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Abstract
The decomposition model proposed by Osher, Solé and Vese in 2003 (the OSV model) is known for its good denoising
performance. This performance has been found to be due to its higher weighting of lower image frequencies in the
H−1-normmodeling the noise component in the model. However, the OSV model tends to also move high-frequency
texture into this noise component. Diffusion with an oriented Laplacian for oriented texture is introduced in this
paper, in lieu of the usual Laplacian operator used to solve the OSV model, thereby significantly reducing the
presence of such texture in the noise component. Results obtained from the proposed oriented Laplacian model for
test images with oriented texture are given, and compared to those from the OSV model as well as the Mean
Curvature model (MCM). In general, the proposed oriented Laplacian model yields higher signal-to-noise ratios and
visually superior denoising results than either the OSV or the MCMmodels. We also compare the proposed method to
a non-local means model and find that although the proposed method generally yields slightly lower signal-to-noise
ratios, it generally gives results of better perceptual visual quality.

Keywords: Image decomposition, Variational methods, Image processing, Osher-Solé-Vese model, Oriented
Laplacian, Image denoising

1 Introduction
1.1 Image decomposition
According to the definition of Meyer [1], image decompo-
sition is the process of splitting an image into components
of different priorities, usually so that the original image
is roughly equal to the sum of these components. Often
the original image is denoted by f, which is considered to
approximately equal the sum of two components, u and v,
i.e. f ≈ u + v. In Meyer’s 2001 monograph [1], decom-
position was deemed to be important for image coding
and transmission. In addition to the problem of decom-
position being interesting and important in its own right
[2], decomposition has also proven to be useful for texture
discrimination [3], image denoising [4], image inpainting
[5] and image registration [6]. In this paper, the focus is
on the application of decomposition to the problem of the
denoising of images with oriented texture.
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1.2 Meyer’s decomposition framework
Meyer’s decomposition framework models the various
components of the decomposition as having small norms
in different Banach spaces, i.e. complete normed vector
spaces. In practical implementations of this framework
[3], the energy method is used, in which an energy is
defined over the image being decomposed and its compo-
nents, and is subsequently minimized using the Calculus
of Variations.
The first method that could be considered to fall under

the image decomposition framework is the total variation
model of Rudin, Osher and Fatemi [7]. The energy for the
total variation model is defined as

ETV(u) =
∫

�

|∇u|dxdy + λ

∫
�

(f − u)2dxdy, (1)

where the original image is f and f ≈ u+ v. The first term(∫
�

|∇u|dxdy) is included to produce a bounded variation
(piecewise-smooth) image u upon energy minimization,
while the second term is a fidelity term, which ensures
that the final u component is close to the initial image
f. Although the minimization of ETV(u) preserves sharp
edges, it destroys fine structure such as texture. However,
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Eq. 1 has been used successfully for the denoising and
deblurring of images of bounded variation.
In [1], Meyer proposed modifying the second term in

the above energy of Eq. 1 by changing the L2-norm of the
residual v to the ∗-norm of this residual, where ∗ is a norm
on a suitably defined Banach spaceG. The ∗-norm onG is
defined by

‖v‖∗ = inf
g1,g2

∥∥∥∥
√
g21(x, y) + g22(x, y)

∥∥∥∥
L∞

, (2)

over all g1 and g2 such that v = div(�g) where �g = (g1, g2).

1.3 The Osher-Solé-Vese decomposition model
A second attempt at minimizing the ∗-norm of Eq. 2 was
made by Osher, Solé and Vese in [4]. They used the Hodge
decomposition of �g, which splits �g into the sum of the
divergence of a single valued function and a divergence-
free vector field. The energy functional for their model is

EOSV(u) =
∫

�

|∇u|dxdy+λ

∫
�

∣∣∇ (
�−1) (f − u)

∣∣2 dxdy
(3)

The PDE that they obtained as a result of minimization
of the above functional is

ut = − 1
2λ

�

[
div

( ∇u
|∇u|

)]
− (u − f ) (4)

with adiabatic boundary conditions. This equation was
found by approximating �g as having no divergence-free
part, and approximating the L∞ part of the ∗-norm in
Eq. 2 with the square of the L2-norm of the same function.
The resulting energy functional includes an inverse Lapla-
cian of f − u; this was eliminated in [4] by showing that
under some rather relaxed conditions, found in the second
Remark of that paper, the gradient descent solution of an
Euler-Lagrange equation ut = −E′

OSV(u), where E′
OSV(u)

is the first variation of EOSV with respect to u, converges
to the same solution as the equation ut = �E′

OSV(u).
Thus no inverse Laplacian appears in Eq. 4. Additionally,
the auxiliary functions g1 and g2 of Eq. 2 are no longer
involved in the PDE of Eq. 4, as they disappear in the
derivation.

