
EURASIP Journal on Advances
in Signal Processing

Junjie et al. EURASIP Journal on Advances in Signal
Processing  (2016) 2016:126 
DOI 10.1186/s13634-016-0418-z

Research Open Access

Computation-distributed probability
hypothesis density filter
Junjie Wang1†, Lingling Zhao1*†, Xiaohong Su1, Chunmei Shi2 and JiQuan Ma3

Abstract

Particle probability hypothesis density filtering has become a promising approach for multi-target tracking due to its
capability of handling an unknown and time-varying number of targets in a nonlinear, non-Gaussian system. However,
its computational complexity linearly increases with the number of obtained observations and the number of particles,
which can be very time consuming, particularly when numerous targets and clutter exist in the surveillance region. To
address this issue, we present a distributed computation particle probability hypothesis density(PHD) filter for target
tracking. It runs several local decomposed particle PHD filters in parallel while processing elements. Each processing
element takes responsibility for a portion of particles but all measurements and provides local estimates. A central unit
controls particle exchange among the processing elements and specifies a fusion rule to match and fuse the estimates
from different local filters. The proposed framework is suitable for parallel implementation. Simulations verify that the
proposedmethod can significantly accelerate andmaintain a comparative accuracy compared to the standard particle
PHD filter.
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1 Introduction
Multi-target filtering is a class of dynamic state estimation
problems in which the object of interest is a finite set that
consists of a random number of elements and the values
of individual elements [1]. Classical approaches, such as
the nearest neighbor (NN) [2], the joint probabilistic data
association filter (JPDA) [3], and multi-hypothesis track-
ing (MHT) [4] , are based on the framework of filter and
data association. Recently, considerable work has been
devoted to random finite set (RFS)-based approximations,
such as the probability hypothesis density (PHD) [5, 6], the
cardinalized PHD (CPHD) [7, 8], and the multiple-target
multi-Bernoulli (MeMBer) filter [9]. These methods avoid
the data association problem and provide the set-valued
estimations of target states.
Among these filters based on RFS, the MeMBer fil-

ter is more suitable for low-clutter environments. The
CPHD filter propagates both the intensity of the RFS and
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the posterior cardinality distribution; consequently, it pro-
vides a more accurate target number estimation but a
lower efficiency. For the PHD filter, a particle PHD filter
for nonlinear and/or non-Gaussian MTT problems which
are more suitable for general scenarios was proposed in
[1]. Moreover, another implementation is a closed-form
solution [6] with assumptions on linear Gaussian sys-
tems, which is called the GM-PHD filter. The GM-PHD
filter provides the best efficiency in general but is con-
strained to linear Gaussian systems, whereas the particle
PHD filter can adapt nonlinear or non-Gaussian MTT
problems even in dense-clutter environments. However,
the particle PHD filter suffers from high computational
complexity because hundreds of thousands of particles
are required. To solve the high computational complexity
problem, Hong et al. [10] proposed a new update model
for the particle PHD filter that is suitable for hardware
implementation. In the paper [11], a data-driven particle
PHD filter was developed for real-time multi-target track-
ing of nonlinear/non-Gaussian systems in dense-clutter
environments. Using gating technology, Li et al. [12] accel-
erated the PHD filter to some extent. A pipeline approach
was also introduced into the particle PHD filter in [13].
In contrast to the aforementioned methods, we attempt to
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improve the efficiency of the particle PHD filter through
the use of a distributed architecture, which is an effec-
tive solution for accelerating its computation to satisfy the
time demands in MTT and some distributed hardware
such as wireless sensor networks (WSNs) [14, 15]. The
existing distributed PHD/CPHD filter is generally based
on such an architecture in which each sensor runs a local
PHD/CPHD filter with some local measurements, called
distributed sensing PHD (DSPHD) filter [16, 17].
In this paper, we propose a distribution implementa-

tion for the particle PHD filter using multiple processing
elements (PEs) and a central unit (CU). The CU trans-
fers all measurements to all the PEs first, and then each
PE runs a local particle PHD filter and provides target
state estimation with labels independently and in paral-
lel. To match the local estimations from different PEs, we
replace the general particle PHD filter with the decom-
posed particle PHD filter [18] at each PE, which can
help associate estimated states according to their corre-
sponding measurements. Finally, the global estimates are
obtained on the CU through the association and fusion of
the local estimated states from different PEs. Two fusion
rules are presented for different tracking scenarios with
clutter. Moreover, a particle exchange strategy is exploited
to eliminate particle degradation.
Compared to the DSPHD filter exploiting local mea-

