later on, a frame shift ofM = 256
taps, B = 5 branches, P = 4 frames, and only LSA = 3 taps
for the ESA-HM’s HGM submodel are assumed as default.
Varying the number of branches B of the nonlinear mod-
els and normalizing the resulting FLOPs to the FLOPs of
a linear PB-FNLMS yields the relative FLOPs depicted in
Fig. 8a.
Obviously, the ESA-HM has the constant offset of

another linear filter for system inversion, which makes
it unattractive in comparison to the previously proposed
PBSA-HGM for only two or three branches. For two
branches, even a full PB-HGM is marginally more effi-
cient than an ESA-HM and only slightly more complex
than a PBSA-HGM. However, with increasing number
of branches, the benefit of an ESA-HM in comparison

Table 4 Computational effort for the identification of a ESA-HM with a PB-FNLMS algorithm

Computed quantity Equation Multiplicity
Required operations

FFT CMUL CADD RMUL RADD RDIV

Preprocessed input (30) p = 0, . . . , N2 − 1 0 0 0 (B − 1)N/2 (B − 1)N/2 0

HM submodel (forward)
Table 2,

B = 1
2P + 3 2PNN NN(2P − 1) 6NN

N
2 + 3NN NN

Inversion submodel
Table 2,

B = 1
2P + 3 2PNN NN(2P − 1) 6NN

N
2 + 3NN NN

Time-domain HGM
Table 1,

L = LSA
N
2 0 0 0 2B(LSA + 1) N2 2B(LSA + 1) N2 + N

2 B N
2

submodel

Kernel correlation (46) ∀b 0 0 0 BLSA B(LSA − 1) 0

Instantaneous weights (45) ∀b > 1 0 0 0 0 0 B − 1

Smoothing weights (47) ∀b > 1 0 0 0 2(B − 1) B − 1 0

Accumulated: 4P + 6 4PNN NN(4P − 1)

2B + 12NN+
N(B − 1)

2
+ BLSA+

BN(LSA + 1) − 2

N + 6NN+
BLSA + 3BN

2
+

BLSAN − 1

B+
2NN+

BN

2
− 1

Total: (8P + 12)N log2 N + 16P + N
2 +

(
2LSA + 7N

2 + 2LSAN + 3
)
B + 10PN − 10 FLOPs
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Fig. 8 Relative number of FLOPs for system identification with different models, revealing a significant complexity reduction by ESA filtering for a
low number of frames (even without block partitioning) and for a high number of branches. The relative FLOPs result from normalization to the
FLOPs of a linear model with P = 4 partitions in (a) and P = 1 partition in (b)

to a PB-HGM or even to the less complex PBSA-HGM
becomes evident: an ESA-HM’s complexity is mainly
dominated by the two linear adaptive filters—even for
B = 20 branches.
Varying the number of frames P and leaving B = 5

constant results in the relative FLOPs depicted in Fig. 8b,
where relative FLOPs result from normalization to the
FLOPs of an adaptive linear model with a single parti-
tion. As can be seen, the ESA-HM leads to a significantly
reduced computational complexity for a low number of
frames P. Thus, the ESA-HM always leads to a complex-
ity reduction compared to the PB-HGM, even for P = 1,
which corresponds to conventional frequency-domain
adaptive filtering without block partitioning.

5.2 Echo reduction performance
In this section, the echo reduction performance of the
novel ESA and the previously proposed SA filtering con-
cept will be compared to classical adaptive filters based on
linear models and HGMs.

5.2.1 Experimental setup
The following evaluation is based on double-talk free
recordings of male and female speech, played-back and
recorded with a smartphone in hands-free mode at very
high volume. In total, five different physical setups,
referred to as setups A to E, will be considered. The acous-
tically relevant characteristics of these setups are listed in
Table 5.