2 Incorporating oriented diffusion into the OSV
model

2.1 Motivation and initial derivation
If we denote the curvature of the level lines of the cartoon
component u by K(u) = div

( ∇u
|∇u|

)
, Eq. 4 becomes

ut = − 1
2λ

�K(u) − (u − f ). (5)

Observe that Eq. 5 consists of two terms, one with the
negative Laplacian of the curvature of the level lines of

u; the other a fidelity term, which makes sure that the
evolved image does not stray too far away from the origi-
nal image f. Equation 5 has been shown to performwell for
denoising [4]. Since the original image f is noisy, and the
second term keeps the evolved image close to this noisy
image, the denoising itself must be due to the first term;
i.e. the negative Laplacian term.
Attention is now restricted to images with oriented tex-

ture. With this restricted focus, instead of including the
Laplacian of the curvature,�K(u), as in Eq. 5, the oriented
Laplacian [8] of the curvature can be taken instead. The
new equation becomes

ut = − 1
2λ

(
cζKζ ζ + cηKηη

) − (u − f ) (6)

Here ζ is the isophote direction of the curvature in the
regions of the image where there is a dominant orienta-
tion, and η is the gradient direction of the curvature in
such regions. An illustration of these directions is shown
in Fig. 1.
There are also two conductivity coefficients cζ and

cη which determine how much diffusion there is in the
isophote and gradient directions respectively.
The values of the second directional derivatives of the

curvature in its isophote and gradient directions can be
computed without actually calculating the isophote and
gradient angles. This is done by using the general formula
for the second-order directional derivative of the function
K in the direction w = (wx,wy), i.e.

Kww = w2
xKxx + 2wxwyKxy + w2

yKyy,

and then substituting the unit gradient and isophote vec-
tor directions for w. The unit gradient vector is simply

wgrad =
⎛
⎜⎝ Kx√

K2
x + K2

y

,
Ky√

K2
x + K2

y

⎞
⎟⎠ ,

and the unit isophote vector is

wiso =
⎛
⎜⎝ −Ky√

K2
x + K2

y

,
Kx√

K2
x + K2

y

⎞
⎟⎠ .

The formulae for the second directional derivative of the
curvature in the isophote direction (ζ ) and its gradient
direction (η) are thus

Kζ ζ = −2KxKxyKy + KxxK2
y + K2

x Kyy

K2
x + K2

y
(7)

Kηη = K2
x Kxx + 2KxKxyKy + K2

y Kyy

K2
x + K2

y
. (8)

The expressions for the two directional derivatives in
Eqs. 7 and 8 can be substituted into Eq. 6. Recall that
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Fig. 1 Illustration of isophote and gradient directions

the function K represents the curvature of the cartoon
component u.
In our experiments for this paper, better results were

obtained in practice by using the normalized isophote ori-
entation estimates of the original image f instead of those
of the curvature image K. An initial explanation for the
improvement in results is the sensitivity to noise of the
formulae in Eqs. 7 and 8.
We now explain how estimates of the normalized

isophote and gradient directions are extracted from the
original noisy image using the linear structure tensor
(Section 2.2.1), as well as how this image is separated
into oriented and non-oriented regions (Section 2.2.2).
This separation by region is important to decide whether
anisotropic or isotropic diffusion should be performed at
each image pixel, and the directional estimates are impor-
tant to determine which directional diffusion parameters
are used for anisotropic diffusion at each pixel in the ori-
ented region. After this explanation in Section 2.2, we
return to the derivation of the proposed model in Section
2.3 using these extracted gradient and isophote orienta-
tion estimates.

2.2 Orientation and coherence calculation
The proposed algorithm depends on the noise-resistant
computation of orientation at each pixel in the image, in
addition to the detection of the image regions that are
coherent, or roughly consisting of one orientation. Two
methods were considered in our experiments by which
such calculations could be performed and be robust to

noise. Both use the structure tensor, or the outer prod-
uct of the image gradient with itself. The first is called
the linear structure tensor, which corresponds to a lin-
ear diffusion or Gaussian blurring of the structure tensor
elements, and the second is called the nonlinear struc-
ture tensor, an extension of the linear structure tensor
which corresponds to nonlinear diffusion of the struc-
ture tensor entries. Only the linear structure tensor is
described here, since it was found to be more efficient
computationally than the nonlinear structure tensor, and
gave results of similar quality. The linear structure tensor
is now described, along with methods of determining the
orientation coherence [9]. If not otherwise specified, it is
assumed the orientation refers to the gradient orientation,
or the orientation in which the image changes the most in
intensity.

