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Hybrid systems are a class of dynamical systems whose behaviors are based on the interaction between discrete
and continuous dynamical behaviors. Since a general method for the analysis of hybrid systems is not available,
some researchers have focused on specific types of hybrid systems. Piecewise affine (PWA) systems are one of the
subsets of hybrid systems. The identification of PWA systems includes the estimation of the parameters of affine
subsystems and the coefficients of the hyperplanes defining the partition of the state-input domain. In this paper,
we have proposed a PWA identification approach based on a modified clustering technique. By using a fuzzy PCA-
guided robust k-means clustering algorithm along with neighborhood outlier detection, the two main drawbacks
of the well-known clustering algorithms, i.e., the poor initialization and the presence of outliers, are eliminated.
Furthermore, this modified clustering technique enables us to determine the number of subsystems without any
prior knowledge about system. In addition, applying the structure of the state-input domain, that is, considering the
time sequence of input-output pairs, provides a more efficient clustering algorithm, which is the other novelty of
this work. Finally, the proposed algorithm has been evaluated by parameter identification of an IGV servo actuator.
Simulation together with experiment analysis has proved the effectiveness of the proposed method.
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1 Introduction

Hybrid systems are a class of dynamical systems whose
behaviors are based on the interaction between discrete
and continuous dynamical behaviors; in other words, at
different time intervals, different dynamical behaviors
can be expected from a hybrid system. Continuous and
discrete dynamics are described by variables whose
values are respectively chosen from a continuous and a
discrete set [1]. As an example, we can refer to the dy-
namical behaviors of an electric heater during its OFF
and ON times. Thus, the identification of hybrid systems
will be very important in controlling such systems. The
hybrid systems can be identified as a class of nonlinear
systems. Numerous schemes have been presented for
identifying nonlinear systems and the characteristics of
each one have been reviewed in the literature [2, 3].
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Since a general method for the analysis of hybrid sys-
tems is not available, some researchers have focused on
specific types of hybrid systems. Piecewise affine (PWA)
systems are one of the subsets of hybrid systems [4].
The PWA systems are defined based on the division of
the state and input domains into a limited number
(countable number) of polyhedral regions and the
consideration of a linear/affine subsystem in every region
[5]. The structure of PWA systems presents an interest-
ing problem of system identification. In view of the
universal approximation properties of PWA system
maps [6, 7], these systems yield a nonlinear black-box
structure. Also, considering the equivalence between
PWA systems and certain classes of hybrid systems
[4, 8], the identification of PWA systems constitutes a
very useful step in the identification of other classes
of hybrid systems.

The identification of PWA systems includes the esti-
mation of the parameters of affine subsystems and the
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coefficients of the hyperplanes defining the partition of
the state-input domain. Bear in mind that if the regions
are not specified in advance, the association between
data clustering, region, and subsystem estimation will
make the identification problem very difficult. Also, if
the number of subsystems is unknown, more complexity
is added to the problem.

In the hybrid system identification field, the algebraic
approach [9], Bayesian approach [10], bounded-error ap-
proach [11], mixed-integer programming [12], and the
clustering technique [13—-17] are the most important ap-
proaches, which will be enlightened in the following. For
a complete overview of the presented methods and their
comparison, one can refer to [1, 18, 19].

In [9], the authors have presented an algebraic-
geometric solution for identifying the piecewise linear
(PWL) systems. The method presented in [10] makes
use of a priori knowledge about the system being identi-
fied. For this purpose, the unknown parameters are con-
sidered as random variables with their probability
density functions, and the identification problem is
expressed as determining a posteriori probability density
function for parameters. In [11], the authors have offered
a method based on MIN-PFS problem solving for a suit-
able number of linear complementary inequalities de-
rived from data. The main feature of this algorithm is
that it limits the identification error. In [12], the identifi-
cation problem has been stated for two subclasses of
PWA systems (ie., hinging hyperplane ARX (HHARX)
and Wiener PWARW (W-PWARX)) and solved by the
mixed-integer linear or quadratic programs. In our
paper, the data clustering is one of most important bases
of proposed algorithm, which has not considered in
aforementioned papers.

In general, a clustering identification method includes
three steps: data clustering, parameter estimation, and
region reconstruction. Obviously, the bottleneck of
clustering-based approaches is the data clustering stage
because the quality of parameter estimation and region
reconstruction depend on the accuracy of clustering.
The accuracy of clustering itself depends on three fac-
tors: (1) initialization, (2) outliers, and (3) knowing the
exact number of subsystems. Since the clustering algo-
rithms are unsupervised mostly, the initial values of
cluster centers are chosen randomly; and this may lead
to convergence to a local minimum. Also, the existence
of outliers in data decreases the quality of many cluster-
ing algorithms considerably. Due to the unsupervised
nature of clustering, the number of classes must be spe-
cified beforehand; otherwise, it must be selected through
several executions of the clustering algorithm on data
with different number of classes.

By presenting an approach based on regressor vector
clustering in [13], authors have assigned the data to the
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appropriate region, and then they have determined the
subsystem corresponding to each region. In this work, a
modified version of k-means has been employed for
clustering. In [14], a statistical clustering algorithm has
been used to allocate the data to the correct regions,
and the SVM has been employed to estimate the bound-
ary hyperplane between adjacent regions. In [15], Chiu’s
algorithm has been used for data clustering. The charac-
teristic of this method is that it eliminates the outliers
during the clustering process. It must be noted that in
[13, 15], the regressor vector generation is based on
applying a least square method on a group of adjacent
data points (local dataset, or LD), which might lead to
inaccurate results.

