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Abstract

Practically, in the underdetermined model y = Ax, where x is a K sparse vector (i.e., it has no more than K nonzero
entries), both y and A could be totally perturbed. A more relaxed condition means less number of measurements are
needed to ensure the sparse recovery from theoretical aspect. In this paper, based on restricted isometry property
(RIP), for subspace pursuit (SP) and compressed sampling matching pursuit (CoSaMP), two relaxed sufficient
conditions are presented under total perturbations to guarantee that the sparse vector x is recovered. Taking random
matrix as measurement matrix, we also discuss the advantage of our condition. Numerical experiments validate that
SP and CoSaMP can provide oracle-order recovery performance.
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1 Introduction
Compressed sensing [1] has been attracted more and
more attention since it has been proposed. According to
compressed sensing, the sparse signals can be accurately
reconstructed from far less samples than those required in
the classical Shannon-Nyquist theorem.
Typically, an underdetermined equation

y = Ax (1)

is to be solved, where measurement matrix A ∈ R
m×N .

There exists a unique solution for (1) when x is assumed
to be K-sparse, i.e., x has at most K nonzero entries.
To get the sparsest solution of Eq. (1), minimizing ‖x‖�0

(the �0-“norm” counts the number of nonzero entries in
x) is an intuitive idea. However, this is an NP-hard prob-
lem [2]. Many suboptimal methods were presented to
overcome this difficulty.
The greedy algorithms have received considerable

attention due to their low complexity and simple inter-
pretation in geometry. They mainly include orthogonal
matching pursuit (OMP) [3], subspace pursuit (SP) [4],
compressive sampling matching pursuit (CoSaMP) [5],
analysis SP (ASP), and analysis CoSaMP (ACoSaMP) [6].
The basic idea behind this kind of algorithms is to find
the support of the unknown signal sequentially. Recently,
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using new method, two relaxed sufficient conditions were
presented for SP and CoSaMP by Song et al. [7, 8]. In this
paper, wemainly discuss SP and CoSaMP that are efficient
algorithms.
In practice, both y and A are often perturbed in model

(1). It is important to consider these perturbations since it
can account for precision errors when applications call for
physically implementing the matrixA in a sensor [9]. This
case can be found in source separation [10].
In fact, under total perturbations, model (1) was formu-

lated as

ŷ = Ax + e, Â = A + E, (2)

with inputs Â ∈ R
m×N and ŷ. Here, e and E can be

defined as addition noise and multiple noise, respectively.
This case can be found in remote sensing [11], radar
[12], and so on. By restricted isometry property (RIP) [2],
model (2) was discussed by Ding et al. [13] using OMP.
Under total perturbations, the work of [14, 15] discussed
the performance of SP and CoSaMP. They presented that
oracle-order recovery performance of SP and CoSaMP is
guaranteed. In addition, there are many previous works in
the context of near-oracle performance [16–20].
Using the results in [7, 8], in this paper, we give

improved conditions for SP and CoSaMP under total per-
turbations. For numerical experiments, figures validate
that SP and CoSaMP can provide oracle-order recovery
performance.

© The Author(s). 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13634-016-0412-5-x&domain=pdf
mailto: lihaifengxx@126.com
http://creativecommons.org/licenses/by/4.0/


Li EURASIP Journal on Advances in Signal Processing  (2016) 2016:112 Page 2 of 6

Now, we give some notations that will be used in this
paper. Scalars are written as lowercase letters, e.g., d. We
denote vectors by boldface lowercase letters, e.g., x, and
matrices as boldface uppercase letters, e.g.,D. The ith ele-
ment of x is denoted by xi. D′ denotes the transpose of D.
The cardinality of a finite set � is denoted by |�|. ‖D‖(K)

2
denotes the largest spectral norm taken over all K-column
submatrices of D. We write D� for the column submatrix
of D whose indices are listed in the set �.

2 Problem formulation
In practice, we often encounter the approximately sparse
vectors [21] rather than sparse vectors. Although these
vectors are not exactly sparse, they are well approximated
by a K-sparse vector. The vector x is assumed to be
approximately sparse and we can use a K-sparse vector
xK to approximate it when the energy of xcK = x − xK is
very small, where xK is K-sparse that is the best K-term
approximation of x, i.e., the nonzero entries in xK corre-
spond to the K largest (in magnitude) entries in x. The
approximation error can be quantified as

rK = ‖xcK‖2
‖x‖2 , sK = ‖xcK‖1√

K‖x‖2
(3)

In this paper, the following model is considered

ŷ = Ax + e = AxK + A(x − xK ) + e. (4)

Here, the available information for recovering x is ŷ and
Â = A + E.
In real-world applications, we often do not know the

exact nature of E and e and are forced to estimate their
relative upper bounds, instead. The perturbations E and e
are quantified with the following relative bounds

εA = ‖E‖(K)
2

‖A‖(K)
2

, εy = ‖e‖2
‖Ax‖2 , (5)

where ‖A‖(K)
2 and ‖Ax‖2 are nonzero. Now, according to

A = Â − E, we give the upper bound of ‖E‖(K)
2 .