2.2.1 Linear structure tensor
The structure tensor is defined as the outer product of
the image gradient vector with itself. Supposing that the
image is f, then the structure tensor J at each pixel is
defined as

J =
(

f 2x fxfy
fxfy f 2y

)
.

It was found that better denoising results were obtained
for the proposed method by using the following derivative
filters (see e.g. [10]) to determine fx and fy
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Dx = 1
32

⎛
⎝ −3 0 3

−10 0 10
−3 0 3

⎞
⎠ (9)

and

Dy = 1
32

⎛
⎝ 3 10 3

0 0 0
−3 −10 −3

⎞
⎠ . (10)

To further increase robustness to noise, the resulting
structure tensor J is blurred element-wise with a Gaussian
filter Gσ of standard deviation σ , to obtain Jσ = Gσ ∗ J .
Then the gradient direction at each pixel, θi,j, is calculated
to be the angle between the eigenvector −→w 1 of Jσ cor-
responding to its larger eigenvalue λ1 and the horizontal
axis, or more simply, if we consider−→w 1 of Jσ to be a vector
in the complex plane

θi,j = arg−→w 1.

The isophote vector
−→
fiso = (fiso,x, fiso,y) is computed as

the unit vector perpendicular to θi,j, thus at an angle π
2

radians greater than θi,j from the horizontal axis; i.e. if we
consider the isophote vector as a vector in the complex
plane

arg
−→
fiso = arg−→w 1 + π

2
.

2.2.2 Orientation coherence and oriented region
determination

For the proposed algorithm, it is necessary to separate the
image into oriented and non-oriented regions, so that dif-
ferent variational models can be applied to each of the two
region types. A region is defined to be non-oriented when
its orientation coherence is less than a pre-determined
threshold; this coherence function is a measure of how
uniform gradient directions are around a pixel. In [11], the
coherence of f is measured directly using a small window
W around each pixel by the formula

coher(θi,j) = |∇f |i,j
∑

(u,v)∈W ||∇f |u,v cos(θi,j − θu,v)|∑
(u,v)∈W |∇f |u,v ,

where θi,j is the orientation calculated from the linear
structure tensor J at pixel (i, j) (which can be found
because the tensor determines the gradient vector at each
pixel); generally W is chosen to be 7 × 7 pixels. In this
paper, this formula is used to determine the orienta-
tion coherence at each pixel, thus allowing oriented and
non-oriented regions to be separated.
The threshold used for the coherence of the orienta-

tions of f is dependent on the image. Call this parameter
coherthresh; we set coherthresh = 15 for all experiments in
this paper.
Now define the oriented region to be �O, the union of

pixels in the image where there is a dominant orientation
in f. Similarly, we define the non-oriented region to be

�NO, the union of pixels in the image where there is no
such dominant orientation.

2.3 The oriented Laplacian Osher-Solé-Vese model
After Eqs. 7 and 8 in Section 2.1, we stated that using the
normalized isophote orientation estimates of the original
image yielded better denoising results in our experiments.
After this, in Section 2.2 we explained how these isophote
orientation estimates were computed using the linear
structure tensor. Now using the isophote orientation vec-
tors (fiso,x, fiso,y) at each pixel, we obtain the following
noise-resistant approximation of the second directional
derivative of the curvature in the isophote direction

Kζ ζ ≈ f 2iso,xKxx + 2fiso,xfiso,yKxy + f 2iso,yKyy (11)

which is subsequently substituted in the oriented Lapla-
cian expression in Eq. 6. Note that the denominators in
Eqs. 7 and 8 do not appear since we are dealing with the
normalized isophote estimates, as opposed to Eqs. 7 and
8, where the partial derivatives of K are unnormalized.
For the coefficient cη in Eq. 6, the usual Perona-Malik

diffusivity function

cη = g(|∇K(u)|) = 1
1 + |∇K(u)|2

K2
d

, (12)

could be chosen (with Kd set to 10 after experimentation).
However, we found that just setting cη to zero gave sim-
ilar results and was simpler; consequently the expression
in Eq. 12 was not used. With the coefficient cη set to zero,
there is no diffusion or denoising in the image gradient
direction. To promote smoothing in the image isophote
direction, the coefficient cζ is set equal to 1. Therefore
Eq. 6 becomes

ut = − 1
2λ

Kζ ζ − (u − f ), (13)

and substituting the approximation of Eq. 11 forKζ ζ yields
the final equation for the iterative solution of the proposed
decomposition model

ut = − 1
2λ

(
f 2iso,xKxx + 2fiso,xfiso,yKxy + f 2iso,yKyy

)
− (u − f )