surements and information exchange to estimate the
global states, our algorithm provides a different type of
allocation of measurements. In our algorithm, each PE
runs with all sensor measurements but only a subset of
particles, whereas in the general distributed PHD/CPHD
filter, each PE runs with some sensor measurements
rather than all measurements. In the DSPHD filters, the
local means and covariances of the state estimates are
exchanged among PEs and the CU. Since the local fil-
ters use the different particles and measurements, they
do not speak the same language. Therefore, they need to
agree on consensus through some mechanisms. In con-
trast, our distributed computational PHD filter shares the
same measurements but only uses a subset of particles in
each PE; therefore, their languages are compatible with
each other, and thus, PEs can exchange information of the
particle-weight couples.
The main contributions of this paper consist of the

following three parts:
First, we propose a distributed architecture for the PHD

filter, which makes the update and resampling step in the
particle PHD filter in parallel in part and significantly
accelerates the particle PHD filter. This architecture is
valid not only for the particle PHD filter but also for the
GM-PHD filter.
Second, we exploit the decomposed PHD filter to

extract the estimated states and obtain their correspond-
ing measurement labels, which guarantees the association

and fusion of states from different PEs. Furthermore, we
present two rules for the fusion of local state estimations,
considering the influence of clutter on the PHD filter.
Finally, based on the architecture and algorithm of the

proposed distributed particle PHD filter, the real-time
performance is enhanced while the tracking accuracy is
comparable to a traditional particle PHD filter.
The remainder of this paper is organized as follows.

The standard particle PHD filter is briefly described
in Section 2. In Section 3, we present and analyze
our distributed particle PHD filter in detail. Simulation
results are presented in Section 4. Section 5 provides the
conclusions.

2 Background
2.1 The PHD filter
The PHD filter was initially developed in the framework
of finite set statistics (FISST) [5]. The PHD function D�

is the first-order moment of the random finite set (RFS) �

and can be defined as

D�(x) ≡ E[ δ�(x)]=
∫

δX(x)P�(dX) (1)

where δ�(x) = ∑
x∈� δx is the random density represen-

tation of �. P� is the probability distribution of the RFS
�. E[ ·] is the expectation operator. The PHD D� of � is a
unique function on space E, unless it is on a set of measure
zero. The PHD has the properties that [19] , the integral
over a measurable subset S ⊆ E,

∫
S D�(x)λ(dx) is the

expected number of targets. In addition, the peaks of the
PHD function provide the estimates of the target states.
The PHD filter consists of two steps: the prediction step

and the update step. It is used to recursively estimate
the combined posterior density using multi-target tran-
sition density fk|k−1(·) and measurement likelihood gk(·).
Assuming that the RFS is Poisson, it has been shown that
the recursion propagating the PHD Dk|k of the multi-
target posterior pk|k follows [5]

Dk|k = (�k ◦ �k|k−1)Dk−1|k−1 (2)

where ◦ represents the composition of functions, �k|k−1
is the prediction operator, and �k is the update operator.
They are defined as follows:

(�k|k−1α)(x) = γk +
∫

fk|k−1(x, ξ)α(ξ)λ(dξ) (3)

(�kα)(x) =
⎡
⎣1 − PD(x) +

∑
z∈Zk

ψk,z(x)
κk(z)+ < ψk,z,α >

⎤
⎦ α(x)

(4)

where PD(·) is the probability of detection, κk(·) denotes
the intensity function of clutter at time k, γk(·) denotes



Junjie et al. EURASIP Journal on Advances in Signal Processing  (2016) 2016:126 Page 3 of 11

the intensity function of the random finite set of sponta-
neous birth targets, ek|k−1(ξ) denotes the survival proba-
bility with state ξ ;ck(z) as the clutter probability density,
and bk|k−1(·|ξ) denotes the PHD of the RFS Bk|k−1({ξ})
spawned by a target with previous state ξ .

φk|k−1(x, ξ) = ek|k−1(ξ)fk|k−1(x|ξ) + bk|k−1(x|ξ)

ψk,z(x) = PD(x)gk(z|x)
κ(z) = λkck(z)
< f , g > = ∫

f (x)g(x)λ(dx)

2.2 Particle PHD filter
As an approximate implementation of the PHD filter, the
particle PHD filter is composed of three steps (for detailed
parameter notation, refer to [1]):
At time k > 0, let Lk and Jk denote the number of

surviving particles and birthed particles, respectively. qk
denotes the importance function.