‖E‖(K)
2 = εA‖A‖(K)

2

= εA‖Â − E‖(K)
2

≤ εA‖Â‖(K)
2 + εA‖E‖(K)

2 . (6)

Then, we have

‖E‖(K)
2 ≤ εA

1 − εA
‖Â‖(K)

2 . (7)

In this paper, we are only interested in the case where εA
and εy are far less than 1.

3 RIP-based recovery condition
Definition 1 ([2]) A matrix A satisfies RIP of the order

K if there exists a constant δ ∈ (0, 1) such that

(1 − δ)‖h‖22 ≤ ‖Ah‖22 ≤ (1 + δ)‖h‖22 (8)

for all K-sparse vector h. In particular, the minimum of all
constants δ satisfying (8) is called as the restricted isometry
constant (RIC) δK .

Theorem 1 Given a noisy measurement vector y =
AxK + e. If A satisfies δaK ≤ c, then the sequence of xn
defined by SP and CoSaMP satisfies

‖xK − xn‖2 ≤ ρn‖xK‖2 + τ‖e‖2. (9)

The specific values of the constants a, c, ρ, and τ are
illustrated in Table 1.

Proof After slightly manipulation, according to [7] and
[8], the results can be obtained.

Theorem 2 Consider (4). If the perturbed matrix Â
satisfies RIP with

δ̂aK ≤ c, (10)

then the relative error of the solution xn of SP and CoSaMP
satisfies

‖x − xn‖2
‖x‖2

≤ rK + ρ̂n + τ̂

√
1 + δ̂K

1 − εA
(εA+ εy + (1 + εy)(rK + sK )),

(11)

where the specific values of the constants a, c, ρ̂, and τ̂ are
illustrated in Tables 1 and 2. In addition, after at most

n = �logρ̂ (εA + εy + sK )� (12)

Table 1 The value of constants

Constants SP CoSaMP

a 3 4

c 0.4859 0.5

ρ

√
2δ2aK (1+δ2aK )

1−δ2aK

√
2δ2aK (1+2δ2aK )

1−δ2aK

τ
(
√
2+2)δaK√

1−δ2aK (1−δaK )(1−ρ)

(
√
2+1)2δaK+(1−δaK )(2

√
2+1)

√
1+δaK

(1−δaK )(1−ρ)

+ 2
√
2+1

(1−δaK )(1−ρ)
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Table 2 The value of constants

Constants SP CoSaMP

ρ̂

√
2δ̂2aK (1+δ̂2aK )

1−δ̂2aK

√
2δ̂2aK (1+2δ̂2aK )

1−δ̂2aK

τ̂
(
√
2+2)δ̂aK√

1−δ̂2aK (1−δ̂aK )(1−ρ̂)

(
√
2+1)2 δ̂aK+(1−δ̂aK )(2

√
2+1)

√
1+δ̂aK

(1−δ̂aK )(1−ρ̂)

+ 2
√
2+1

(1−δ̂aK )(1−ρ̂)

iterations, SP and SoSaMP can obtain the error
‖x − xn‖2

‖x‖2

≤
⎛
⎜⎝τ̂

√
1 + δ̂K

1 − εA
+ 1

⎞
⎟⎠ (εA + εy + (1 + εy)(rK + sK )).