= − 1
2λ

(
ζ 2
x Kxx + 2ζxζyKxy + ζ 2

y Kyy
)

− (u − f ),

(14)

where (ζx, ζy) = (fiso,x, fiso,y) is a unit vector defined for
each pixel in the image pointing in the isophote direction.
Within the oriented region �O, Eq. 14 is used,

whereas within the non-oriented region �NO, the ordi-
nary evolution equation for Osher-Solé-Vese decom-
position, as in Eq. 4 is utilized. Each equation and
region involves a weighting parameter λ. This parameter
becomes λO in �O, and λNO in �NO. In practice, each
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model is evolved over the entire image, but after conver-
gence restricted to either �O or �NO, as initially defined
by the coherence threshold. This avoids any noticeable
artifacts at the boundaries of the regions by using the
image itself to effectively pad each region for its model of
diffusion along internal interfaces.
We call the decomposition model defined by the PDE of

Eq. 14, the Oriented Laplacian Osher-Solé-Vese (OLOSV)
decomposition model.

3 Denoising bymean curvature motion
A similar denoising model to the OLOSV model devel-
oped in Eq. 14 above is the mean curvature motion
(MCM) denoising model. Both models are based on the
idea of denoising edges, only along and not across them.
However, it will be seen that MCM denoising does not
lend itself readily to a dual norm formulation, and thus
cannot avail of the better quality results obtained from
such a formulation.
The equation defining Mean Curvature Motion denois-

ing is

ut = uζ ζ = |∇u|div
( ∇u

|∇u|
)
, (15)

with uζ ζ the second-order directional derivative of u in
the isophote direction.
To make a fair comparison with the OSV and OLOSV

models in Eqs. 4 and 14, respectively, a fidelity term is
added to the basic MCM of Eq. 15, along with a parameter
λ that controls the relative weighting of the diffusion and
fidelity terms. Thus the version of MCM implemented in
this paper for comparison with OSV and OLOSV is

ut = 1
2λ

uζ ζ − (u − f ). (16)

The implementation of mean curvature motion that we
used in our experiments was based on the following

uζ ζ = ζ 2
x uxx + 2ζxζyuxy + ζ 2

y uyy, (17)

derived by setting (ζx, ζy) = (fiso,x, fiso,y) with this isophote
direction measured in a noise-resistant manner, as in
Section 2.2.1. We found from our experiments that using
these image isophotes gave better denoising results.

3.1 Explicit timestepping
Then Eq. 14 (for OLOSV) and Eq. 16 (for MCM) are each
separately solved via explicit timestepping (with the time
step chosen by experimentation to be �t = 0.002).
As with other decomposition/denoising schemes, with

known texture/noise variance, the value of λ is dynam-
ically updated with iteration number using a method
based on gradient projection. In fact, in oriented regions
(�O) one dynamically updated coefficient λO is used, and
in non-oriented regions, a separate dynamically updated

coefficient λNO is calculated. The final formula that is
obtained for λO is

λO = 1
2σ 2

∫
�O

(f − u)
(
cζKζ ζ + cηKηη

)
dxdy (18)

In non-oriented regions, the expression for λNO at each
iteration is

λNO = 1
2σ 2

∫
�NO

(
f − u

)
�K(u)dxdy. (19)

The above two equations are derived from Eqs. 14 and
4, respectively, by assuming we have reached equilibrium,
so that ut = 0, and then multiplying each side by u− f and
integrating over the image domain �.
For MCM denoising, a formula similar to Eq. 18 is used

to determine λO at each iteration, also based on gradient
projection

λO = 1
2σ 2

∫
�O

(f − u)uζ ζdxdy. (20)

4 Numerical implementation
Two sets of experiments were conducted using the OSV
and OLOSV methods. The first involved an explicit
timestepping solution of the two models, along with the
mean curvature denoisingmodel. The second set of exper-
iments was based on the dual formulation of total varia-
tion minimization of Chambolle [12], which was further
generalized in [13] to deal with the OSV model, and to an
even more general TV-Hilbert model in [14]

pn+1
i,j =

pni,j + �t
(∇ (

K−1div (pn) − λf
))

i,j

1 + �t| (∇ (
K−1div (pn) − λf

))
i,j |

, (21)

with initial condition

p0 = 0.