In addition, in [20], partitional clustering algorithms
are considered for image segmentation because of the
great similarity between segmentation and clustering, al-
though clustering was developed for feature space,
whereas segmentation was developed for the spatial
domain of an image. Also in [21], a method using self-
organizing map (SOM)-based spectral clustering is
proposed for agriculture management. In [22], a novel
distance-based feature extraction method for various
pattern classification problems is introduced. Specific-
ally, two distances are extracted, which are based on (1)
the distance between the data and its intra-cluster center
and (2) the distance between the data and its extra-
cluster centers.

In this paper, first by using the structure of the state-
input domain, that is, considering the time sequence of
input-output pairs, some appropriate LDs are created.
This is important, because in practice always the se-
quence of generation of data points is known. This is the
motivation to introduce the concept of “time tag”, the
label assigned to each data point to identify the sequence
of them. Then using these labels, one can create some
appropriate LDs. Second, the application of two novel
methods, ie., fuzzy PCA-guided robust k-means cluster-
ing algorithm [23], along with a neighborhood outlier
detection algorithm [24] is studied. By customizing these
methods, the performance of the existing clustering
techniques is improved and usual drawbacks are solved.
In fuzzy PCA-guided robust k-means clustering algo-
rithm, there is no need to determine the cluster center,
with nothing better than a random guess; therefore, poor
initialization will be avoided. In addition, it should be
noted that most of the clustering algorithms are not ro-
bust; this means that, repeating the execution of the
clustering algorithm on the same data might be resulted
in different clusters; however, in fuzzy PCA-guided ro-
bust k-means clustering, the clusters would be the same
for every execution. Neighborhood outlier detection
enables us to detect and eliminate the outlier before
clustering. Selection of proper outliers is of crucial
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importance because the eliminated regressor vectors
contain useful information about the problem, and most
probably, improper elimination leads to imperfect re-
sults. Also, using the concept of cluster crossing curve
enables us to determine the number of subsystems with-
out any prior information. If the chosen value for the
initial guess of number of subsystems was correct, the
algorithm will be ended. Otherwise, the initial guess for
number of subsystems will be corrected and the algo-
rithm will be repeated. Simulation results are presented
to illustrate the efficiency of the proposed method. Also,
an application of the developed approach to an inlet
guide vane (IGV) servo actuator is evaluated.

The remainder of the paper is organized as follows:
The class of PWARX models and identification problem
is stated in Section 2. In Section 3, the identification
algorithm is developed, and each stage is described in
detail. In Section 4, an application of the developed ap-
proach to an IGV servo actuator is assessed. Conclusions
are given in Section 5.

2 Problem description

To identify the PWA systems, we need to first introduce
the piecewise autoregressive exogenous (PWARX)
models. In simulating the PWA systems, the PWARX
models are used in order to convert a multi-input
single-output system with continuous inputs to a single-
input single-output system [13].

By assuming vectors u(k) € R,,,, y(k) € R, and e(k) e R,
as the input, output, and error vectors, respectively, and
for constant values of #; and n,, the regression vector is
established as follows [14]:

x(k) = [y7 (k=1)..9" (k=n))u" (k-1)... u” (k=n2)] ",
x(k)eR"

(1)

And the value of “n” is obtained from the following
equation:

n=pn +mny ,m;>0, i=1,2 (2)

Thus, the PWARX model is defined as follows [14]:

of ["(lk)} if x(k)e X,

Sfx(k)) = : , k=1,2,...N
or 0] e,

(3)

y(k) = f(x(k)) + e(k) (4)

By assuming a regression space as XeR,, X;, i=1,2,
...,s represents a confined convex subspace. Thus, each
. . 1
subspace is described as™ [1],

Page 3 of 15

X; = {xe R": H; {’1‘}4,»0 } -

HeRDX4 j =12 ... s

where g; denotes the number of inequalities determining
the ith subspace and <; indicates a vector of g; dimen-
sions with “<” and “<” symbols as its members. Of
course, it should be noted that in the PWARX models,
the rules for the replacement of subsystems are deter-
mined based on the shapes of convex subspaces [13].

The number of subspaces and the variable matrices of
each subsystem are indicated by s and 6; € RU+Dxp i1
2, ..., s, respectively. Subsequently, N data samples are gen-
erated as follows [14]:

_ x(k) = n+p _
r(k) = {y(k)} R'*? k=1,2,...N (6)

Before identifying the system, certain assumptions
related to problem solving must be put forward. These
assumptions are as follows:

Assumptions (1): The number of subsystems s is a
specific and predefined number.

In most cases, the structures of physical systems are
such that it is possible to recognize the number of
different dynamic states. Therefore, the application of
Assumptions (1) will be logical and acceptable. Of
course, in some cases, this estimation will not be so
easy; and as a result, Assumptions (1) cannot be used.
The manner of estimating the number of subsystems
using the available data will be explained in Remark 2.
Assumptions (2): In the process of problem solving,
the values of #; and 7, are considered as constant and
specified values.

The consideration of Assumptions (2) will be

very helpful in solving the identification problem.
However, we should be aware that, in practice,

the values of n; and n, are seldom known, and
numerous investigations have been conducted to
determine the “orders” appropriately [25, 26]. In this
paper, Assumptions (2) has been used in order to
concentrate on various aspects of PWA systems
identification without getting entangled in the
complexities of “orders” estimation.