(13)

Proof The sensing process (4) is equivalent to

ŷ = Ax + e = (Â − E)
(
xK + xcK

) + e

= ÂxK + (−Ex + ÂxcK + e)

= ÂxK + ê, (14)

where ê = −Ex + ÂxcK + e is the error term. Its energy is
bounded as follows. By Proposition 3.5 in [5] and (7),

‖Ex‖2 ≤ ‖ExK‖2 + ‖ExcK‖2
≤ ‖E‖(K)

2 ‖xK‖2 + ‖E‖(K)
2

(
‖xcK‖2 + ‖xcK‖1√

K

)

= ‖E‖(K)
2

(
‖xK‖2 + ‖xcK‖2 + ‖xcK‖1√

K

)

≤ εA
1 − εA

√
1 + δ̂K (1 + rK + sK )‖xK‖2, (15)

where (15) follows from (7) and (3).
Furthermore,

‖ÂxcK‖ ≤
√
1 + δ̂K

(
‖xcK‖2 + ‖xcK‖1√

K

)

=
√
1 + δ̂K (rK + sK )‖xK‖2. (16)

Then, combing (5), (15), and (16), we have

‖ê‖2 ≤ ‖Ex‖2 + ‖ÂxcK‖2 + ‖e‖2
= ‖Ex‖2 + ‖ÂxcK‖2 + εy‖Ax‖2
≤ ‖Ex‖2 + ‖ÂxcK‖2 + εy‖Âx‖2 + εy‖Ex‖2
= (‖Ex‖2 + ‖ÂxcK‖2)(1 + εy) + εy‖ÂxK‖2

≤
√
1 + δ̂K

1 − εA

(
εA + εy + (1 + εy)(rK + sK )

) ‖xK‖2.
(17)

By Theorem 1, under condition (10), the solution xn
defined by SP and CoSaMP satisfies

‖xK − xn‖2 < ρ̂n‖xK‖2 + τ̂‖ê‖2, (18)

where ρ̂ < 1 and τ̂ are constants specified in Table 2.
According to the triangle inequality, we have

‖x − xn‖2
‖x‖2

≤ ‖x − xK‖2
‖x‖2 + ‖xK − xn‖2

‖x‖2
≤ ‖xcK‖2

‖x‖2 + ρ̂n ‖xK‖2
‖x‖2 + τ̂

‖ê‖2
‖x‖2

≤ rK + ρ̂n + τ̂

√
1 + δ̂K

1 − εA
(εA + εy + (1 + εy)(rK + sK )).

(19)

By condition (12),

ρ̂n + rK ≤ εA + εy + (1 + εy)(rK + sK ). (20)

Combined (11) and (20), (13) follows immediately.

Remark 1 The weaker the RIC bound is, the less required
number of measurements we need, the improved RIC
results can be used in many CS-based applications [7].
It is clear that when ρ̂ = 1

2 , for SP, Theorem 2 presents
δ̂3K = 0.3063 and τ̂ = 13.1303, while Theorem 2 in
[15] gives δ̂3K = 0.1397 and τ̂ = 15.6476 (C̃ and D̃ in
[15]). For CoSaMP, Theorem 2 presents δ̂4K = 0.3083 and
τ̂ = 13.9536, while Theorem 2 in [15] gives δ̂4K = 0.101
and τ̂ = 15.3485 (C̃ and D̃ in [15]). So, the proposed results
improve the theoretical guarantee for SP and CoSaMP
relative to [15].
To be specific, for an m × N random matrix Â, whose

entries are independent and identically distributed Gaus-
sian random variables N (0, 1

m ), then Â satisfies the RIP
condition (δ̂K ≤ ε) with overwhelming probability under
[22]

m ≥ bKlog(NK )

ε2
, (21)

where b is a constant. Consider SP, by Lemma 4.1 in [23],
δ̂3K < 0.4859 can be changed to δ̂K < 0.097, while δ̂3K <

0.206 ([15]) can be changed to δ̂K < 0.041. Hence, accord-
ing to (21), the dimension of the measurements m ensuring
reconstruction for Theorem 2 is m ≥ 106.2812bKlog(NK ),
while the measurements for Theorem 2 in [15] is m ≥
594.8840bKlog(NK ).

Remark 2 It follows from (11) that the recovery perfor-
mance is stable under both perturbations. It depends on
the three terms rK + sK , ‖e‖2, and ‖E‖(K)

2 . In general, no
recovery can do better than the oracle least squares (LS)
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method. The authors in [15] presented an upper bound of
oracle recovery (Part IV.B in [15]):

x − xn

‖x‖2 ≤ κ	

(
D̂

√
1 + δ̂K

)
(εy + εA + (1 + εy)(rK + sK )),

(22)

where κ	 = ‖	‖2‖	−1‖2 = 1 (	 is identity matrix in our
paper) and D̂ = 1√

1−δ̂K
. When Â is fixed, then D̂ and τ̂ are

constants. So, comparing (13) with (22), the error bound
of SP (or CoSaMP) and the error bound of oracle recovery
only differ in coefficients.

When x is K-sparse, it can be derive that rK = sK = 0.
The relative error of the solution is stated as Corollary 1.