Then, similar to [14], f + 1
λNO

�divpn converges to
the u component of the decomposition in �NO, the
non-oriented section of the image, which implies that
− 1

λNO
�divpn converges to the component v = f − u in

�NO. Similarly, in the oriented section �O of the image,
f + 1

λO
�ζζdivpn converges to the u component of the

decomposition and thus − 1
λO

�ζζdivpn converges to the
component v = f − u in �O.
When used in conjunction with theOLOSVmodel, such

an implicit numerical method gives rise to a new denois-
ing method, which we call the Implicit Oriented Laplacian
Osher-Solé-Vese, or IOLOSV method.

5 TV-Hilbert space formulation
The proposed IOLOSVmodel presented in this paper dif-
fers from the general TV-Hilbert model in [14] and the
TV-Gabor model in [15], in that, in the proposed model,
the operator K is spatially varying, whereas in the two
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other models, the operator K is constant throughout the
entire image, and not data-dependent.
For two discrete zero-mean image functions f and g,

Aujol and Gilboa [14] defined the inner product < ·, · >

on a Hilbert spaceH as

< f , g >H=< f ,Kg >L2 , (22)

where < f ,Kg >L2=
∑

i,j fi,j(Kg)i,j. Then the Sobolev
space H−1 used in the model of Osher, Solé and Vese
fits into the TV-Hilbert space framework, with the oper-
ator K = −�−1 as the negative of the inverse Laplacian
operator.
The proposed IOLOSV method can also be made

to fit into the TV-Hilbert space decomposition frame-
work, with the operator K spatially varying and equal to
K = −�−1

ζ ζ , the negative of the spatially varying second-
order directional derivative (in the direction of the image
isophote). We denote the Hilbert space thus obtained as
H−1

ζ in order to emphasize its link with both the Sobolev
space H−1 and its dependence on the spatially varying
isophote direction ζ(x, y).
A flow chart is included below illustrating the overall

procedure for denoising with the OLOSV and OSV mod-
els in the oriented and non-oriented parts of the image,
respectively (Fig. 2).

5.1 Calculation of iteration-dependent fidelity parameter
It is shown in [14] that for an M × N pixel image n con-
sisting only of white Gaussian noise of standard deviation
σ , it can be assumed that

||n||2H = CH||n||2L2 = CHMNσ 2, (23)

where CH is a constant that only depends on the Hilbert
space H over which we are taking the norm of the noise
image n. Its calculation will be described in the next
subsection.
The same procedure found in [14] is used in this paper

to dynamically vary the fidelity parameters λO and λNO.
This procedure is based on attempting to solve the prob-
lem

min
u

{∫
�

|∇u|dxdy
}
such that||u − f ||2H = CHMNσ 2.

(24)

In practice, it was found in [14] that the problem posed
by Eq. 24 leads to the oversmoothing of u; instead a pos-
itive factor αH < 1 was added in [14] to the right-hand
side of that equation to form the new problem

min
u

{∫
�

|∇u|dxdy
}
such that||u − f ||2H = αHCHMNσ 2.

(25)

Fig. 2 A flowchart illustrating the overall procedure for denoising with OLOSV and OSV models in the oriented and non-oriented parts of the image,
respectively
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In both equations, the noise component v is defined
to be equal to f − u, where f is the original noise-
contaminated image and u is the obtained cartoon com-
ponent.
Based on our experimentation with the IOLOSV coeffi-

cients, both λO and λNO are initialized to 0.15, and then at
each iteration, their values are updated using the follow-
ing method. At every iteration, ||vO,n||H−1

ζ
and ||vNO,n||H−1

are estimated by calculating ||v||L2 , easily done by taking
the square-root of the sum of squares of the v compo-
nent of the decomposition, and then multiplying by the
factor

√
CH−1 for the non-oriented section of the image,

and
√
CH−1

ζ
for the oriented part. As in [14], given λn

and ||vn||H, λn+1 is obtained from these quantities by the
formula

λn+1 = ||vn||H√
αHCHMNσ

λn. (26)

