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Abstract

This paper deals with the estimation of range-Doppler plane in pulse Doppler radar system, accounting both for
clutter-free scenario and clutter scenario. A modified adaptive multi-pulse compression (MAMPC) algorithm including
the estimation stages of range dimension and Doppler dimension is proposed for clutter-free scenario, where each
stage is implemented based on the gain constraint adaptive pulse compression (GCAPC) algorithm. Additionally, the
combination of whitening method removing the correlation of clutter component and MAMPC algorithm is
presented for the considered clutter scenario. Numerical simulations are provided to validate the effectiveness of
MAMPC in terms of estimation of range-Doppler plane and computation burden.
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1 Introduction
Traditionally, the pulse Doppler radar systems repeat the
same waveform to allow efficient pulse compression and
Doppler processing technique to be used [1]. The tra-
ditional pulse compression method is matched filtering,
in which the high range sidelobe of strong targets may
interfere or even mask nearby weak targets. The Doppler
processing technique, such as the moving target detec-
tion (MTD), also obtains Doppler sidelobe that results
in the masking problem [2]. Consequently, suppress-
ing the range-Doppler sidelobe is meaningful for target
detection.
Suppressing range or Doppler sidelobe has been

received considerable attention. Summarizing, these
works can be classified into three categories. The first
category deals with the problem of adaptive range side-
lobe suppression. In [3], iterative reweighted least squares
(IRLS) algorithm was used to suppress range sidelobe.
In [4], several binary pulse compression codes were
designed to greatly reduce sidelobe meanwhile suffering
only a small S/N loss. In [5], the adaptive pulse com-
pression (APC) was proposed, which was shown to suc-
cessfully suppress the range sidelobes over a variety of
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stressing scenarios. Li et al. [6] has demonstrated that
gain-constraint-APC (GCAPC) [7] has better estimating
performance especially for weak targets compared to orig-
inal APC algorithm [5].
The second category focuses on addressing the prob-

lem of Doppler sidelobe suppression. As the mathematical
model of the Doppler estimation for coherent multi-
pulses is similar to direction of arrival (DOA) estima-
tion, the studies related to DOA estimation can also
be used in Doppler sidelobe suppression. For instance,
the most well-known methods for DOA estimation are
MUSIC [8], root-MUSIC [9] and ESPRIT [10]. Re-iterative
super resolution (RISR) was studied in [11, 12], which
was used to estimate DOA in array signal processing
firstly.
The third category studies the sidelobe suppression

problem by jointly suppressing range-Doppler sidelobe
[13, 14]. In [15], two-dimensional reiterative minimum
mean square error (MMSE) and 2-D least square (LS)
solutions that mitigate the sidelobe of both pulse com-
pression processing and antenna radiation patterns are
derived. In [16], a RISR algorithm was used in conjunc-
tion with Golay waveforms for range-Doppler estimation.
In [17], a recursive MMSE-based time-range adaptive
processing was proposed for the purpose of jointly sup-
pressing the range-Doppler sidelobe. However, clutter
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scenario was not considered. In [18], the adaptive multi-
pulse compression (AMPC) was presented to success-
fully suppress the range-Doppler sidelobe over a variety
of stressing scenarios. Unfortunately, the high computa-
tional cost of this method limits its usage in real-time
systems. It is worth noting that these approaches based
dimensionality reduction are well known in open lit-
erature as a means to facilitate practical solutions to
computation problems. In [19], the fast adaptive pulse
compression (FAPC) was proposed. In [20], the fast adap-
tive multi-pulse compression (FAMPC) was proposed
based on fast adaptive pulse compression (FAPC) by
segmenting the MMSE cost function into blocks. Of
course, some inherent loss in performance can generally
be expected by reducing dimensionality, though the atten-
dant reduction in computation often easily justifies the
trade-off.
In this paper, we propose a modified adaptive multi-

pulse compression (MAMPC) algorithm to obtain both
good estimation performance and small amount of cal-
culations. Unlike [21], we also consider clutter scenario
assuming that some knowledge of clutter statistics is avail-
able. For clutter-free scenario, we implement MAMPC
with two estimating stages by utilizing GCAPC algo-
rithm. Specially, we obtain estimation in the range
dimension using GCAPC. Then, based on the obtained
results, we achieve the estimation of range-Doppler
plan in the Doppler dimension by exploiting GCAPC.
In particular, for clutter scenario, the combination of
whitening method removing the correlation of clutter
component and MAMPC algorithm is proposed. Sim-
ulation results highlight that MAMPC is capable of
achieving a close estimation performance with that of
AMPC, while shares much less computational time than
AMPC.
The rest of the paper is organized as follows. In