Assumptions (3): Knowing the time sequence of data.
Since, in practice, the data acquired from a system
being identified are received sequentially within a
specific time interval, each piece of data can be
assigned a time tag that shows the sequence of data
relative to one another in the time domain. By applying
this assumption, which, in practice, is always satisfied
automatically, the data can be easily divided into
smaller groups with similar properties.
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3 The proposed method
In view of the previously discussed matters, the identifi-
cation problem is presented as follows:

Problem (1): Obtaining the parameter vectors of each
subsystem (0; ,i=1,2,...,s) and the hyperplanes separat-
ing each two adjacent subspaces (X; , i=1,2,...,s) by
using a specific number (r(k) , k=1,2,...,N) of data ac-
quired from (3) subject to Assumptions (1) through (3).

The method presented in this paper for solving Prob-
lem (1) includes the following steps:

- Establishing small local datasets from the original
dataset based on the chronological order of data
(selecting sequential data in time domain).

- Calculating the parameter vectors for each local dataset.
- Eliminating the outlier parameter vectors by using the
neighborhood outlier detection algorithm.

- Clustering the s-class parameter vectors by applying
the fuzzy PCA-guided robust k-means clustering
algorithm.

- Classification of original data by means of the
parameter vectors corresponding to each data.

- Estimation of subsystems and regions by using the
original data.

- Allocation of the original data forming the outlier
parameter vectors to the correct regions, and the final
estimation of subsystems and regions.

The flowchart of the proposed algorithm has been
illustrated in Fig. 1.

Through mathematical Example (1), the step-by-
step procedures of the proposed algorithm are de-
scribed and, at each step, the details of the identifi-
cation algorithm are stated.

Example (1): Consider a PWARX system with the fol-
lowing mathematical model:

(-1 1] (k- )} e(k) if u(k-1) = x(k)eX, = [-4,-1],

y(k) =1 [3|[u(k-1)1]" +e(k) if u(k-1) = x(k)eX, = (-1,2),
(-1 1u(k-1)1]" + 2(k) if u(k-1) = x(k)eXs = [2,4.5],

(7)

where x(k) = [y" (k- 1) u" (k- 1) 1% s=3, 1, =0, and n, =
1. The input signal u(k) has been generated randomly by
means of nonuniform distribution over the interval X =
[-4,4.5]. The PWARX system (7) with an 80-member
set of noisy data (k) with SNR =13 has been shown in
Fig. 2. In the proposed model, the first and the third re-
gions have the same coefficients, while they have been
located in different sections of X'

3.1 Creating local datasets
Since the subsystems of the PWARX system are linear,
by considering a small number of adjacent data, a local
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Fig. 1 The flowchart of the proposed algorithm

dataset (LD) can be created [13]; on this basis, all the
data of an LD can more likely belong to one region X;.
Assumption (3) is used for this purpose. It is reasonable
to consider a time tag for the data because, practically,
the sequence of data generated by the system is always
known and this enables the allocation of a time tag to
data. Complying with this assumption makes it easy to
choose the data points for the creation of LDs. For this
intention, by choosing each ¢ data in sequence, an
LD(Q;) is established. Parameter £ is known as the
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y(K)
e

Fig. 2 The PWARX system (7)

“knob” of the algorithm and its values is set by the user.
Some LDs only include the data of one region (Q; in
Fig. 2) and some others contain the data of two adjacent
regions (€, in Fig. 2). The first and the second types of
LDs are called the “pure local dataset (PLD)” and “mixed
local dataset (MLD)”, respectively [13].

The effectiveness of the clustering algorithm and, con-
sequently, of the identification algorithm depends on the
LDs. In other words, the higher the number of PLDs
and the lower the number of MLDs, the higher the clus-
tering accuracy. The number of MLDs depends on the
data distribution in X and the selection of parameter £
(see Section 3.2.1). In case the distribution of data in X
is fair, meaning that the input is excited in a way that
sufficient number of data exists in each X; region, and
most of the data are not accumulated at the boundary
between the regions, a small ratio of MLD to PLD can
be achieved by an appropriate selection of parameter £.
It has been demonstrated in [13] that, under mild as-
sumptions, when the number of input-output pairs (N)
approaches infinity, the MLD-to-PLD ratio vanishes
asymptotically. The manner of excitation of system input
for the purpose of a fair distribution of data in all the re-
gions of X; is a challenging problem, which has been ex-
plored in other investigations.

3.2 Parameter vector calculation
With the consideration of £>#u, a parameter vector §;
corresponding to each local dataset ); can be calculated.
For this purpose, the recursive least-squares (RLS) esti-
mation method is used.