In the above equation, ||vn||H is the norm of vn in the
Hilbert space H; the calculation of this norm is detailed
below in Section 5.3. Then v is calculated using this new
value of λ for the next iteration. The procedure is imple-
mented separately in �O, where H = H−1

ζ , and in �NO,
where H = H−1. Moreover, the constant αH is chosen
separately in each of �O and �NO, with the selected val-
ues being 0.6 and 0.98, respectively, based on experimental
findings.
For �O we slightly alter the calculation of the numer-

ator of Eq. 26 to ensure enough noise is extracted from
oriented parts of the image. We calculate the L2-norm of
the noise in the non-oriented region �NO and then com-
pute the expected L2-norm of the noise in the oriented
region �O by balancing the value of this norm in �O and
the sizes of both regions, by assuming that the noise power
is spatially invariant across both regions. Finally, in the
denominator of Eq. 26, we use the maximum of the actual
measured L2-norm of the noise in �O and 0.7 times the
expected L2-norm of this noise in this region, based on
that in �NO.
Execution of the proposed algorithm is stopped when

the numerator and denominator of the multiplicative fac-
tor in Eq. 26 become close to one another. More specif-
ically, for the non-oriented region �NO, iterations are
stopped once the numerator becomes greater than 0.95
times the denominator, while for the oriented region �O
we stop iterating once the numerator becomes greater
than 0.99 of the denominator.

5.2 Calculation of constant CH
In [13] it is shown that when H = H−1, as is the case for
the OSV model,

CH−1 = 1
MN

p=M,q=N∑
p=0,q=0

(p,q) �=(0,0)

1
2

(
2 − cos

( 2π
M p

) − cos
( 2π
N q

)) .

(27)

We first observe that the denominator of the expres-
sion for CH−1 corresponds to the discretization of the
Laplacian operator in the frequency domain. Therefore,
similar to the H−1 case and following the methodology
in [13], a similar summation expression is obtained for
CH−1

ζ
, with the denominator of the summation now corre-

sponding to the discretization of the oriented Laplacian in
the frequency domain instead of the discretization of the
plain Laplacian in the frequency domain. Since this only
corresponds to one directional derivative, instead of two
orthogonal directional derivatives, as is the case with the
usual Laplacian operator, the denominator will be half the
value of that for the usual Laplacian. Therefore, we will
have

CH−1
ζ

= 2CH−1 . (28)

5.3 Calculation ofH-norms
Recall from elementary Hilbert space theory that the
norm of a function on a Hilbert space is defined as the
square root of the inner product of the function with itself.
From the inner product definition of Eq. 22, the square of
theH-norm of v, ||v||H is thus defined by

||v||2H =< v, v >H=< v,Kv >L2 (29)

In the case of the OSV model, where H = H−1, and
K = −�−1,

||v||2H−1 =< v,−�−1v >L2 . (30)

This equation was shown in [13] to simplify, based on
Parseval’s identity, to

||v||2H−1 = 1
MN

p=M,q=N∑
p=0,q=0

(p,q)�=(0,0)

1
2

(
2 − cos

( 2π
M p

)−cos
( 2π
N q

)) (|F(v)(p, q)|)2 ,

(31)

with F(v) being the discrete Fourier transform of v, and
the image assumed to be MxN pixels large. From Eqs. 23
and 28 above, we find that

Table 1 Final SNRs for local OSV denoising vs. OLOSV, MCM,
IOLOSV and NLM denoising on test images

Denoising method

Image OSV OLOSV MCM IOLOSV NLM

barbara 14.219 15.101 15.716 15.845 17.313

fingerprint 10.990 10.994 11.963 11.939 11.930

bridges 15.991 16.143 16.214 16.423 16.834

For each test image, the highest SNR value amongst the denoised results from each
of the five algorithms tested is shown in italics
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||v||2H−1
ζ

= 2||v||2H−1 , (32)

both of these squared-norm values being used in the
dynamic update of the fidelity parameter λ, for their
respective Hilbert spaces.