1) Prediction step.
For i = 1, . . . , Lk−1, sample x̃ik ∼ qk(.|xik−1,Zk) and
compute the predicted weights

w̃i
k|k−1 = φk|k−1(xik , x

i
k−1)

qk(xik|xik−1,Zk)
wi
k−1 (5)

For i = Lk−1 +1, . . . , Lk−1 + Jk, sample x̃ik ∼ pk(.|Zk)
and compute the weights of newborn particles

w̃i
k|k−1 = γk(xik)

pk(xik|Zk)

1
Jk

(6)

2) Update step.
For each z ∈ Zk ,compute

Ck(z) =
Lk−1+Jk∑

j=1
ψk,z (̃x

j
k)w̃

j
k|k−1 ∗ x̃jk (7)

For i = 1, . . . , Lk−1 + Jk, update weights

w̃i
k =

⎡
⎣ν(̃xik) +

∑
z∈Zk

ψk,z (̃xik)
κk(z) + Ck(z)

⎤
⎦ w̃i

k|k−1 (8)

3) Resampling step.
Compute the total target number Nk = ∑Lk−1+Jk

j=1 w̃j
k

and resample
{̃
xik , w̃

i
k/Nk

Lk−1+Jk
i=1

}
to obtain{

xik ,w
i
k/Nk

}Lk
i=1.

As with the particle filter, the application of the parti-
cle PHD filter is limited by its computational complexity,
which is primarily caused by resampling. At the same
time, the computational complexity is also caused by the
update, in which all particles participate.

3 Distributed computation particle PHD filter
The particle PHD filter has the capacity of handling non-
linear non-Gaussian dynamics inherent from the particle
filter. However, it also suffers from a high computational
cost, which limits its application in real-time systems.
To improve its efficiency, we propose a distributed com-
putation particle PHD filter (DCPPHD). This method
is motivated by the distributed resampling with non-
proportional allocation (DRNA) proposed by Bolic et al.
[20]. The underlying concept of the DRNA is to attain par-
allelism by resampling independently for different subsets
of particles. In a multicore computer with K processing
elements (PEs), n = 1, . . . ,K , a particle filter is per-
formed locally by each PE. To keep balance of aggregated
weights, PEs exchange parts of particles with each other.
Although DRNA has provided an effective distribution
framework, there are still challenges in the distribution
implementation of the particle PHD filter. First, more than
one target generally exists in the surveillance region; thus,
each PE provides a local state estimation set rather than
a single estimation. How to distinguish these state esti-
mations among PEs, that is, which estimations originate
from the same target, is a key issue to address. Further-
more, after associating state estimations, it is necessary
to design a fusion method in order to obtain the global
estimations. To address these problems, in the proposed
DCPPHD, we exploit the decomposed PHD filter [18]
to obtain labeled state estimations corresponding to the
measurements, which gives rise to the direct association
of the estimated states. The global estimated states can be
obtained from the labeled local state estimations. More-
over, some fusion strategies are presented according to
different tracking scenarios.

3.1 General structure
In the proposed DCPPHD, particles are divided into
groups to make the update and resampling steps parallel
between groups. Each PE only contains a group of par-
ticles and runs a particle PHD filter independently until
they exchange parts of particles among each other. A cen-
tral unit (CU) takes responsibility for transferring mea-
surements to each PE, fusing the local estimations from
PEs and providing the global state estimations. Assume
that K PEs exist and that each PE runs a local particle
PHD filter with M particles. Therefore, the total number
of particles of the DCPPHD is N = MK . The CU trans-
fers all measurements to K PEs. For all the PEs, after the
prediction, update and resampling steps, each local parti-
cle PHD filter provides local estimations (target number
and states) to the CU in parallel. In particular, resampling
is conducted locally without interacting with the particles
in other PEs. After receiving these local estimations from
the different PEs, the CU will associate and fuse them
according to the proposed rules. To avoid the degeneracy
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of the particles in local PEs, a particle exchange step is uti-
lized, in which each PE mutually interchanges part of its
particles to another PE.
The structure of the DCPPHD with four PEs is shown

in Fig. 1. At each time step, the CU broadcasts all the
measurements to all PEs; then, each PE runs its local
decomposed particle PHD filter and transmits its local
estimated states and corresponding index set

{
ζ l
k , I

l
k

}
to

the CU, where Ilk denotes the index of the measurement
that is related to ζ l

k . Subsequently the CU can associate the
local estimated states based on the measurement index to
construct global estimates. Following the local estimation
step, each PE exchanges L particles with its neighboring
PEs.
Note that the particle exchange step begins once the

local estimations have been submitted to the CU.

3.2 Algorithm of DCPPHD filter
The algorithm of the DCPPHD filter primarily involves
four steps and runs on PEs and the CU: local filter, local
estimation, particle exchange on PEs, and global estima-
tion on the CU. The details of each step are summarized
in the following.