Section 2, we give the signal model of range-Doppler
dimension. In Section 3 and Section 4, we present
MAMPC algorithm for clutter free scenario and the
combination of whitening method and MAMPC algo-
rithm for clutter scenario, respectively. In Section 5,
we evaluate the capabilities of MAMPC via numerical
results. Finally, in Section 6, we provide some concluding
remarks.
Notation: Vectors (matrices) are denoted by boldface

lower (upper) case letters. Superscripts (·)T , (·)∗, and (·)H
denote transpose, complex conjugate, and complex con-
jugate transpose, respectively. | · | denotes the modulus
of a complex number. E(·) is the statistical expectation.∑

(·) denotes the summation operation. IN is the iden-
tity matrix with N × N demension. diag(.) is an oper-
ation that creates a diagonal matrix by using the input
vector as its diagonal. Finally, ⊗ denotes the Kronecker
product.

2 Signal model
Consider a stationary monostatic radar system which
transmitsM coherent pulses of train. Let s(t) be the base-
band complex probing waveform. Assume that there areQ
point-like targets and P clutter scatterers in different range
cells and with different radial velocities. The received
signal ym(t) of themth pulse can be represented as

ym(t) =
Q∑

q=1
σT ,mq exp

(
j2π(m − 1)fq

)
s(t − τT ,q)

+
P∑

p=1
σc,mps(t − τc,mp) + bm(t),

(1)

where

• σT ,mq for q = 1, · · · ,Q, denote the complex
parameters accounting for the target radar cross
section (RCS), channel propagation effects, and other
terms involved into the radar range equation.
Assume that σT ,mq = σT ,q for allm = 1, 2, · · · ,M,
which are distributed as circular zero-mean complex
Gaussian random variables. In other words, the pdf of
the amplitude Aq = |σT ,q| is Rayleigh distributed, i.e.,

pAq(x) = 2x
σ̄ 2
T ,q

exp
{

− x2

σ̄ 2
T ,q

}

, x ≥ 0,

• fq = 2vqTr/λ denotes the normalized Doppler
frequency of the qth target while vq is the radial
velocity and λ is the carrier wavelength.

• τT ,q and τc,mq denote, respectively, the two-way time
delays for the qth target and pth clutter scatterer for
the mth pulse.

• σc,mp is the complex scattering parameter of the pth
clutter scatterer at the mth pulse form = 1, · · · ,M
and p = 1, · · · ,P.

• bm(t) denotes the zero-mean circular complex
Gaussian random process.

Let s = [s1, s2, ..., sN ]T be the discrete version of the
baseband waveform s(t), then, after sampling with the
same rate, the discrete versions of the received signal ym(t)
and the noise term bm(t) can be expressed respectively by

ym = [
ym[1] , ym[2] , · · · , ym[ L]

]T ,

bm = [bm[1] , bm[2] , · · · , bm[ L]]T ,
(2)

where L denotes the number of the range cells. Stacking
theM pulses to be the columns of the L×M-dimensional
data matrix Y, we have
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Y = [
y1, y2, · · · , yM

]
. (3)

In addition, let us divide uniformly the normalized
frequency with K points, e.g., fk = (k − 1)/K ,
k = 1, · · · ,K , and denote by f = [

f1, f2, · · · , fK
]
the

K-points Doppler frequency vector. Hence, the L × K-
dimensional range-Doppler plane X accounting for the
scattering coefficients of the targets of interest can be
expressed as

X =

⎡

⎢
⎢
⎢
⎣

X[ 1, 1] X[ 1, 2] · · · X[ 1,K ]
X[ 2, 1] X[ 2, 2] · · · X[ 2,K ]

...
...

. . .
...

X[ L, 1] X[ L, 2] · · · X[ L,K ]

⎤

⎥
⎥
⎥
⎦
. (4)

In this paper, we employ the adaptive pulse compres-
sion algorithm to estimate the components of the range-
Doppler planeX. To this end, we formulate the sub-vector
ym[l]=

[
ym[l] , · · · , ym [l + N − 1]

]T for the mth pulse
with length N as

ym[l] = G
K∑

k=1
x̄l[k] exp(j2π(m − 1)fk) + Gcm[l]+bm[l] ,

= GX[l]FT [m] + Gcm[l]+bm[l]
(5)

where

• G is the N × (2N − 1)-dimensional linear
transformation matrix, given by

G =

⎡

⎢
⎢
⎢
⎣

sN sN−1 · · · s1 0
sN · · · s2 s1

. . .
...

...
. . .

0 sN sN−1 · · · s1

⎤

⎥
⎥
⎥
⎦
. (6)

• x̄l[ k]= [X[ l − N + 1, k] , · · · ,X [l + N − 1, k]]T is
the (2N − 1) × 1-dimensional sub-vector accounting
the scattering coefficients at the kth Doppler
frequency in the range-Doppler plane and
X[ l]= [x̄l[ 1] , · · · , x̄l[K ] ] is the
(2N − 1) × K-dimensional sub-matrix of X.