6 Non-local means
To set this paper within the forefront of research on image
denoising, we also compare the proposed OLOSV algo-
rithm with non-local means, a recent addition to the field.
Non-local means denoising, introduced in [16] by Buades
et al. is known to give good denoising results. It does so by

Fig. 3 Original, noisy, OSV and MCM denoising results for barbara image. a barbara. b barbara with additive Gaussian noise (σ = 15). c OSV
cartoon component of barbara. d OSV noise component of barbara. eMCM cartoon component of barbara. fMCM noise component of
barbara



Shahidi and Moloney EURASIP Journal on Advances in Signal Processing  (2016) 2016:116 Page 9 of 15

comparing image patches from different parts of an image
and using all or many of these patches to improve denois-
ing performance by performing a weighted average on
these patches based on their similarity in pixel intensities.
From [16], the non-local (NL) mean of a function u :

� → R is defined as

ū :=
∫
�
u(y)ω(x, y)dy∫
�

ω(x, y)dy
, (33)

where ω(x, y) is a weighting function measuring the
similarity between the image patches centred at pixels x
and y.

Fig. 4 OLOSV, IOLOSV, and non-local means denoising results for barbara image. a OLOSV cartoon component of barbara. b OLOSV noise
component of barbara. c IOLOSV cartoon component of barbara. d IOLOSV noise component of barbara. e NLM cartoon component of
barbara. fMCM noise component of barbara
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7 Test images
Among the test images used in this paper are several
well-known images with significant oriented texture, i.e.
barbara which is 512 × 512 pixels, fingerprint
which is 256 × 240 pixels, and bridges which is
1024 × 683 pixels, each with bitdepth of 8 bits.
Results obtained for the three test images barbara,

bridges and fingerprint are presented in the
next section; these results demonstrate that in general,

denoised images with higher signal-to-noise ratios are
obtained with IOLOSV over both the MCM and OSV
algorithms, and the results are visually superior.

8 Experimental results
8.1 Experimental method
To each of the three original test images, additive white
Gaussian noise (AWGN) was added with a standard devi-
ation σ = 15.

Fig. 5 Original, noisy, OSV and MCM denoising results for fingerprint image. a fingerprint. b fingerprint with additive Gaussian
noise (σ = 15). c OSV cartoon component of fingerprint. d OSV noise component of fingerprint. eMCM cartoon component of
fingerprint. fMCM noise component of fingerprint
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Then each of the four local iterative denoising algo-
rithms (OSV,OLOSV, IOLOSV andMCM)was run on the
noisy test images to obtain a denoised image; the signal-
to-noise ratio is then calculated against the noise-free
original image. We also ran the non-local means (NLM)
algorithm on all three images. For non-local means, 5 × 5
pixel image patches were used to calculate the weight
function measuring similarity between patches centred at
each pixel in 11 × 11 neighborhoods.

Of the four iterative algorithms, only the proposed
OLOSV model with implicit timestepping (IOLOSV) had
a well-defined stopping condition, whereas the other 3
algorithms were run until a peak in the calculated signal-
to-noise ratio (SNR) was detected. This procedure could
actually artificially inflate the SNRs of the other 3 algo-
rithms with respect to IOLOSV, since in practice, the
SNR is not easily calculated for an image being denoised
without having the denoised image at our disposal.

Fig. 6 OLOSV, IOLOSV, and non-local means denoising results for fingerprint image. a OLOSV cartoon component of fingerprint. b
OLOSV noise component of fingerprint. c IOLOSV cartoon component of fingerprint. d IOLOSV noise component of fingerprint.
e NLM cartoon component of fingerprint. f NLM noise component of fingerprint
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As already mentioned in the description of the pro-
posed IOLOSV method in Section 5.1, the values of the
fidelity parameter λ for the oriented and non-oriented
regions of the image are updated dynamically for each
of these regions. We stop the denoising process for the
IOLOSV method separately for each of the oriented and
non-oriented image regions, based on when the dynamic
value of λ for each of these regions stabilizes.

8.2 Results and discussion
Table 1 gives the SNRs of the denoised results from
Osher-Solé-Vese decomposition (OSV), Oriented Lapla-
cian OSV with explicit timestepping (OLOSV), Mean
Curvature Motion (MCM), and Oriented Laplacian OSV
with implicit timestepping (IOLOSV). As can be seen

from that table, the NLMSNRs are generally the best, with
the IOLOSV and MCM SNRs close behind.
Figures 3, 4, 5, 6, 7 and 8 show the cartoon and noise

components obtained from the various denoising algo-
rithms on the three test images, along with the original
and noisy images used for testing all of these methods.
The appearance of the v component is much less ordered
in the OLOSV and IOLOSV results than the results from
the other algorithms. Despite the good SNR of NLM, it
must be remembered that SNR is a global measure, which
does not always accurately capture visual image quality.
The noise components for all images processed with NLM
exhibit very visible structure from the underlying noise-
less image; this is not to be expected in typical white noise,
indicating that the denoising results from NLM are not as