Setups A and B correspond to recordings with a dura-
tion of about 130 s in a living room-like environment.
Setups A and B differ in the placement of the smartphone
within the same environment. Setup C corresponds to a
recording in an anechoic environment and has a duration
of about 80 s. The data for setups D and E are synthesized
by convolving the anechoic nonlinear recordings obtained
from setup C with measured RIRs. The employed RIRs
are from a lab environment with variable acoustics, once
with curtains at the walls (setup D) and once with open
curtains (setup E). For all setups, a partitioned-block lin-
ear model (PB-HGM with a single linear branch), a full
PB-HGM (full temporal support), a PBSA-HGM, and an
ESA-HM will be compared.
In the following experiments, processing is done at a

sampling rate of fS = 16 kHz. The acoustic echo paths are
estimated with FIR filters of length L = 1024 taps and the
input signals and impulse responses are partitioned into
P = 4 blocks with a relative frame shift of M = 256 taps

Table 5 Properties of setups A to E for the AEC experiments

Room type T60 Room dimensions

Setup A Living room 900 ms 4 × 5 × 2.5 m

Setup B Living room 900 ms 4 × 5 × 2.5 m

Setup C Anechoic chamber n/a 2 × 2 × 2 m

Setup D Lab environment with curtains
on walls

250 ms 5.5 × 5.7 × 3.1 m

Setup E Lab environment 400 ms 5.5 × 5.7 × 3.1 m
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(implying N = 512). Note that, despite large values of
T60 for some setups, the echo reduction performance in
the experiments is not limited by the filter length but by
the nonlinearity of the echo path (see Section 5.2.2 for a
quantitative analysis of the amount of nonlinearity in the
recordings).
As in [20], the HGMs consist of B = 5 branches,

with odd-order Legendre polynomials up to order 9 as
nonlinearity basis functions fb{·} in (5). The algorithm
parameters used in the experiments have been selected
based on the recordings of setup C. In particular, a step-
size of μb = 0.1 (see (26)) is used for the kernels of the
PB-HGMs and a stepsize of μb = 0.2 is used for the
PBSA-HGMs and ESA-HMs. For the reference algorithm,
consisting of the linear filter, a stepsize of μ1 = 0.5 is
employed to account for the lack of multiple adaptation
branches. Furthermore, the adaptation process is refined
using the robust statistics described in [34, 59], which
hardly affects the computational complexity but robusti-
fies the system identification against outliers in the error
signal. For the same purpose, the dynamics of the adaptive
preprocessor weights is limited to a maximum stepsize of
±0.001 per frame.
The AEC performance is quantified by computing the

Echo-Return Loss Enhancement (ERLE) measure [62]

ERLE = 10 log10

⎛
⎝ E

{
y2echo(k)

}
E

{∣∣yecho(k) − ŷ(k)
∣∣2}

⎞
⎠ dB, (50)

where yecho(k) is the echo signal component of the micro-
phone signal y(k) and ŷ(k) is the echo estimate obtained
using the model to be evaluated (linear model, PB-HGM,
PBSA-HGM, ESA-HM). For single talk, (50) becomes

ERLE = 10 log10

(
E

{
y2(k)

}
E

{
e2(k)

}
)
dB, (51)

where the numerator is the power of the microphone
signal y(k) and the denominator is the power of the
error signal e(k) produced by the model to be evalu-
ated. For a practical evaluation, the mathematical expec-
tation (ensemble average) in (51) will be replaced by a
time-averaging over the entire sequences. Note that the
ERLE measure in its general definition of (50) does not
depend on the near-end signal components (including
the number and positions of the near-end sources) but
requires knowledge of the actual far-end signal compo-
nent during double-talk periods. This knowledge is not
available in practice. Nonetheless, the ERLE performance
during double-talk periods can be simulated by perform-
ing AEC on single-talk recordings with previously deter-
mined fixed filters (as will be done in Section 5.2.3 in
experiment 2).