3.2.1 Local filter and local labeled state estimation
To indentify the set-valued state estimations from dif-
ferent PEs, we use the decomposed PHD filter to find
the relationship between estimated states and measure-
ments rather than the standard particle PHD filter. For
the decomposed PHD filter, the estimated PHD is decom-
posed into several sub-PHDs in the weight domain. This

concept comes from the fact that the multi-target PHD
Dt|t can be rewritten as follows:

Dt|t(x|Z1:t) =
∑
z∈Zt

�Dt|t(x|z) + �Dt|t(x|φ) (9)

where

�Dt|t(x|z) = PDLt(z|x)Dt|t−1(x)
κt(z) + ∫

PDLt(z|ζ )Dt|t−1(ζ )dζ
(10)

and

�Dt|t(x|φ) = (1 − PD)Dt|t−1 (11)

where �Dt|t(x|φ) denotes the intensity function from the
target with no measurement received. From Eq. (9), PHD
can be considered as the sum of Mt + 1 sub-PHDs cor-
responding to every single target and every sub-PHD is
relevant to a measurement received at time t. Conse-
quently, the target states can be directly estimated from
the sub-PHDs and each target state is labeled by its corre-
sponding measurement. The local filter and local labeled
state estimation algorithm is as follows:

1. Step 1: Prediction. At time t − 1, assume that the
particle set

{
x(n,m)
t−1 ,w(n,m)

t−1

}
, n = 1, . . . ,K ,m = 1, . . . ,

Lnt−1 is available where L
n
t−1 denotes the number of

particles in the nth PE. For the nth group andm = 1,
. . . , Lnt−1, sample

{
x(n,m)
t

}
from qt for surviving targets

and sample
{
x(n,m)
t

}
,m = Lnt−1 + 1, . . . , Lnt−1 + Jk/K ,

from p(x) for newborn targets.

CU

PE1 PE2

PE4 PE3

Fig. 1 The structure of DCPPHD
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2. Step 2: Update. Let Zt denote the measurement set.
For each group n, n = 1, . . . ,K and each observation
zp ∈ Zt , p = 1, . . . ,Mt ,

Ck(zt,p) =
Lnt−1+Jt∑
i=1

ψt,zt,p (̃x
i,n
t )w̃(i,n)

t|t−1̃x
(i,n)
t (12)

Gi,p,n
t = ψt,z (̃xi,nt )

κ(zt,p) + Ct(zt,p)
(13)

then calculate the sub-weight of each particle for
observations zt,p

�w̃i,p,n
t = Gi,p,n

t w̃i,n
t|k−1 (14)

Additionally, the particle sub-weight for obtained
target without measurements is

�w̃i,p,0
t = ν(̃xi,nt )w̃i,n

t|t−1 (15)

Based on formula (9), particle weights can be
computed by

w̃i,n
t =

Mt∑
p=1

�w̃i,p,n
t + �w̃i,p,0

t (16)

3. Step 3: Local estimation. For each measurement zt,p,
p = 1, . . . ,Mt , compute the sum of �w̃i,p,n

t relevant
to zt,p in group n,

�Wn,p
t =

M+Jt∑
i=1

�w̃i,p,n
t . (17)

Then, the sum of sub-weight �Wn,0
t corresponding

to targets without observations is

�Wn,0
t =

M+Jt∑
i=1

�w̃i,0,n
t . (18)

The target number can be estimated by

LTn
t = round

⎛
⎝

i=Lnt−1+Jk/K∑
i=1

w̃i,n
t

⎞
⎠ (19)

where round(
∑i=Lnt−1+Jk/K

i=1 w̃i,n
t ) is the nearest

integer to
∑i=Lnt−1+Jk/K

i=1 w̃i,n
t . Find the LTn

t largest
sum weight �Wn,p

t and the index set Int relevant to
�Wn,p

t . The local estimated target state can be
calculated by ζt,l = wi,l,n

t x̃i,nt where l in index set,

wi,l,n
t = �w̃i,l,n

t∑M+Jk
i=1 �w̃i,p,n

t
(20)

When the nth PE obtains a local estimation set
ζ l
t , l = 1, . . . , LTn

t , the PEs transmit the pair{
ζ
l,n,p
t , Il,p,nt

}
to the CU, where Il,p,nt denotes the state

estimation ζ
l,n,p
t from the n − th PE coming from the

measurement zt,p.
4. Step 4: Resampling.

Each PE calculates its own estimated number of
targets LTi

t from its total particle mass according to
Eq. (19). Consequently, the number of particles of the
i th PE is updated by

Ñi = LTi
tρ (21)

Then, the resampling can be performed locally at all
the PEs. Subsequently, normalize the weights of the
particles with the sum of weights at each PE.