• F is the discrete Fourier transform matrix, given by

F =

⎡

⎢
⎢
⎢
⎢
⎣

1 1 · · · 1
1 e j

2π
K 1 · · · e j

2π(K−1)
K 1

...
...

...
1 e j

2π
K (M−1) · · · e j 2π(K−1)

K (M−1)

⎤

⎥
⎥
⎥
⎥
⎦

(7)

and FT [m] denotes the mth column of the matrix FT .
• cm[ l]=[ cm[ l − N + 1] , · · · , cm[ l + N − 1]T is the

(2N − 1) × 1 -dimensional sub-vector accounting the
clutter scattering coefficients.

• bm[l]=[ bm[ l] , · · · , bm[ l + N − 1] ]T is the N × 1-
dimensional sub-vector of bm, which is distributed as
the complex circular zero-mean Gaussian random
vector with identity covariance matrix σ 2

n IN .

Let us rewrite all the M sub-vectors ym[l], for m =
1, · · · ,M, in terms of the N × M-dimensional matrix, we
have

Y[l]= GX[l]FT + GC[l]+B[l] , l = 1, · · · , L, (8)

where Y[l]= [
y1[l] , · · · , yM[l]

]
, C[l]=[ c1[l] , · · · , cM[l] ],

and B[l]=[b1[l] , · · · ,bM[ l] ].

3 Fast implementation of MAMPC for clutter-free
scenario

In this section, we focus on the estimation of the compo-
nents of range-Doppler plane X in the presence of white
noise using the fast implementation of MAMPC. To this
end, the signalmodel without considering clutter in Eq. (8)
can be simplified as

Y[l]= GX[l]FT + B[l] , l = 1, · · · , L. (9)

3.1 The process in range dimension
In this subsection, we are devoted to the process in range
dimension by exploiting the proposed fast algorithm.
Specifically, Eq. (8) can be further recast as

Y[l]= GA[l]+B[l] , (10)

while

A[l]= X[l]FT , (11)

where A[ l]=[ a1[ l] , · · · , aM[ l] ] is a (2N − 1) × M-
dimensional matrix and am[ l]=[αm[ l − (N −
1)] , ...,αm[ l+(N−1)] ]T denotes themth column ofA[ l],
form = 1, . . . ,M. In particular, for themth pulse, we have

ym[ l]= Gam[ l]+bm[ l] , l = N , · · · , L−(N−1). (12)

Since observation ym[l] is the linear combination of
am[l] ,αm[l] can be obtained by designing a filter for lth
range cell employing GCAPC algorithm. In the follow-
ing, we focus on the discussion of three cases of different
scopes of range cell for the estimation of αm[l]. Specif-
ically, for l = N , · · · , L − (N − 1), we minimize the
output power of lth range cell by devising GCAPC fil-
ter coefficients wm[l] accounting for {wm[ l]}Hs = 1, with
corresponding to optimization problem formulated as

arg min
wm[l]

E
[∣
∣{wm[ l]}Hym[ l]

∣
∣2

]

s.t. {wm[ l]}Hs = 1
l = N , · · · , L − (N − 1).

(13)
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Using lagrangian multiplier method, the filter wm[ l] for
the estimation of α̂m[ l] can be derived as

wm[l]=
(
E

[
ym[l] ym[l]

H])−1s

sH
(
E

[
ym[l] ym[l]

H])−1s
. (14)

We further assume the independence between scatter-
ing coefficients. As a consequence, the covariance matrix
of observation ym[ l] can be written as

E
[
ym[l] ym[l]

H] = G�[ l]GH + σ 2
n I, (15)

where σ 2
n denotes the noise power and

�[l]= diag
([|α̃m[ l − (N − 1)] |2, , ..., |α̃m [l + (N − 1)] |2])

(16)

with α̃m[l] the prior information of αm[l], where we
assume the target range profiles located different range
cells are independent. Submitting Eq. (15) in Eq. (27),
wm[ l] can be rewritten as

wm[l] =
(
G�[l]GH + σ 2

n IN
)−1s

sH(G�[l]GH + σ 2
n IN )−1s

,

l = N , · · · , L − (N − 1)
(17)

Applyingwm[ l] to ym[ l], the estimation of αm[ l] is given
by

α̂m[l]= (wm[l] )Hym[l] , l = N , · · · , L−(N−1).
(18)

As to the estimation of from 1th to (N−1)th range cells,
i.e., α̂m[ l] , l = 1, · · · , (N − 1), the observation of length N
is expressed as

ym[N]= Gam[N]+bm[N] . (19)

Similarly, the optimization problem can be given by,

arg min
wm[l]

E
[∣
∣{wm[ l]}Hym[N]

∣
∣2

]

s.t. {wm[ l]}Hgl = 1
l = 1, · · · , (N − 1),

(20)

where gl is the lth column of G. Consequently, the opti-
mized filter wm[ l] of lth range cell is derived as

wm[l]= (G�[N]GH + σ 2
n IN )−1gl

gHl (G�[N]GH + σ 2
n IN )−1gl

, l = 1, · · · , (N − 1).