5.2.2 Quantification of nonlinearity
For monofrequent excitation signals, the nonlinearity of
a system can easily be assessed by means of the Total
Harmonic Distortion (THD), which measures the ratio of
the energy of the excitation frequency to the energy of its
harmonics. However, for nonstationary broadband exci-
tation signals like speech, this measure is not meaningful
anymore. In order to characterize the nonlinearity nev-
ertheless, one can pursue noise-loading methods [65] or,
as done in the following, methods based on the actual
AEC excitation signal itself. To this end, consider the
energy Ein which is recorded in the bandwidth excited by
the digital loudspeaker signal (0 − 8 kHz) and the energy
Eout which is recorded above for frequencies exceeding
the highest frequency contained in the excitation signal
(8 − 16 kHz). For a linear system, the out-of-band energy
is only caused by noise. For a nonlinear system, Eout is sig-
nificantly increased due to the harmonic distortion. The
In-band/Out-of-band Ratio (IOR)

IOR = 10 log10
(

Ein
Eout

)
dB

may therefore serve as a measure of the intensity of the
nonlinearity in the echo signal.
Furthermore, the so-called Linear-to-Non-Linear Ratio

(LNLR) is defined as the ratio between the power of
the linear echo signal component and the power of the
nonlinear echo signal component. Thus, a lower LNLR
corresponds to stronger nonlinearities. While the THD
is a description of how much nonlinearity a particular
frequency causes at its harmonics, a frequency-selective
LNLR quantifies the distortion present at a particular fre-
quency4. Although an exact LNLR computation required
exact knowledge of the linear and nonlinear system com-
ponents to compute the respective signal components,
the LNLR can be estimated using the echo estimate ŷ(k)
obtained by a converged long adaptive linear filter and the
resulting error signal e(k) = y(k) − ŷ(k). Employing the
respective signal spectra estimates Sŷŷ(f ) and See(f ), the
LNLR at a frequency f can be estimated as

LNLR(f ) = 10 log10
(Sŷŷ (f )
See (f )

)
dB. (52)

The particular smartphone employed for the AEC
experiments leads to an IOR of 27 dB for the AEC speech
signal in an anechoic environment5. The LNLR estimated
from the same measurement is depicted in Fig. 9 up to
8 kHz—for higher frequencies, the numerator of (52) is
determined by noise only and, therefore, (52) cannot be
employed to estimate the LNLR anymore.
As can be seen, the LNR (f ) is strongly frequency-

dependent and varies between 1.2 dB (at about 2.5 kHz )
and 13.7 dB (at about 500Hz ). This minimum around
2.5 kHz and the maximum around 500Hz coincide with
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Fig. 9 Estimated frequency-selective linear-to-nonlinear ratio
according to (52) for the particular smartphone and excitation signal
(speech) used during the AEC experiments

a local minimum and the maximum of the far-end signal
spectrum, respectively.

5.2.3 Experimental results
In the following, two experiments will be discussed.
Experiment 1 considers an adaptive identification of the
nonlinear systems according to Section 5.2.1, and exper-
iment 2 considers an offline filtering without further
adaptation with previously adapted models from the end
of experiment 1. While experiment 1 is affected by the
initial convergence phase, experiment 2 evaluates the per-
formance achievable in double-talk situations after con-
vergence of the filters, which is of vital importance for a
full-duplex voice communication system as well.

Experiment 1 - continuously adapted filters Figure 10a
shows the ERLE measure for different setups and models

for experiment 1. Note that the PBSA-HGM is listed twice:
once with the previously considered output signal eSA (k)
and once with the HM submodel’s output eHM (k). Obvi-
ously, the linear filter performs worst for all setups. The
other end of the scale is represented by the PB-HGM,
which leads to an almost twice as high average ERLE value
for setup C. The PBSA-HGM leads to a good approxima-
tion of the PB-HGM. In setups A and B, the PB-HGM
with full temporal support is even marginally outper-
formed by the PBSA-HGM’s HM and HGM outputs,
respectively. On the other hand, when considering the
HM submodel of the PBSA-HGM only, the average gap to
the PB-HGM performance is larger. This is not surprising,
as the classical PBSA-HGM with a peak-modeling HGM
has more degrees of freedom and tracks the nonlinear-
ities before providing a smoothed nonlinearity estimate
to the HM submodel. The ESA-HM can also approxi-
mate the PB-HGM but leads to slightly less ERLE than
the PBSA-HGM’s HM output in experiment 1. Yet, the
ESA-HM consistently outperforms the partitioned block
linear filter. This clearly verifies the applicability of SA fil-
tering in general and of the proposed novel ESA filtering
concept for practically relevant scenarios with real-world
smartphone recordings.