Corollary 1 Suppose that x is K-sparse in model (4). If
the perturbed matrix Â satisfies RIP with

δ̂aK ≤ c, (23)

then, the relative error of the solution xn of SP and CoSaMP
satisfies

‖x − xn‖2
‖x‖2 ≤ ρ̂n + τ̂

√
1 + δ̂K

1 − εA
(εA + εy), (24)

where the specific values of the constants a, c, ρ̂, and τ̂ are
illustrated in Tables 1 and 2. In addition, after at most

n = �logρ̂ (εA + εy)� (25)

iterations, SP and SoSaMP can obtain the error

‖x − xn‖2
‖x‖2 ≤

⎛
⎜⎝τ̂

√
1 + δ̂K

1 − εA
+ 1

⎞
⎟⎠ (εA + εy). (26)

4 Numerical experiments
In this section, we perform some numerical experiments
in MATLAB R2013a and research the performance of SP
and CoSaMP under total perturbations. These algorithms
are tested with two random matrix ensembles:

• N : Gaussian matrices with entries drawn i.i.d. from
N

(
0, 1

m
)
;

• S7: sparsematrices with seven nonzero entries per col-
umn drawn with equal probability from

{
− 1√

7 ,
1√
7

}
and

locations in each column chosen uniformly.
As noted in [24], the above two random matrix ensem-

bles are representative of the random matrices frequently
encountered in compressed sensing.
The sparse vector x (with length of N = 1024) is

taken from the random binary vector distribution and are
formed by uniformly selecting K locations for nonzero
entries with values {−1, 1} chosen with equal probability.
The addition noise e and multiple noise E are random

Gaussian matrices. In each trial, according to (5), the
relative perturbations are set to

εA = ‖E‖(K)
2

‖A‖(K)
2

≈ ‖E‖2
‖A‖2

= 0.05, εy = ‖e‖2
‖Ax‖2 = 0.05,

(27)
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Fig. 1 Relative approximation error vs. estimation of sparsity in the SP and CoSaMP algorithms for Gaussian matrix. Here, sparsity level K = 20
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Fig. 2 Relative approximation error vs. estimation of sparsity in the SP and CoSaMP algorithms for sparse matrix. Here, sparsity level K = 20

where A is measurement matrix. Then, ŷ and Â are gen-
erated by (2). The relative approximation error defined
by

‖x∗ − x‖2
‖x‖2 , (28)

where x∗ is an approximate solution. The simulation is
conducted 500 times to obtain the average relative error.

4.1 Different sparsity level for SP and CoSaMP
For SP and CoSaMP, sparsity level K needs to be known
a priori. The first experiment demonstrates the perfor-
mance degradation of SP and CoSaMP when K is mis-
estimated. Here, sparsity level K is 20. The number of
measurementsm varies from 100 to 550 with step size 50.
The results are shown in Figs. 1 and 2.
Figures 1 and 2 show the curves of the relative error vs.

estimation of the sparsity. It is easy to see that the error
decreases as m increases. In addition, one can see clearly
that the relative errors of the SP and CoSaMP increase
if the estimated sparsity K is far from the truth. So, in
the future, we will propose some algorithm that recovers
unknown signals without the sparsity level information.

4.2 Observed noise stability for SP and CoSaMP
In the second simulation, we infer an observed stability
to general perturbations for SP and CoSaMP. We com-
pare the performance of SP and CoSaMP with oracle LS
method. The number of measurements m varies from 50
to 500 with step size 50. The results are shown in Figs. 3
and 4.

As can be seen from Figs. 3 and 4, the error decreases
as m increases. In addition, the curves of SP, CoSaMP,
and oracle LS method are almost the same when m is
not smaller than 150. So, SP and CoSaMP can provide
oracle-order recovery performance.

5 Conclusions
For SP and CoSaMP, in this paper, improved sufficient
conditions are presented under total perturbations to
guarantee that sparse vector x can be recovered. Com-
paring with the condition in [15], taking random matrix
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Fig. 3 Relative approximation error vs. number of measurements in
the SP and CoSaMP algorithms for Gaussian matrix
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Fig. 4 Relative approximation error vs. number of measurements in
the SP and CoSaMP algorithms for Sparse matrix

as measurement matrix, our condition can decrease the
number of measurements. By numerical experiments, we
point out that SP and CoSaMP algorithms can obtain
oracle-order recovery performance under total perturba-
tions. Furthermore, proposing an algorithm that does not
need the sparsity level K is our future work.
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