(21)

We further obtain the estimation of αm[l] , l = 1, · · · ,
(N − 1),

α̂m[l]= (wm[l] )Hym[N] , l = 1, · · · , (N − 1). (22)

As to the estimation of from (L − (N − 2))th to Lth
range cells, i.e., α̂m[l] , l = L− (N −2), · · · , L, we write the
observation ym[ L − (N − 1)] as

ym[ L−(N−1)]= Gam[ L−(N−1)]+bm[ L−(N−1)] .
(23)

The optimization problem is

arg min
wm[l]

E
[∣
∣{wm[l]}Hym[ L − (N − 1)]

∣
∣2

]

s.t. {wm[ l]}Hgl−L+(2N−1) = 1
l = L − (N − 2), · · · , L.

(24)

Hence, the optimized filter coefficient wm[ l] is given by

wm[ l] = (G�[ L − (N − 1)]GH + σ 2
n IN )−1gl−L+(2N−1)

gHl−L+(2N−1)(G�[ L − (N − 1)]GH + σ 2
n IN )−1gl−L+(2N−1)

,

l = L − (N − 2), · · · , L.
(25)

The estimation value of αm[l] , l = L − (N − 2), · · · , L,
can be computed as

α̂m[l]= (wm[l] )Hym[ L−(N−1)] , l = L−(N−2), · · · , L.
(26)

Based on the above discussion, the estimation value
âm = [

α̂m[ l] , ..., α̂m[ L)]
]T ,m = 1, · · · ,M can be

obtained. Hence, the estimation of Â ∈ C
L×M can be

expressed as

Â =[ â1, ..., âM] . (27)

3.2 The process in Doppler dimension
In this subsection, we focus on the process of doppler
dimension in order to estimate the elements of range-
Doppler plane X. Specifically, using the linear function in
Eq. (8) and A[l]= X[l]FT , we have

Â = XFT + E. (28)

where E is noise vector with covariation matrix I/sHs.
After transposition operation, Eq. (28) can be recast as,

ÂT = FXT + ET . (29)

Let β̂[ l] , x[ l] and e[ l] denote the lth columns of ÂT ,XT

and ET , respectively. Hence, similar to the process of
range dimension, we have
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β̂[ l] = Fx[ l]+ e[ l] ,
l = 1, · · · , L, (30)

where β̂[l] and x[l] are M × 1 and K × 1 vectors,
respectively.
Let xk[ l] (k = 1, ...,K) and Fk denote the kth element of

x[ l] and kth column of F, respectively. The GCAPC filter
coefficientswk for the estimation of x̂k[ l] are expressed as

wk = (FD[ l]FH + IM/sHs)−1Fk
FkH(FD[ l]FH + IM/sHs)−1Fk

, (31)

where

D[ l]= diag([ |x̃1[ l] |2, , ..., |x̃K [ l] |2] ). (32)

x̃k[ l] is the prior information of xk[ l]. Hence, the estima-
tion value x̂k[ l] can be obtained by

x̂k[ l]= {wk}H β̂[ l] . (33)

The estimation of x̂[ l] can be expressed as

x̂[ l]=[ x̂1[ l] , ..., x̂K [ l] ]T . (34)

Finally, we conduct the same procedure for each range
cell and can achieve the estimation of X̂.

3.3 The joint procedure of MAMPC algorithm
In this subsection, the proposed procedure of MAMPC
for the estimation of range-Doppler plane X is summa-
rized in Algorithm 1.
Finally, it is worth highlighting that in each itera-

tion, Algorithm 1 shares the computational complex-
ity of O(LMN3 + LKM3). Additionally, we note that
original AMPC [18] requires to conduct NM × NM
matrix inversion for each individual range-Doppler cell
with corresponding to O((MN)3) computation complex-
ity. However, FAMPC [20] needs to implement KlKp ×
KlKp sub-matrix inversion for each range-Doppler cell,
which is order of O(RpRl(KlKp)3), where full-dimension
model is divided into the Rl segments in fast time domain
and Rp segments in slow time domain with Kl = N/Rl
and Kp = M/Rp. Compared with AMPC, the com-
putation load of FAMPC algorithm reduces a factor of
(RpRl)

2. In particular, MAMPC algorithm includes com-
putational burden connected with M matrix inversions
with size of N × N and one matrix inversion with size
of M × M for each range-Doppler cell, which is order
of O(MN3 + M3). We note that MAMPC algorithm has
the same order of computation load with FAMPC when
Rp = M,Rl = 1. Consequently, we conclude that FAMPC
and MAMPC can significantly reduce the computational
complexity in comparison with full-dimension AMPC
algorithm.