3.2.2 Global estimation
After receiving the local state estimations

{
ζ
n,l,p
t , Il,p,nt

}
from all PEs, the CU will combine the local estimated
states and their corresponding measurement index from
each group to construct a global estimate. Classify the
estimated states with a same measurement index into a
group ζt,i =

{
ζ
1,l1,p
t , ζ 2,l2,p

t , . . . , ζK ,lK ,p
t

}
, where if the nth

PE does not provide an estimated state ζ
n,ln,p
t , let ζ n,ln ,p

t = φ.
For each estimated state group ζt,i, calculate a unified

state estimation according to a fusion rule. Here, we pro-
pose two fusion rules for global estimation under the basic
assumption “at most one measurement per target” [21].
Rule 1: Only if |ζt,i| = K , a global state can be obtained

by x̂t = ∑K
i=1 (ζt,i)/K . This rule is designed for tracking

scenarios with a higher clutter rate, in which false state
estimates from false alarms tend to occur. However, false
target state estimates are not always obtained by all PEs;
then, rule 1 can help to eliminate some of them because
only when all PEs consider an observation from a target
will it be considered from a target.
Rule 2: If |ζt,i| >= K/2 (half number of PEs), then a

global state can be obtained by x̂t = mean(ζt,i). This rule
is designed for tracking scenarios with lower clutter rates.
Rule 2 relaxes the condition that a target exists because
once the majority of PEs consider an observation from a
target, the global estimation also considers it as if from a
target.

3.2.3 Particle exchange
The particles in the nth PEwill tend to degenerate when its
aggregate weight becomes negligible relative to the aggre-
gated weights of the other PEs. Then, the nth PE hardly
contributes to the approximation of the posterior proba-
bility distribution. To keep the PEs valid, neighboring PEs
should exchange a portion of particles.
The nth PE transmits P particles to its neighbor. The

selected particles from the nth PE to the sth PE can be
denoted as Mn,s

t =
{
x(n,i1)
t , . . . , x(n,iP)

t

}
. Then, the infor-
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mation of particle-weight pairs held by the ith PE after the
exchange step is given by

Xi
t = Xi

t ∪ M(s,i)
t =

{
x̂(i,j)
t

}Ni+P

j=1

Wi
t =

{
ŵ(i,j)
t

}Ni+P

j=1
One of the particle exchange methods is to select the

P highest weight particles at each PE to exchange. Let
p̂i(Xk|Zk) be the local approximation of the posterior pdf,
which can be defined as

p̂i =
Ni∑
j=1

wi,j
k δxi,jk dx (22)

where the subscript i indicates that weights and particles
are referred to the ith local PHD filter. Let ŵi,j

k denote the
weight of the jth particle of the ith PE after the exchange
step but prior to resampling. Let N̂i = Ni + P be the total
number of particles of the i-th PE after the exchange step
prior to resampling.
It is known that the most representative particles of the

p̂i(Xk|Zk) are those with the highest weights. We utilize
the Kullback-Leibler (KL) divergence to measure the dis-
tance between two pdfs. The smaller the KL divergence
is, the closer the two pdfs are. Consider the approxi-
mated posterior density p̂′

i(Xk|Zk) computed using only P
particles

p̂
′
i(Xk|Zk) =

P∑
j=1

wi,j
k δxi,jk dx (23)

The P particles are those with the highest weights. The
KL divergence between p̂i(Xk|Zk) and p̂′

i(Xk|Zk) can be
written as:

D(p̂i, p̂
′
i) = −

Ni∑
j=1

wi,j
k log

P∑
ij=1

wi,ij
k (24)

The maximization of
∑P

j=1 w
i,j
k is equivalent to the min-

imization of D(p̂i, p̂
′
i).

Therefore, the exchange information can be constructed
by selecting the particles with the highest weights, to
be communicated with other PEs. Thus, we use the P
particles with the highest weights.
The global posterior p̂(Xt|Zt) can be represented as a

local posterior p̂i(Xt|Zt). We define the cumulative sum of
the local KL divergences as:

K∑
i=1

D(p̂, p̂i) = −
K∑
i=1

�t log(
Ni+P∑
j=1

wi,j
t )

= −
K∑
i=1

log(
Ni+P∑
j=1

wi,j
t

�
)

= −
Ni+P∑
j=1

log(�i
�

+
Ni+P∑
j=Ni

wi,j
t

�
)

(25)

where � = ∑K
i=1 �i. From Eq. (25), we can infer that the

higher the number of exchanged particles is, the closer the
local posterior and global posterior are. With P → ∞,
the local posterior is the closest to the p̂i(Xt|Zt). However,
increasing the number of exchanged particles can lead to
a high communication burden. In particular, if we choose
the all-to-all network configuration in which the PE can
receive other PEs’ local approximation posterior, then the
all-to-all network can obtain the best estimation com-
pared with other types of networks. The network and the
selected particles should compromise between the com-
munication burden and estimation quality. Therefore, we
simply select those particles with the highest weights to
exchange to balance these two factors.