Computation of the least-squares estimate can be
arranged in a way that the estimates obtained at time (k -
1) can be used to compute the estimates at time k. Let

vector éj(k—l) denote the least-squares estimate accord-

ing to (k- 1) data in ;. By defining ¢(k) = {x(lk)} , it is
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assumed that ®(k) = [q)T(l) q)T(k)]T is a full rank matrix,
that is, ®T(K)DK) is nonsingular for all k> 0. Considering

é(O) =0 and the matrix P(0) = 10°I (identity matrix I),
then the vector éj(/() obtains by the following recursive
equations:

0(K) = ;(k-1) + K(K) (y(k)-9" (K)8;(k-1))

K(k) = P(k)gp(k) = P(k-1)p(k) (L + ¢ (k)P (k-

P(k) = P(k-1)-P(k-1)¢(k) (1 + ¢” (k)P(k-1)¢
(k)P(k-1) = (I-K (k)" (k))P(k-1)

(k)
(k) 9"

(8)

The components of the vector K(k) are weighting fac-
tors that tell how the correction and the previous estimate
should be combined. When the data have little noise, and
they have been distributed fairly and also a proper value
has been chosen for ¢, the images of vectors 6, must in-
clude s general clusters along with isolated points (hence-
forth called “outliers”) [13]. In fact, when the original data
contain little noise, we can expect the parameter vectors
0; related to PLDs to be very similar to each other. How-
ever, under circumstance in which the existing data in an
LD are from two adjacent regions, especially when the dis-
tribution of data points between two adjacent regions is
discrete (boundary between regions 2 and 3 in Example
(1)), the estimated parameter vectors ¢; will be an outlier.
We should also note that in situations where two subsys-
tems with identical coefficients are located in two different
regions (first and third subsystems in Example (1)), using
the information of parameter vectors may not be sufficient
for clustering them into s classes. In these conditions, the
parameter vectors of these subsystems will fall next to
each other and within one cluster. Resolving between
these subsystems is accomplished by adding vectors m;
which indicate the average spatial position of each LD, to
the parameter vector 8. As a result, a feature vector in the

T
form of §; = [GjT,m,} is used for the clustering of LDs

[13]. This characteristic makes it possible to resolve the
subsystems that have mutual coefficients.

3.2.1 Adjusting Parameter |

In the presented approach, with the use of time tags for
data and the selection of each € successive data, the max-
imum number of outliers would amount to s — 1. In other
words, in the worst case scenario, the data adjacent to
the boundaries between all regions of X'; and X;,; would
exist in one LD and form outliers. Nevertheless, choosing
a proper value for parameter £ will noticeably affect the
performance of the detection algorithm. The relative
smallness or largeness (relative to the total number of
data (N)) of parameter ¢ has an advantage as well as
disadvantage.
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If a small value is chosen for parameter ¢, few data will
exist in each LD. The advantage of this choice is that the
improper clustering of a feature vector causes a small
number of data to fall in the incorrect region and, con-
sequently, the accuracy of estimating the subsystems and
regions does not diminish considerably. This choice,
however, is only useful when the data are noisy just a lit-
tle. In the case of too much noise, the small number of
data in each LD leads to a less accurate estimation of
parameter vectors 6; by the RLS method. Thus, the fea-
ture vectors {; will not get a proper distribution, and
their clustering accuracy will diminish considerably.

On the other hand, when a large value is chosen for par-
ameter ¢, a more accurate estimation of parameter vectors
0; can be made by using the noisy data. Under such condi-
tions, however, the MLDs will contain a large number of
data from both the X; and X;,; regions. When the bound-
ary between two adjacent regions is discontinuous (the
boundary between regions X, and X3 in Problem (1)),
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outliers will be generated whose positions relative to the
other feature vectors are very far off. In these circum-
stances, the produced outliers can be eliminated by using
an appropriate outlier detection algorithm. However, if the
boundary between two adjacent regions is continuous (the
boundary between regions X; and X, in Problem (1)), the
parameter vectors ¢; generated from MLDs will not be
much different from those generated from PLDs; thus,
these outliers cannot be eliminated by means of an outlier
detection algorithm. In this case, at the clustering stage, this
parameter vector is considered to belong to a class associ-
ated with one of the two adjacent regions that form the
vector, while it also includes a large number of data from
the other adjacent region. This leads to a lower accuracy in
resolving the boundaries between regions and also in esti-
mating the parameters of each subsystem in step 6.

Figure 3 shows the feature vector plots of the PWARX
system (7) for the values of €=5, €=9, and £=13
(Fig. 3a—c, respectively) in the presence of constant noise

O Estimated feature vectors

% Real cluster center of subsystem1
a | = Real cluster center of subsystem2
Real cluster center of subsystem3 [

o o T

O  Estimated feature vectors

Real cluster center of subsystem1
Real cluster center of subsystem2
Real cluster center of subsystem3 |1

O Estimated feature vectors

Real cluster center of subsystem1
Real cluster center of subsystem?2

©),

Real cluster center of subsystem3 }-

-10 -6

®),

Fig. 3 The feature vector plots of the PWARX system (7) for the values of a £=5,b £=9, and ¢ £=13 in the presence of constant noise with SNR= 14
J
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with SNR = 14. As is illustrated, for £=5 (Fig. 3a), the
feature vectors estimated by the RLS algorithm are not
highly accurate. By increasing the value of parameter ¢
to 9 and 13 (Fig. 3b, c), the accuracy of the feature vec-
tors improves significantly. It should also be noted that
Fig. 3b, ¢ do not have the same scale because the re-
moteness of the produced outlier (like the accuracy of
the other estimated feature vectors) depends on the
value of parameter ¢, and it improves with the increase
of £. Also, Fig. 4a—d respectively illustrates the feature
vector plots for the PWARX system (7) for noise levels
of SNR=0, 7, 14, and 21 and a constant value of £=9.
As is observed, for the noise levels of SNR =14 and 21
(Fig. 4c, d), the choice of £=9 leads to appropriate re-
sults; while by increasing the noise level (Fig. 4a, b), the
estimation of feature vectors becomes less accurate and,
therefore, the value of parameter £ must be increased in
order to improve the results. However, it should be
noted that if a large value is chosen for ¢ (in order to
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suppress the noise effects), it will lead to a lower accur-
acy in resolving the boundaries between regions and also
estimating the parameters of each subsystem. Based on
the above explanations, we conclude that a suitable
value can be achieved for parameter ¢ through a tradeoff
between the quality of estimation of parameter vectors 6
from noisy data, quality of delineation of the boundary be-
tween regions, and also the quality of estimation of each
subsystem’s parameters.