Algorithm 1 : MAMPC Algorithm for the estimation of
range-Doppler plane X.
Input: Y, Q, K,M, L, s, σ 2

n , ε;
Output: An estimation matrix X̂;
1: Initialize q = 0,m = 0, l = 0 and range-Doppler plane

X(0) using traditional matched filter method;
2: Construct matrix G and F by (6) and (7);
3: Construct �(0)[N] ,�(0)[ L − (N − 1)] and �(0)[ i]

exploiting (16) for i = N , · · · , L − (N − 1).
4: q = q + 1;
5: l = l + 1;
6: m = m + 1;
7: Compute A(0)[ l]= X(0)[ l]FT ;
8: If 1 ≤ l ≤ N − 1, compute α̂m[ l] by

α
(q)
m [ l]= gHl (G�(q−1)[N]GH + σ 2

n IN )−1ym[N]
gHl (G�(q−1)[N]GH + σ 2

n IN )−1gl
.

Otherwise, if N ≤ l ≤ L − (N − 1), compute α̂m[ l] by

α
(q)
m [l]= sH(G�(q−1)[ l]GH + σ 2

n IN )−1ym[l]
sH(G�(q−1)[ l]GH + σ 2

n IN )−1s
;

or else, compute α̂m[ l] by

α
(q)
m [l]= gHl−L+(2N−1)(GB(q−1)GH + σ 2

n IN )−1ym[ L − (N − 1)]
gHl−L+(2N−1)(GB(q−1)GH + σ 2

n IN )−1gl−L+(2N−1)
,

where B(q−1) = �(q−1)[ L − (N − 1)]. The computa-
tional complexity involved in this step is in the order
of O(N3).

9: If m ≥ M,m = 0 and return to step 10; otherwise, go
to step 6;

10: If l ≥ L, l = 0 and go to step 11; otherwise go to step 5;
11: Construct A(q) by using (27);
12: Initialize n = 0, k = 0;
13: n = n + 1;
14: k = k + 1;
15: Construct D(q−1)[ n] using (32) and X(q−1);
16: Construct β(q)[ n] of nth column of A(q)T ;
17: Compute x(q)

k [ n] by

x(q)
k [ n]= FHk (FD(q−1)[ n]FH + IM/sHs)−1β(q)[ n]

FkH(FD(q−1)[ n]FH + IM/sHs)−1Fk
,

which has computational complexity of O(M3).
18: If k ≥ K , k = 0 and return to step 19; otherwise, go to

step 14;
19: If n ≥ L, return to step 20; otherwise, go to step 13;
20: Construct X(q) by employing (34);
21: Construct �(q)[N] ,�(q)[ L − (N − 1)] and �(q)[ i]

exploiting (16) for i = N , · · · , L − (N − 1);
22: If 1

LK ‖X(q+1) − X(q)‖2 ≤ ε, stop and output, where ε

is a user selected parameter to control convergence,;
otherwise return to step 4.
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4 The application of MAMPC algorithm in the
presence of clutter

In this section, we focus on the estimation of range-
Doppler plane X in the presence of clutter employing
MAMPC algorithm. According to the received signal
model in Eq. (8), we here adopt whitening method
to remove correlation of clutter. Specifically, let c[ l]=
[ c1[ l] , c2[ l] , · · · , cM[ l] ]T denote the range profile of the
lth cell forM pulses; hence, we have

C[ l]=

⎡

⎢
⎢
⎢
⎣

c [l − (N − 1)]T

c [l − (N − 2)]T
...

c [l + (N − 1)]T

⎤

⎥
⎥
⎥
⎦

(35)

In particular, we further assume that cm[j] and
cn[i] ∀(m, n) ∈ {1, 2, . . . ,M}2, ∀(i, j) ∈ {1, 2, · · · , L}2, i 	=
j, are zero-mean uncorrelated random variables, and
cm[j] , cn[i] with i = j are correlative random variables
obeying zero-mean Gaussian distribution with covariance
matrix

E
[
c[l] cH [l]