Experiment 2 - echo reduction during double talk In
experiment 2 (depicted in Fig. 10b), when processing the
entire sequence offline with the converged filters from
the previous experiment, the ESA-HM performs as good
as the full PB-HGM in setups C and D. Only in setups
A and E, the PBSA-HGM can marginally outperform the

Fig. 10 a–b ERLE performance of the novel ESA-HM and a PBSA-HGM in comparison to a classical PB-HGM and a linear model, adapted by an
FNLMS. Note that the PB-HGM, PBSA-HGM, and ESA-HM have about 3.60, 2.33, and 2.17 times the complexity of a linear filter, respectively
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ESA-HM in experiment 2. Overall, the ESA-HM gener-
alizes slightly better for double-talk situations than the
PBSA-HGM. Interestingly, the typically considered PBSA-
HGM’s HGM output and the PBSA-HGM’s HM output
do not differ significantly in experiment 2, which supports
the initial assumption that an HM is a suitable efficient
approximation of the echo path. The increased perfor-
mance due to the PBSA-HGM’s HGM submodel seems
to originate from a quicker reaction to the instantaneous
signal characteristics.
Clearly, the novel ESA-HM is a very well performing

alternative to the PBSA-HGM, which leads to comparable
or even better echo reduction in double-talk situations.

6 Conclusions
The adaptation of nonlinear echo paths for small portable
devices requires efficient adaptive nonlinear echo path
models. To this end, a novel variant of SA filtering has
been introduced and compared to known concepts in this
article. This novel ESA filtering method, leading to an
adaptive ESA-HM, exploits the inability of IRs to model
nonlinearities to obtain an estimate of the unobservable
nonlinearly distorted loudspeaker signal by inverse fil-
tering. While the previously proposed PBSA-HGM has
been an efficient alternative to HGMs only for a block-
partitioning of the filter, the novel ESA filtering concept
is advantageous without block partitioning at all and for
a very high number of branches (see complexity analy-
ses in Section 5.1). For applications where very long RIRs
need to be modeled and where a low input-output delay
is required, a block partitioning and therefore the PBSA-
HGM may computationally be more efficient than the
ESA-HM. Both methods thereby complement each other
very well in terms of computational efficiency for dif-
ferent application scenarios. A comparison of the echo
reduction performance of the ESA-HM, the PBSA-HGM,
a linear model, and a PB-HGM in Section 5.2 has empha-
sized the efficacy of the proposed ESA-HM, especially
for double-talk situations, in which AEC is actually most
important.

Endnotes
1Note that this representation of a Volterra filter is also

referred to as diagonal coordinate representation [66].
2 This update rule is also referred to as NLMS with

kernel-specific normalization in [66].
3As opposed to time-domain adaptive filters, the com-

plexity for filter adaptation in the frequency domain is not
determined by the length of the time-domain support of
the filter, but by the DFT size N and the number of parti-
tions P. This disqualifies unpartitioned frequency-domain
adaptive filters, as the HGM submodel in Fig. 5 would

have the same complexity as the HGM with full temporal
support in Fig. 2d.

4Determining such a measure is also referred to as
Schüßler’s model in [67], as it goes back to [68, 69].

5Note that this number is caused by nonlinearity and
not by background noise, as the SNR of the recorded sig-
nal is more than 24 dB in the 8−16 kHz range, where Eout
is computed.
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