The advantage of using a time tag to form the LDs is
the independence of the number of outliers from param-
eter ¢; this means that, with the increase of ¢, the num-
ber of outliers does not necessarily increase (Fig. 3). This
is while in the methods presented in [13, 15], the LDs
are selected in such a way that the number of outliers
depends on the value of parameter £. As a result, select-
ing a large value for ¢ (in order to suppress the noise ef-
fects) leads to an increase in the number of outliers.
Therefore, in these approaches, the value of £ has to be

Estimated feature vectors

a * Real cluster center of subsystem1
Real cluster center of subsystem2
Real cluster center of subsystem3 |. -

O Estimated feature vectors

Real cluster center of subsystem1
Real cluster center of subsystem2
Real cluster center of subsystem3 [¥

(ej)z -20 -20 (ej)l

Fig. 4 The feature vector plots for the PWARX system (7) for noise levels of SNR=a 0, b 7, ¢ 14, and d 21, and a constant value of £=9

~

Estimated feature vectors

b *  Real cluster center of subsystem1
Real cluster center of subsystem2
Real cluster center of subsystem3 -

O  Estimated feature vectors

d *  Real cluster center of subsystem1
Real cluster center of subsystem2
Real cluster center of subsystem3 [-.

(ej)z -20 -20 (9]]1
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chosen accurately; while it is difficult to exactly deter-
mine the most suitable value for this parameter.

3.3 Outlier detection

As was mentioned in Section 3.2.1, when parameter vec-
tor 6; has been calculated by using a MLD, one outlier
might be produced. Considering the incorrect position-
ing of this outlier relative to the other feature vectors,
the clustering process will run into a problem. Thus, in
the proposed method, an outlier detection step prior to
clustering has been considered. In this procedure, all the
feature vectors estimated in the previous step are
handed over to an appropriate outlier detection algo-
rithm to determine the outliers. For this purpose, the
neighborhood outlier detection algorithm [24] has been
used in this paper. A brief description of this algorithm
is provided below.

Consider the nonempty finite sets of U and G which
respectively include all the feature vectors and attributes.
For each {;e Ul and HE G, the neighborhood of {; in
subspace H is defined as nf; ({;)

n? (€)= {68, Geeld, Dy (45,8 )<q } (9)

where ¢q is called the neighborhood parameter. A dis-
tance metric is a distance function that maps two points
to a space of nonnegative integers. As an example, we
can use the Euclidean distance of points in an (# + 2)-di-
mensional space (G =g, 82, ..., 8 4 2)

n+2

Dy (4. 5) = > IF (5,8)f (trg)

i=1

(10)

where f((;, g;) indicates the value of data x in the ith
dimension.

After calculating the neighborhood (nf;) for all the
existing data in U, by considering a neighborhood par-
ameter g, for each feature ge G, the distance between
two data (§; and §y) in feature g is determined as follows:

e (v qq
(o) - (DL

(11)

Then, the value difference metric (VDM) is calculated
from the following equation:

VDM (5, 66) = > de (4G (12)

26

In the next step, the neighborhood-based object out-
lier factor (NOOF) for each data {; € U is determined by
using the VDM, values
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NOOF(;,) = f VDM (4, 8. )

z=1z=i

(13)

Suppose that a threshold value g has been given; for
each {;e U, if F(C;) >y, then {; is called a neighborhood-
based outlier in {J. More details of the algorithm can be
observed in [24].

The parameters affecting the performance of the
outlier detection algorithm include the neighborhood

parameter g = {qg] Y/ PRERS qgm} corresponding to each

feature G=1{g1,82 ...g,+2} and also the threshold
value y. The value of neighborhood parameter ¢, is
determined with regard to the value of feature g;
Choosing small values for g, reduction of ngg (Cj). This
means that there would be fewer data adjacent to
data {; along feature g.

Following the establishment of feature vectors in Sec-
tion 3.2, the outlier detection algorithm with g = {2, 5, 1}
and ¢ =0.9 is used to remove the outlier resulting from
the MLD. Figure 5a, b respectively show the feature vec-
tors (marked with circle) along with the outlier (marked
with square) and the feature vectors after the elimination
of the outlier. As is observed, after removing the outlier,
the data distribution is well formed and the clustering
operation can be implemented with a high precision.

Remark (1): When the data of an MLD include the
data of two X; and X, regions with a discontinuous
boundary, the feature vector corresponding to this MLD
will emerge as an outlier. The necessity of eliminating
the outliers was discussed in Section 3.3. However, it
should be noted that the removal of an outlier means
the removal of the original data corresponding to that
outlier. This causes the loss of some valuable informa-
tion about the system. Since the original data corre-
sponding to outlier feature vectors usually include the
data existing at the boundaries between regions X, their
elimination reduces the accuracy of detecting such
boundaries. Thus, a refinement step has been considered
at the end of the algorithm for the reassignment of ori-
ginal data corresponding to outliers.