DCPPHD
At time t = 0
Initialization
for each PE, n = 1, . . . ,K :
a) Draw x(n,i)

0 , for i = 1, . . . , Lnt , from the prior pdf p(x0)
and assign equal weights, w(n,i)

0 = 1
Lnt
.

b) Set χ
(n)
0 =

{
x(n,i)
0

}Lnt
i=1

,Wn
0 =

{
w(n,i)
0

}Lnt
i=1

.
At time t > 0, for n = 1, . . . ,K :
Local filter
for i = 1, . . . , L(n)

t−1 do
x̃t(i,n) ∼ q(·|x(i,n)

t−1 , zt).
end for
for i = L(n)

t−1 + 1, . . . , L(n)
t−1 + Jk/K do

x̃t(i,n) ∼ p(·|zt).
end for
for i = 1, . . . , L(n)

t−1 + Jk/K do
weight update
w(i,n)
t =[ ν(̃xit) + ∑

z∈Zt
ψt,z (̃xit)

κk(z)+Ct(z) ] w̃
i
t|t−1

end for
estimate Nt(n) and ζ(n) as in 3
resample the L(n)

t−1+ Jk/K particles intoNt(n)ρ particles
and set L(n)

t = Nt(n)ρ

Global estimation
According to the 3.2.2, get the global estimation.
Particles exchange
neighbor PEs exchange particles, as described in 3.2.3,
to obtain the sets

{
χ

(n)
t ,Wn

t

}
.

3.3 Analysis of DCPPHD
The efficiency of improvement using parallel computing
can be roughly estimated using Amdahl’s law. Accord-
ing to Amdahl’s law [22], the acceleration of DCPPHD is
defined by
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S(K) = 1
p + (1 − p)/K

where S(K) is the theoretical acceleration achieved for
K PEs, where p is the proportion of the algorithm
that sequentially executed. For a completely parallelizable
algorithm (p = 0), the DCPPHD has a theoretically
maximum achievable acceleration limited to K. Noted
that Amdahl’s law only represents a theoretically pre-
dicted acceleration. In practical cases, the extra time intro-
duced by the parallel computing should also be taken into
consideration.
In the case of the DCPPHD filter, the parallel

operations take a higher percentage; thus, the
DCPPHD algorithm has the potential to achieve good
acceleration.

3.4 Remark
The distributed computational PHD filter can be intro-
duced to the jump Markov systems (JMS) with the tran-
sition probability being a constant instead of a variable
following some distribution. For the jump Markov sys-
tems, several versions of the PHD filter have been pro-
posed: (1) Augmented PHD filter and its extension for
the linear jump Markov systems and the nonlinear jump
Markov models proposed by Pasha et al [23]; (2) the
generalized pseudo Bayesian (GPB) PHD and best-fitting
Gaussian (BFG) PHD filter proposed in [24] and [25],
respectively. These methods can be extended to the dis-
tributed version based on the mechanism proposed in
our paper. For example, in the augmented PHD filter,
multiple PHD filters work independently under differ-
ent models, consequently, each PHD filter can be con-
verted into our DCPPHD filter running in parallel on each
PE, which does not influence the key idea of the aug-
mented PHD filter in essence. On the other hand, for
the JMSPHD filter propose in [24] and [25], the same
approximation from the jump Markov system to a sin-
gle model by GPB or BFG can be also used on CU in
our DCPPHD before filtering. Therefore, our DCPPHD
filter can be applied for the JMS under the assumption
that the transition probability is a constant. However,
for the semi-Markovian jump systems mentioned in the
papers [26] and [27], the transition probabilities with
sojourn-time subject to Weibull distribution or Laplace
distribution, Gaussian distribution, etc. is time-varying,
which does not satisfy the assumption for the current
JMS PHD filter; thus, our DCPPHD cannot be applied for
the semi-Markovian jump systems directly since transi-
tion probabilities are unknown and need to be estimated
at each time. The details about the augmented PHD fil-
ter, GPB PHD filter, and BFG PHD filter refer to [23–25],
respectively.