] = σ0H = (σi,j)M×M, ∀(i, j) ∈ {1, 2, . . . ,M}2,
(36)

where nonnegative number σ0 is the power of clutter,H is
the positive semidefinite Hermitian-Toeplitz matrix with
sizeM × M, whose main diagonal elements 1.
Our purpose is to remove correlation of clutter. In other

words, the interference term including clutter and noise
in Eq. (8) should show the same statistics feature as the
noise term in Eq. (8) after whitening operation. In partic-
ular, we stack all the column of Y[ l] with only considering
the interference term in Eq. (8), denoted as Ỹ[l], i.e., Ỹ[l]=
[
yT1 [l] , ..., y

T
M[l]

]T . Hence, we have

E
[
Ỹ[l] ỸH [l]

]
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

GE
[
c1[l] c1[l]H

]
GH GE

[
c1[l] c2[l]H

]
GH · · · GE

[
c1[l] cM[l]H

]
GH

GE
[
c2[l] c1[l]H

]
GH GE

[
c2[l] c2[l]H

]
GH · · · GE

[
c2[l] cM[l]H

]
GH

...
...

. . .
...

GE
[
cM[l] c1[l]H

]
GH GE

[
cM[l] c2[l]H

]
GH · · · GE

[
cM[l] cM[l]H

]
GH

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ σ 2
n INM

(37)

Exploiting the fact in Eq. (36) that GE
[
ci[ l] cj[ l]H

]

GH = σi,jGGH , i, j ∈ {1, 2, . . . ,M}2, the whitening matrix

E
[
Ỹ[ l] ỸH [ l]

]− 1
2 [22] can be given by,

E
[
Ỹ[ l] ỸH [ l]

]− 1
2

= [
σ0(H ⊗ R) + σ 2

n INM
]− 1

2 ,
(38)

where R = GGH is the correlation matrix for the range
dimension, computed as

R =

⎡

⎢
⎢
⎢
⎣

rs[0] rs[−1] · · · rs[−(N − 1)]
rs[1] rs[0] · · · rs[−(N − 2)]
...

...
. . .

...
rs[N − 1] rs[N − 2] · · · rs[0]

⎤

⎥
⎥
⎥
⎦

(39)

with rs[n] , n = −N + 1, · · · ,N + 1 being the autocorrela-
tion value of s at delay n.
Assuming that s possesses good autocorrelation prop-

erty, i.e., rs[n]
 rs[ 0] , n = −(N − 1), ...,N − 1, n 	= 0, we
have

R ≈ rs[0] IN . (40)

Submitting Eq. (40) into Eq. (38), we have

E
[
Ỹ[l] ỸH [ l]

]− 1
2

≈ [
σ0(H ⊗ IN ) + σ 2

n INM
]− 1

2
(41)

where we suppose that the energy of s equals to 1.
Based on the aforementioned discussion, the whitening

result ỸW [l] of Ỹ[l] can be expressed as follows

ỸW [l]= (σ0(H ⊗ IN ) + σ 2
n INM)−1/2Ỹ[l] . (42)

According to Eq. (42), we can obtain the whitening
result of Y[l] through some mathematical operations,
given by

YW [l]= Y[l] (σ0HT + σ 2
n IM)−1/2. (43)

It is worth noting that decorrelation of observation
matrix can be achieved by right-multiplying the whiten-
ing matrix � = (σ0HT + σ 2

n IM)−1/2, which decreases the
computation load.
Finally, exploiting Eq. (43), Eq. (8) can be expressed as

Y1[l]= GX[l]FT1 + B1[l] , (44)

where Y[l]� = Y1[l] ,FT� = FT1 ,GC[l]� + B[ l]� =
B1[ l] with the same statistical characteristics as B[ l].
Finally, we can estimate X[ l] based on Y1[ l] using

MAMPC Algorithm which is reported in 3.

5 Numerical results
In this section, we assess the performance of proposed
algorithm for the estimation of range-Doppler plane X in
terms of clutter-free scenario and clutter scenario. To this
end, we consider a multi-targets case with corresponding
to locations, velocities, and signal-to-noise radio (SNR) of
targets given in Table 1. Besides, we suppose the range
processing window L = 100 and the number of Doppler
cell K = 128 and consider the transmit signal1 is lin-
ear frequency modulation (LFM) phase coding with code
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Table 1 Target parameters

Range cell index Velocity (m/s) Normalized Doppler SNR (dB)
frequency

40 30 0.2 5

30 35 0.233 –5

45 –35 –0.233 10

47 –40 –0.267 0

60 35 0.233 –8

55 30 0.2 5

70 –30 –0.2 5

25 –30 –0.2 –5

20 22 0.147 –8

30 62 0.413 –5

length N = 32, bandwidth B = 4 MHz, pulse width T =
4 μs, center frequency f0 = GHz, and PRT TPRT = 1 ms.
In partiuclar, we set the pulse number M = 32. Finally,
we consider the exit condition ε = 10−6 for Algorithm 1.
Besides, the running computation time is analyzed using
Matlab 2010a version, running on a standard PC (with a
3.3 GHz Core i5 CPU and 8 GB RAM).