3.4 Clustering the feature vectors

After eliminating the outliers by means of the algorithm
presented in Section 3.3, it is time to cluster the
remaining feature vectors. There are various clustering
algorithms (for a description of these different ap-
proaches, refer to [27, 28]). However, it should be noted
that some of these algorithms suffer from two draw-
backs: (1) poor initialization and (2) noisy data. To
overcome these two problems, in this paper, the fuzzy
PCA-guided robust k-means clustering algorithm [23]
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Estimated feature vectors

Outlier

Real cluster center of subsystem1
Real cluster center of subsystem2 [

g -10
[ejJZ 0 -20 (9]-)1

the outlier

Fig. 5 a The feature vectors (marked with circle) along with the outlier (marked with square) and b the feature vectors after the elimination of

O Estimated feature vectors

*  Real cluster center of subsystem1

*  Real cluster center of subsystem2
Real cluster center of subsystem3 |

J

has been used. The three main advantages of this
method over the other approaches are

Using this algorithm eliminates the need to randomly
determine the class centers and thus ensures that poor
initialization will not lead to the convergence of
response to a local optima.

By exploiting the frameworks of the fuzzy and PCA
methods, a noise-resistant approach is created.

By mapping the data to a space of higher dimension
using the kernel function, it is possible to establish a
nonlinear decision boundary.

In the following, the fuzzy PCA-guided robust k-
means clustering algorithm [23] will be briefly described.

Choose the initial value of responsibility weights b;, i =
1,2,..,n+2 as b;=1 and choose the noise sensitivity
wright B (the recommended value is f=1) and the ter-
mination condition &. Set s to the initial guess for num-
ber of clusters.

Calculate the normalized kernel matrix as follows:

1

S=1I,2- ﬂth W—SWS (14)

where I, is 7 x n unit matrix, b = (b{, ..., b}.,), 0 is the
weighting exponent used to estimate fuzzy memberships
(a recommended value is a =2), & is the n-dimensional
vector whose all elements are 1, W = {w;} is the kernel
PCA-guided k-means matrix whose element is w;; =
Pu() Pu(() for each {=1[; (oo Lol and @, is a

nonlinear transformation to higher dimensional space
are centered as ®,Sb’h=0 where ®, = (¢, (1), ....,

¢W(Cn + 2))

Derive J; _1 = (j1, ..., js _ 1) by calculating the eigenvectors
corresponding to s -1 largest eigenvalues of B**WB*?,
where B is a diagonal matrix whose ith diagonal element
is b;. Then, set j; as follows:

/2 /2
bl/ bniZ (15)

<Z:l:12b?) 120 (Zj‘:fbft) 1/2

Then, the responsibility criterion A; i=1,...,n+2 and
penalty weight y is calculated as follows:

Js =

s nt2 b, a/2
Ai= Wii_ZDk,jkjWij <b_]> (16)
k=1j=1 i
Z;:Zbﬁ"
Y= (17)
Db
i=1
Then, b; is updated as below:
\ Va-1]71
b= |1+ (A) 18)
Y

If max;|b)"" -b?*P| < &, then output connectivity
matrix C or P = {p;},

C=1J (19)
Cij
T Ve
Otherwise, return to step 2.
Here, p;; is large only when samples i and j are in the
same cluster, and none of them is a noise sample; the
noise samples have small connectivity with the other

(20)
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samples. A potential approach to assessment of cluster
structure is distance-sensitive ordering of samples [29].
After distance-sensitive ordering, cluster structure is
shown in the diagonal block structure of connectivity
matrix. To find cluster boundaries, [29] proposed “clus-
ter crossing.” Cluster crossing is the sum along the anti-
diagonal direction in connectivity matrix and takes a
minimum at the cluster boundaries between clusters
(shown with “x” marker in Fig. 6b). Figure 6a—c shows
the connectivity matrix C, cluster crossing curve, and
the classified feature vector for Example (1).

As is observed in Fig. 6a, b, by using the diagonal
block structure of the connectivity matrix or the cluster
crossing curve, the boundaries between classes can be
delineated. The results of applying the fuzzy PCA-
guided robust k-means clustering algorithm in the clus-
tering of the feature vectors in Example (1) have been
illustrated in Fig. 6c.

3.5 Original dataset classification

Following the clustering of feature vectors , the original
data can be classified by using the correspondence be-
tween each feature vector {; and a number of original
data. In fact, each feature vector {; corresponds to one
LD Q. By using the same correspondence, the original
data associated with each X;, i = 1,2, ...,s can be deter-
mined. The classified data of Example (1) have been
shown in Fig. 7a. Due to the removal of the outlier
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feature vector, which includes some of the data near the
boundary between the X', and X3 regions (Remark (1)),
no data exists in the vicinity of the boundary between
these regions. Figure 7b illustrates the boundary between

the X'; and X, regions more accurately. We can see that
only two data from the X; region have been incorrectly
placed in the X', region.

3.6 Estimation of subsystems and subregions

Now by using the existing data in X;, i =1,2,...,s, the
subsystems and regions can be estimated. The RLS
method with formulation (8) is employed to estimate the
subsystems. The following estimations are obtained for
the subsystems of Example (1):

0, = [-1.0635 0.8396]",
0, = [1.0883 2.9251]",
6; = [-1.0881 1.2569]",

(21)

It is observed that the obtained subsystems (21) are
very close to those of the PWARX system (7).