As one kind of the typical distributed systems, multi-
agent systems have been widely used in many applications
[28–31]. The PHD filter including both of the proposed
DCPPHD and DSPHD can be applied for the multi-agent
systems with switching network topologies and periodic
sampling by an extension to the consensus PHD fil-
ter. However, all of them are not suitable in the case
of stochastic switches of multi-agent systems because of
the fluctuation of the deterministic parameters and the
timescales of communication and observation. To solve
this problem, the mean square and almost sure conver-
gence can be introduced into the PHD filter for the peri-
odic multi-agent systems. In reference [32], the problems
of random link failures, stochastic communication noises,
and Markovian switching topologies are addressed and
the mean square and almost sure convergence are estab-
lished. However, for the multi-agent systems with event-
based sampling mentioned in references [33] and [34],
since the non-periodic event-based sampling is exploited,
the DSPHD filter and our algorithm cannot be applied
directly as they are taken only if some events happen
rather than with a fixed sampling interval, which does
not satisfy the model assumptions of the PHD filter.
Therefore, extra approximation or other mechanism are
required to adapt the PHD filter to such multi-agent sys-
tems. One possible solution may be developed according
to the idea proposed in paper [35]. The author proposed
a modified Kalman filter for target tracking combined
with the send-on-delta sampling [36]. When no measure-
ments are received, the last received measurement with a
dynamic measurement noise can be used to update step.

4 Simulation results
In this section, we provide the results from experiments
on simulation data to evaluate the performance of the pro-
posed DCPPHD filter. The DCPPHD filter is compared
to two traditional particle PHD filters with different parti-
cle numbers. The number of particles in DCPPHD is the
same as that of the first particle PHD filter (PHD1). The
numbers of particles used in the entire DCPPHD filer and
PHD1 both areK times larger than that of another particle
PHD filter (PHD2), i.e, the number of particles in PHD2
is equal to the number of particles in one PE of the DCP-
PHD filter. The purpose of the comparison with PHD2 is
to verify whether the performance of the DCPPHD filter
can degenerate to one PE. The algorithm is programmed
with a MATLAB code running on an HP Z600 Worksta-
tion with 2x Intel Xeon processors at 2.53 GHz with 6-GB
ram, running Windows 7 Professional 64 b.

4.1 Model
For simplicity, we consider a two-dimensional tracking
scenario. The dynamic state model is expressed in the
following form:
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xk+1 =

⎡
⎢⎢⎣
1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

⎤
⎥⎥⎦ xk +

⎡
⎢⎢⎣
T2/2 0
1 0
0 T2/2
0 1

⎤
⎥⎥⎦ ωk (26)

where xk =[ xk , ẋk , yk , ẏk] is the target state vector at
time k and T = 1 is the sampling period. [ xk , yk] is the
position, and [ ẋk , ẏk] is the velocity. wk =[ωx

k ,ω
y
k] is the

vector of independent zero-mean Gaussian white noise

with standard deviations of
[
0.025 0
0 4

]
. There is only a

signal sensor in the scenario and the target-originated
measurements are given by

zk =[R, θ ]T =
[ √

x2k + y2k
arctan xk

yk

]
+

[
vRk
vθ
k

]
(27)

where vRk and vθ
k are mutually independent zero-mean

Gaussian white noise with variance σR = 1m2, σθ =
0.01rad2. Clutter κk is uniformly distributed over the
surveillance region with a Poisson distribution with a rate
of λk . The probability of target survival is 0.9, and the
detection probability is PD,k = 1. The intensity of target
birth isN (·, x,Q), whereN (·, x,Q) denotes a normal den-
sity with mean x and covariance Q. In this experiment,
x = [0, 3, 0,−3]T and Q = diag[ 10; 1; 10; 1]. The rates of
clutter range over 3 different levels (λ = 0, 10, 50.).
The surveillance region is [−π ,π ]×[−1000, 1000]

rad m. There are eight PEs in the experiment. The initial
number of particles is 2000.
Every existing or newborn target is assigned 200 parti-

cles in each group.

4.2 Simulation results
We run 100 independent simulations of the model given
in Subsection 4.1.
The true trajectories of the five targets and the esti-

mated positions by PHD1 and DCPPHD are plotted in
Figs. 2a–c, respectively. The red points denote the esti-
mated positions. As shown, the estimated positions of the

DCPPHD and PHD1 are similar, and they are all close to
the true tracks.
The true target number and the average estimated tar-

get number by DCPPHD, PHD1, and PHD2 at each scan
are presented in Fig. 3. It can be observed that under the
same simulation conditions, PHD1 and the DCPPHD fil-
ter achieve similar estimation accuracy , whereas PHD2
has the largest estimated error.
We use the optimal sub-pattern assignment (OSPA) as

a multi-target miss-distance metric [37]. The parameters
in OSPA are set as p = 1 and c = 100 in our evaluation.
Figure 4 shows OSPA distances of the DCPPHD, PHD1,
and PHD2. The times of these three methods are illus-
trated in Fig. 5. From Fig. 5, it is observed that the time
of DCPPHD is considerably less than that of PHD1 and
a slightly more than that of PHD2. Note that the time of
DCPPHD is the execution time in theory.
Table 1 shows the average results over 100 Monte Carlo

runs including the time, mean of OSPA, and standard
deviation (std) of OSPA. One objective with the simula-
tions is to assess the potential efficiency of DCPPHD. For
this purpose, we record the following times

• Tcp is the average execution used by the operations
that cannot be implemented in parallel in a
DCPPHD. It is calculated according to the sum time
of global estimation and particle exchange.