5.1 Clutter-free scenario
In this subsection, we focus on the discussion of MAMPC
in terms of achieved estimation of range-Doppler plane
X and computational burden accounting for clutter-free
scenario. In particular, for comparison purpose, matched
filter and MTD (MF-MTD), AMPC, and FAMPC are also
evaluated.
Figure 1 exhibits the estimation of range-Doppler

plane X using traditional MF-MTD. In particular, the

Fig. 1 The estimation (in dB) of range-Doppler plane X using
traditional matched filter and MTD method for clutter-free scenario

locations of true targets are marked with circles. The
results indicate that weak targets are possibly masked
by the range-Doppler sidelobes of strong targets.
For example, the high sidelobe of target at the 45th
range cell has a significant impact on parameter esti-
mating (i.e., range profile) of nearby target located at
the 47th range cell. It could be treated as a weak tar-
get leading to false alarm. Additionally, the mainlobes
of the targets are expanded over the range-Doppler
plane.
Based on the APC and GCAPC, Figs. 2, 3, and 4

depict the estimations of range-Doppler plane X uti-
lizing AMPC, FAMPC, and MAMPC, respectively. In
particular, we observe that, in Figs. 2a, 3a, and 4a,
the targets can be accurately estimated by exploiting
AMPC, FAMPC, and MAMPC based on the accom-
plishment of GCAPC. However, the obtained results
using FAMPC also exhibit the mainlobe energy of the
targets can easily spread nearby-range Doppler cells,
as well as possess high-range Doppler sidelobes, low
range, and Doppler resolutions in comparison with those
optimized by AMPC and MAMPC. Additionally, in
Figs. 2b, 3b, and 4b, we assess the obtained estimation of
range-Doppler plane X exploiting AMPC, FAMPC, and
MAMPC accomplished by APC. Interestingly, AMPC,
FAMPC, andMAMPC achieve lower range-Doppler side-
lobe and narrower mainlobe in terms of estimation
results of range-Doppler plane X compared with MF-
MTD, whereas a portion of weak targets are missing for
FAMPC.
In the following, we analyze the mean square error

(MSE) performance of the estimation using MF-MTD,
AMPC, FAMPC, and MAMPC. In particular, the MSE is
defined as

MSE = 1
LK

‖X̂ − X‖2. (45)

In Fig. 5, we plot the MSE curves of the X esti-
mation versus iteration number exploiting MF-MTD,
AMPC, FAMPC, and MAMPC based on GCAPC for
clutter-free scenario. Interestingly, AMPC and MAMPC
both share the near performance and outperform
MF-MTD and FAMPC. This is a reasonable behav-
ior since the optimized results by MF-MTD and
FAMPC show high range-Doppler sidelobes (Figs. 1
and 3a).
In Table 2, we report the iteration number and com-

putation time of AMPC, FAMPC, and MAMPC for the
implementation of estimation of range-Doppler plane
X in clutter-free scenario. As expected, MAMPC out-
performs AMPC and FAMPC in terms of computation
time. Specifically, MAMPC costs 7.7 s to the estimation,
whereas AMPC and FAMPC require 1014.7 and 91.6 s,
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Fig. 2 The estimation (in dB) of range-Doppler plane X using AMPC
for clutter-free scenario. a GCAPC. b APC

respectively. Finally, it is worth highlighting that MAMPC
achieves the significant reduce of computational bur-
den in comparison with AMPC and obtains more accu-
rate estimation of range-Doppler plane X in contrast to
FAMPC.

5.2 Clutter scenario
In this subsection, we consider the estimation of range-
Doppler plane X in presence of clutter, where we suppose
that colored Gaussian clutter is adopted with assuming
internal motion of the clutter scatters due to, for example,
wind affecting a forest or grassland. Thus, the temporal
correlation of such clutter can be described by its power
spectral density (PSD),

Fig. 3 The estimation (in dB) of range-Doppler plane X using FAMPC
for clutter-free scenario. a GCAPC. b APC

Sc
(
f
) = σ 2

c λ√
2π2σv

exp
(−f 2λ2

8σ 2
v

)

, (46)

where σv is the root of mean square(rms) of clutter
velocity and λ is the length of waveform. Furthermore,
the autocorrelation function of clutter is expressed
as

rc(τ ) = σ 2
c exp

(−π2τ 28σ 2
v

λ2

)

. (47)