After getting an estimation for the subsystems, it is
time to obtain an estimation for the unknown regions
{X:};_,. Since all the sets of X; are polyhedral and con-
vex, for each pair of X; and X; with i = j, there will be a
separating hyperplane expressed by equation M;x = my;,
and for it, we will have [13],

101

12r o

©),

-2

Fig. 6 a Connectivity matrix C, b cluster crossing curve, and (c) the classified feature vector for Example (1)
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Fig. 7 a, b The classified data of Example (1)
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M;x>m,7 if xeX;

where Mj; is the normal vector to the hyperplane M;x =
my and my; is the bias. To estimate ng = m;;, we can
use the support vector machine (SVM) [30] with lin-
ear kernel. Since “holes” are not accepted in the
model, the multicategory classification approach can
be employed to create the A&’; regions. For this pur-
pose, the multicategory support vector machine (M-
SVM) method can be used. For more details in this
regard, one can refer to [13, 22].

Finally, the X; regions for Example (1) are estimated
as follows:

X1 = [-4.000 -0.9762],
Xy =[-0.9409 1.6454),
X3 = [2.5879 4.5000],

(23)

By examining the above results more closely, we can
see that, due to the removal of the outlier feature vector,
the beginning and end of the region boundary have not
been delineated with a high precision. Thus, an add-
itional step is suggested for using the data that form the
outlier feature vector.

3.7 Refinement
In this step, by using a simple rule, the original data cor-
responding to the outlier feature vector are returned to
their correct regions. For this purpose, the estimated
subsystems in are used; so that for each outlier’s regres-
sion vector x, estimation error error; corresponding to
the ith subspace X; can be computed using (3) and (4)
as belows:

€rror; = ysys(x)_yest,»(x) (24)
where (%) is the real output corresponding to input x
and y, (%) is the output of the ith estimated subsystem
for input «. In this step, the real output of each data is

compared with the outputs of the estimated subsystems
and then the data is assigned to a region with least error.
In this way, by using a simple method, the original data
forming the outlier feature vector can be assigned to the
correct X; regions. Following this procedure, the subsys-
tems and regions are re-estimated, as in Section 3.6. The
results of the refinement step for Example (1) have been
shown in Eq. (25) and Fig. 8. We can see that by adding
the refinement step, the accuracy of estimating the &
regions improves considerably.

6, = [-1.0635 083962]
6, = [1.0967 2.9253] Xz
65 = [-1.0663 1.1693] . X =

— [-4.000 -0.9762],
[-0.9409 1.9950],
[2.0150 4.5000],

(25)

Remark (2): As was stated in Assumption (1), the
number of subsystems s is assumed to be known. When s
is unspecified, its value should be estimated based on the
data. Cluster crossing is the sum along the antidiagonal
direction in the connectivity matrix with a bandwidth m
and takes a minimum at the cluster boundaries between
clusters, i.e., each cluster forms a “peak” in the cluster-
crossing curve [23]. By finding “peaks” and “valleys” in the

=
>
0
-2
-4
-4 2 0 2 4 6
u(k-1)
Fig. 8 Classified data points (circles, crosses, triangles)
- J
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curve, we can visually capture the cluster structures in the
connectivity matrix. When s is unspecified, its value
should be estimated based on the data. To achieve this,
the cluster-crossing curve can be used. For this purpose,
by considering s;, i=2, 3, ..., the clustering algorithm is
executed and the cluster-crossing curve is plotted for each
value of s. In these conditions, the cluster-crossing curve
for s; < S,cruar follows a pattern of peaks and valleys (with a
number equal to s;). However, for s; > s,c0ua, the pattern of
the cluster-crossing curve loses its regularity. Thus, an es-
timation of the number of subsystems can be obtained.

4 |dentification of an IGV servo actuator

In this section, the application of proposed method to
identify an IGV servo actuator is evaluated. A gas tur-
bine engine includes a compressor with multiple rows of
rotor blades spaced between multiple rows of stator
vanes to gradually compress air for delivery to a com-
bustor. Many gas turbine engines include a first stage of
inlet guide vanes that are variable in order to change the
angle of each guide vane.

The IGV servo actuator controls the position of the in-
let guide vanes of the industrial gas turbine system. The
actuator provides highly accurate position control. The
actuator is a double-acting design that will close the
guide vane on loss of electrical signals. Optimum control
of the inlet guide vane requires that the actuator accur-
ately and quickly track the demand signals transmitted
by the control. The IGV actuator has been designed to
provide output forces that exceed the opening and clos-
ing requirements. The additional margin helps ensure
that the system moves rapidly even under service condi-
tions where the actuator has been contaminated or
worn.

The IGV actuator is controlled by an electronic servo-
control system, which compares the demanded and ac-
tual actuator positions. The control system modulates
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the input current signal to the electrohydraulic servo
valve to minimize the positioning system error. The
available electronic servo-control system is a kind of Dir-
ect Current (DC) motor that uses a switching PI con-
troller with different sets of gains and is used to track
the desired angular velocity. The controller gains varies
in the different range of electrical current i(¢). The afore-
mentioned system is shown in Fig. 9.

The model of a DC motor is described by the follow-
ing continuous-time state-space equations:

di(t) .

L e v(t)-kyw(t)-Ri(t) (26)
do(t) )

J ar =T,(t) + ki(t)-Bw(t) (27)

where v(t) is the input voltage, w(¢) is the angular vel-
ocity of the rotor, and T, is the external torque which is
applied to the rotor with inertia of J. L, R, and B, repre-
sent winding leakage inductance, armature resistance,
and the frictional coefficient, respectively. Also, k, and &,
denote torque and back emf constant, respectively.