Fig. 7 Original, noisy, OSV and MCM denoising results for bridges image. a bridges. b bridges with additive Gaussian noise (σ = 15). c
OSV cartoon component of bridges. d OSV noise component of bridges. eMCM cartoon component of bridges. fMCM noise component
of bridges
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good as the signal-to-noise ratio would suggest, and not as
good as the results from the iterative variational methods.
This is further illustrated in Fig. 9, which depicts a

zoomed and contrast-enhanced portion of the noise com-
ponent obtained from the proposed IOLOSVmethod and
the NLM algorithm. The contrast enhancement is done
using the imadjust command found in Matlab®’s Image
Processing Toolbox. In the left panel, the NLM result con-
tains visible structure from the original image which has
been removed as part of the noise component, whereas
in the right panel, corresponding to the same region from
the IOLOSV result, such structures are not visible. Addi-
tionally, the NLM result takes longer to generate than the

IOLOSV one, due to the high complexity of the non-local
means algorithm.

9 Conclusions
The OLOSV decomposition scheme, in both its explicit
and implicit forms of implementation, has been found to
be extremely good at denoising oriented texture, and is
a substantial improvement over the model of Osher, Solé
and Vese on which it is based. It also has some other good
properties.
For example, one good property of OLOSV is that

it can be generalized to images where there are up to
two dominant isophote orientations at a point. These

Fig. 8 OLOSV, IOLOSV, and non-local means denoising results for bridges image. a OLOSV cartoon component of bridges. b OLOSV noise
component of bridges. c IOLOSV cartoon component of bridges. d IOLOSV noise component of bridges. e NLM cartoon component of
bridges. f NLM noise component of bridges
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Fig. 9 Comparison of contrast-enhanced and zoomed portion of noise components from a NLM and b IOLOSV models

orientations can be calculated using the multiple ori-
entation framework in [17]. In regions where there are
two orientations present, the model’s evolution equation
consists of the sum of two oriented Laplacians with
isophote directions ζ1 and ζ2 and gradient directions
η1 and η2.
Additionally, it was found from the experiments in this

paper that cartoon edges were much less visible in the
noise components v of the OLOSV and IOLOSV results
when compared with the OSV noise components (e.g.

compare Fig. 5d to Fig. 6b, d). This is because a directional
diffusion was performed close to these cartoon edges (if
they were calculated as being in the coherent regions of
the image), and along the direction of the edges, and
not perpendicular to them. Unfortunately, there tends to
be some slight visible smearing of the noise close to the
edges, but this could be reduced by only including pix-
els on cartoon edges in the region in the image computed
to have a coherent orientation, and not those around
the edges. The detection of such cartoon edges could be
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implemented with a Total-Variation-like diffusion, similar
to [18].
It may be argued that the Oriented Laplacian OSV

model used for denoising is very similar to ordinary
Oriented Laplacian diffusion, which when the diffusion
across edges is set to zero, degenerates to the mean cur-
vature motion denoising model [19] tested in this paper.
However, the OLOSV model has two main differences
with standard Oriented Laplacian diffusion:

1. Mathematically OLOSV is a novel nonlinear
diffusion flow based on the Laplacian of the level-set
curvature of the cartoon component, instead of the
Laplacian of the image itself, and

2. OLOSV is based on a model for image
decomposition, and thus variations of it could
potentially be used for other applications of image
decomposition, e.g. inpainting.

In addition to the above two distinguishing properties of
the proposed OLOSV model with respect to mean curva-
ture motion, OLOSV also has two distinct advantages:

1. The proposed OLOSV model fits into the Hilbert
space formulation of [14], and therefore admits an
implicit timestepping implementation, which we
called IOLOSV in this paper, as opposed to mean
curvature motion which does not. This means that
the proposed method is far more efficient; this is
confirmed by our experiments, that required only on
the order of ten iterations for convergence, as
opposed to several hundred for mean curvature
motion.

2. The proposed IOLOSV method admits an easy-to-
define stopping criterion which allows automatic
cessation of execution of the algorithm when the
SNR is at or close to its peak value. Such a stopping
criterion is not as easily defined for mean curvature
motion, necessitating human intervention to
determine when the image has in fact been denoised.

Finally, the OLOSV decomposition model can be
extended quite easily to colour images by using the colour
total variation model of Chan and Blomgren [20]. This
remains as future work.
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