Hence, the (i, j)th element of the covariance matrix σ0H
is σi,j = rc(|i − j|TPRT )/σ 2

c for i, j = 1, . . . ,M. Here, we
assume the rms of clutter σv = 5 m/s and the power of
clutter P = σ 2

c = 30 dB, λ = c/f0 = 0.3 m with c =
3 × 108 m/s being the velocity of light.
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Fig. 4 The estimation (in dB) of range-Doppler plane X using MAMPC
for clutter-free scenario. a GCAPC. b APC

Fig. 5 The MSE (dB) versus iteration number using MF-MTD, AMPC,
FAMPC, and MAMPC based on GCAPC for clutter-free scenario

Table 2 Iteration number and computation time (in seconds) of
AMPC, FAMPC, and MAMPC for clutter-free scenario

Algorithm AMPC FAMPC MAMPC

n 6 4 7

Time(s) 1014.7 91.6 7.7

In Fig. 6, the obtained range-Doppler plane X by tradi-
tional MF-MTD for clutter scenario is plotted. In particu-
lar, we observe that the targets completely are masked by
strong clutter, showing that the adopted method fails to
the considered clutter scenario.
In Figs.7a, 8a, and 9a, we plot the estimation results of

range-Doppler plane X obtained by AMPC, FAMPC, and
MAMPC utilizing GCAPC, respectively. Interestingly, it
can be seen that the weak target located at 20th range
cell, cannot be found by AMPC, FAMPC, and MAMPC.
Again, a wide mainlobe behavior can be observed for
FAMPC. Based on the accomplishment of APC, we give
the estimation results of range-Doppler plane X obtained
by AMPC, FAMPC, and MAMPC in Figs. 7b, 8b, and
9b. Results again show that FAMPC is noneffective to
a part of weak targets. In particular, by contrasting to
MF-MTD, AMPC, and MAMPC can attain to a much
better estimation and significantly alleviate the impact
of clutter.
In Fig. 10, the MSE curves of the X estimation versus

iteration number exploiting MF-MTD, AMPC, FAMPC,
and MAMPC based on GCAPC for clutter scenario,
are plotted. As expected, MAMPC exhibits a slightly

Fig. 6 The estimation (in dB) of range-Doppler plane X using
traditional matched filter and MTD method for clutter scenario
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Fig. 7 The estimation (in dB) of range-Doppler plane X using AMPC
for clutter scenario. a GCAPC. b APC

better performance than AMPC, and outperform MF-
MTD and FAMPC due to low range-Doppler sidelobes in
Fig. 9(a).
Table 3 summarizes the behavior of computational time

of AMPC, FAMPC, and MAMPC for clutter scenario.
Again, MAMPC exhibits a lower computation burden
than AMPC and FAMPC. Precisely, MAMPC spends 7.1s
to implement the estimation, whereas AMPC and FAMPC
need 1400.5 and 105.8 s, respectively. Finally, it is worth
pointing out that the performance behaviors in Fig. 10
and in Table 2 reflect the capability of the proposed
MAMPC that not only estimates range-Doppler plane X
accurately, but also can reduce significantly computation
load.

Fig. 8 The estimation (in dB) of range-Doppler plane X using FAMPC
for clutter scenario. a GCAPC. b APC

6 Conclusions
In this paper, we have addressed the estimation of
range-Doppler plane for pulse Doppler radar systems
considering clutter-free scenario and clutter scenario. We
have proposed MAMPC algorithm including the estima-
tion stages of range dimension and Doppler dimension
for clutter-free scenario, where each stage is implemented
based on GCAPC. In addition, we also have presented the
combination of whitening method removing the correla-
tion of the clutter component and MAMPC algorithm for
considered clutter scenario. We have designed numerical
simulations to assess the ability of proposed algorithm.
We have observed that the proposed MAMPC keeps
the near same estimation performance of range-Doppler
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Fig. 9 The estimation (in dB) of range-Doppler plane X using MAMPC
for clutter scenario. a GCAPC. b APC

Fig. 10 The MSE (dB) versus iteration number using MF-MTD, AMPC,
FAMPC, and MAMPC based on GCAPC for clutter scenario

Table 3 Iteration number and computation time (in seconds) of
AMPC, FAMPC, and MAMPC for clutter scenario

Algorithm AMPC FAMPC MAMPC

n 8 4 6

Time(s) 1400.5 105.8 7.1

plane X with that of AMPC, whereas FAMPC is likely to
lose weak targets. Results have also impled that MAMPC
shares much less computational time in comparision with
AMPC. Possible future research tracks might concern
the extension of the proposed framework to account for
electronic jamming and nonhomogeneous characteristics
clutter.

Endnote
1We notice that the waveform with good autocorrela-

tion has better estimation performance for range-Doppler
plane. Since the limitation on paper length, we here do not
show the simulation results for the selection of waveform
in simulation.
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