A switching PI controller is used to track the desired an-
gular velocity w.(f). So, by defining e, (t) = w.dt) — w(?),
the input voltage of the motor is equal to

W(e) = Kyeo(t) + K, / eo(t)dr (28)

Also by using the trapezoidal rule for approximating
the integral, the input voltage at time ¢ = kT is given by

v(k) = v(k-1) + ae,(k-1) + be,,(k-2) (29)

where n; =1, ny =2, y(k-1) =v(k- 1), and (k) = [v(k -
1) e, (k-1) e,(k-2)]". So, the identification problem

Fig. 9 The identified IGV servo system
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Fig. 10 Angular velocity of the rotor

consists of finding variable matrices of each subsystem
0;=[1 a; b;]" for PWARX systems (29) and estimating
the regions of electrical current X;. The available data is
related to an electronic servo-control system under a
sinusoidal T,(#) with variable w,.¢(f), and the data were
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sampled at T; = 0.001 s. In this case, a sinusoidal T, was
estimated to be as
T,(¢) =11 x sin(8¢t) + 12 (Nm) (31)

Also, we(t) which is related to a particular industrial
application sets as Fig. 10.

This data set consists of enough data of the electrical
current, input voltage in proposed operating conditions
which is plotted in Fig. 11b, ¢, respectively. Also,
changes in regions over time are shown in Fig. 1la.
There is a driver software that comes with the electronic
servo-control system which provides the output data for
user. The identification problem consists of finding the
gains of the three PI controllers and estimating the re-
gions of the electrical current.

In order to determine the gains of the PI controller,
we need to estimate the parameters of each subsystem.
In the following, with the use of the proposed algorithm,
estimated parameters of each subsystem and regions are
obtained as Table 1. The value of parameter ¢ was

b 35
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Fig. 11 Changes in current (b) and voltage (c) of the electronic servo-control system with respect to changes in regions (a) from experimental data
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Table 1 Estimated parameters of each subsystem and regions

Subsystem 1

a=00576, b=-0.0520 a=00676, b=-00208 a=0.0443, b=-0.0102
X1 =[2.5456,7.3342] Xo=1[7.3417,27.2544] X3=1[27.7142,31.1080]

Subsystem 2 Subsystem 3

selected to 7, but, it is noticeable that we can choose ¢
in a wide range without affecting the results. Also, Fig. 12
illustrates the connectivity matrix and cluster crossing
curve of classified feature vectors. As it can be seen, by
choosing s =3, diagonal block structure of this matrix
enables us to cluster data points carefully. It should be
noted that s=1, 2, 3 and 4 have been chosen as initial
guess to cluster the feature vectors. Finally, Fig. 13
shows the real and estimated angular velocity of the
electronic servo-control system. For this purpose, using
the mathematical model of an electronic servo-control
system, and by applying the working condition of the
identified servo system, the estimated angular velocity of
the motor is assessed for controller gains in Table 1.
Figure 13 shows that the identification is done perfectly,
and the real and estimated angular velocities have the
same behavior (the error percentage between real and
estimated angular velocities is about 2.34% in 10 s).

5 Conclusions

In this paper, an effective method for identification of
piecewise affine system is proposed. This method uses
the clustering of feature vectors that consist of param-
eter vectors corresponding to local datasets and average
spatial position of each one. Since, in practice, the data
acquired from a system being identified are received se-
quentially within a specific time interval, each piece of
data can be assigned a label, time tag, which shows the
sequence of data relative to one another in the time do-
main. Also, since the subsystems of the PWARX system
are linear, by considering a small number of data in a
specified time interval, a LD can be created. Then, using
RLS algorithm, a parameter vector is calculated for each
LD. By adding the average spatial position of each LD to
corresponding parameter vector, a feature vector is
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created. This modification makes it possible to resolve
the subsystems that have mutual coefficients.

Because some LD contains data points from two adja-
cent regions, some outlier feature vectors are produced.
So, by using the neighborhood outlier detection method,
these ill feature vectors are eliminated. Then, fuzzy
PCA-guided robust k-means clustering algorithm is im-
plemented for feature vectors clustering. This clustering
method uses a specific predetermined value for member-
ship degree of each data point, so there is no need to
use some initial centers for clusters. This modification
avoids getting trapped in local minima. Furthermore,
cluster crossing curve enables us to estimate the number
of subsystems. This is a useful trick, especially in the
case that we have not enough information about system.
After that, a refinement stage is considered to improve
the subsystem and region estimation. In this stage, the
ambiguity concerned with outliers is solved. By integrat-
ing all these desirable characteristics, a practical identifi-
cation algorithm is created.

This paper mainly concerns the possibility to improve
the clustering of feature vectors because as mentioned
earlier, the bottleneck of clustering-based approaches is
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Fig. 12 a Connectivity matrix and b cluster crossing curve of classified feature vectors for IGV servo actuator
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feature vectors clustering. The effectiveness of the pro-
posed method is investigated through a mathematical
and industrial model. Results show the ability of the pro-
posed method in identification of industrial systems in
the presences of noise. Also, the main drawbacks of the
earlier clustering-based methods are solved in this

paper.

6 Endnotes

"It is assumed that each subspace satisfies the relations of
XizpVie{l,2,..,s}, X;nX; = @Vi, je {1,2,...,s},i#),
and Ui_ X; = X.
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