• Tpi is the average execution time of the operations
that can be implemented in parallel in a DCPPHD.

• Tsi is the average execution time of the
implementation of the particle PHD filter. For
DCPPHD, it is calculated according to
Tsi = Tcp + Tpi/K .

As shown in Table 1, the mean OSPA distances of the
DCPPHD filter and PHD1 are less than that of PHD2 at
different clutter rates, proving that the DCPPHD filter has
comparable accuracy with PHD1 and outperforms PHD2.
This result indicates that DCPPHD can achieve the same
efficiency level of PHD1 but will not degenerate to the
PHD2 level, i.e., one PE of DCPPHD. Although each PE
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Fig. 2 a–c Target trajectories estimated by the PHD1 filter and DCPPHD filter
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Fig. 3 Estimated number of targets against ground truth

has the same number of particles as PHD2, the estimation
results using the fusion strategy on eight PEs are better
than the result of each PE.
The approximate times consumed by these approaches

are also listed in Table 1, which shows that DCPPHD has
great potential (Tpi/K � Tcp) for also achieving in a
shorter execution time, producing the same level of accu-
racy as the traditional particle PHD filter. In different clut-
ter environments, the theoretically maximum achievable
accelerations are 3.38, 5.03, and 6.68, respectively.

4.3 Compared to the parallel particle PHD filter
In the proposed work of [38], all measurements at each
filtering iteration will be separated and sent to each PE.
Each PE runs an independent filter and obtains condition-
ally independent local estimates; from this aspect, it can
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be viewed as a distributed algorithm. We compared our
algorithm with this parallel PHD algorithm.
Figure 6 presents the OSPA metric results over 100

Monte Carlo trials for r = 10 with both algorithms. The
results of both filters are very close.The average comput-
ing times of these algorithms are presented in Fig. 7.
It can be observed that our algorithm provides a com-

parable OSPA with the parallel PHD filter, which indicates
that our filter has the similar accuracy to the parallel PHD
filter. Although the execution times of these two filters
are similar, note that the parallel PHD filter uses more
PEs than our method, which suggests that our method
can become more efficient if more PEs are used. However,
the data communication of the parallel PHD filter is sig-
nificantly larger than that of our method because it not
only needs to broadcast all particles from the CU to all
PEs and collect all the updated particles back to the CU
but also broadcasts one measurement to one PE at each
iteration, all of which cause significant communication

Table 1 The statistical data of simulation results at different rates
of clutter

Method λ Tpi (s) Tcp (s) Tsi(s) Mean of OSPA std of OSPA

PHD1 0 – – 228.8114 6.6557 2.4451

PHD2 0 – – 28.1430 9.2824 4.7546

DCPPHD 0 28.6594 6.9299 35.5893 7.1225 3.1121

PHD1 10 – – 575.7523 11.7520 11.5318

PHD2 10 – – 76.9675 29.9813 13.5204

DCPPHD 10 76.8237 7.0468 83.8705 11.4810 10.6069

PHD1 50 – – 1542.2 30.1807 21.2412

PHD2 50 – – 198.2446 32.2304 20.5954

DCPPHD 50 202.1936 5.8935 208.0871 25.3664 17.6369
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overhead. Our method simply allocates all the measure-
ments to all the PEs, and the particles do not need to
transit between the CU and PEs. Only part of the particles
transit between different PEs simultaneously; therefore,
the communication cost overhead of our method is much
considerably.

5 Conclusions
This paper presents a distributed scheme of the parti-
cle PHD filer with several PEs and a CU. PEs run local
decomposed particle PHD filters independently until part
of the particles need to exchange among them; then, the
CU associates and fuses the local state estimations sub-
mitted by all PEs. This architecture and fusion strategy
can make the parallelization of local particle PHD filters
possible and provides a comparable filtering accuracy with
the sequential particle PHD filter. The advantage of the
DCPPHD filter over the particle PHD filter lies in that the
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Fig. 7 Average Computing time at clutter r = 10

DCPPHD filter can be implemented in parallel. The simu-
lation results verify the performance of the DCPPHD filter
in terms of accuracy and efficiency.
Possible topics for future work include the following.

(1) Various methods that can be applied for the exchange
step, such as random exchange [20], exchange depend-
ing on the divergence between the empirical distribution,
and the complete particle population or exchange of the
representative particles to further improve the filter’s per-
formance. (2) Implementation of the DCPPHD algorithm
in practical WSNs, particularly under the constraints in
the real-time operation and the communication capabili-
ties(compared to a centralized PHD filter).
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