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Abstract

Cancellation of clutter and multipath is an important problem in passive bistatic radars. Some important recent
algorithms such as the ECA, the SCA and the ECA-B project the received signals onto a subspace orthogonal to both
clutter and pre-detected target subspaces. In this paper, we generalize the SCA algorithm and propose a novel
sequential algorithm for clutter and multipath cancellation in the passive radars. This proposed sequential
cancellation batch (SCB) algorithm has lower complexity and requires less memory than the mentioned methods. The
SCB algorithm can be employed for static and non-static clutter cancellation. The proposed algorithm is evaluated by
computer simulation under practical FM radio signals. Simulation results reveal that the SCB provides an admissible
performance with lower computational complexity.
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1 Introduction
Passive bistatic radars use the reflected signals from
independent transmitters as illuminators of opportunity.
Passive radars stay hidden and cannot be identified or
localized as they do not transmit signals while they detect
aerial targets. In this type of radar, the utilized signals can
be analogue TV [1, 2], FM radio [3], satellite [4], DVB-T
[5], DAB [6] and GSM [7] which may be present in the
space and can be treated as the transmitted signal. In gen-
eral, the selection of suitable illumination signals depends
on some parameters such as the coverage area of these
transmitters, their power and their carrier frequency and
bandwidth. Commercial FM radio stations are one of the
best available signal sources which yield good perfor-
mance for this purpose along with low implementation
costs [3]. In particular, the high transmit powers of FM
broadcast stations often allow detection ranges of approx-
imately 250 km [8]. Figure 1 illustrates a common scenario
that often occurs in the passive radars, where the passive
radar is equipped with a receive reference antenna and a
surveillance antenna.
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The reference antenna is adjusted to receive only the
direct path of the signal from the transmitter, while the
surveillance antenna receives signals from all directions
which includes signals not only from the direct path from
the FM station but also from the reflections produced by
targets and clutters. Using the ambiguity function based
on the matched filters [3, 9], the Range-Doppler targets
and clutter are detectable.
Before computing the ambiguity function, there are

some challenges that must be resolved. For example, the
power of the direct path signal is significantly higher than
the received power from targets, and the signal received
from the target and clutter often go through multipath
unknown channels. Various methods have been proposed
to confront these problems. Some of them have consid-
ered the problem as a composite hypothesis test and have
attempted to design sub-optimal detectors such as gen-
eralized likelihood ratio test for target detection in the
presence of the interference [10, 11]. Some others have
employed adaptive filters to estimate the clutter and direct
path signal components in order to cancel them [12, 13].
However, an important class of methods is based on the
projection of the received signal onto a subspace orthog-
onal to both the clutter and the pre-detected targets. The
ECA, SCA and ECA-B are among these methods [14–16].
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Fig. 1 A common scenario of passive radars

Recently, a version of ECA (ECA-S) has been proposed
in [17].
In this paper, we propose a novel algorithm for clut-

ter and multipath cancellation for the passive radars by
generalization of some recent algorithms which we call
as the sequential cancellation batch (SCB) algorithm. Our
simulation results show that the proposed SCB outper-
forms or performs as good as the mentioned state-of-the-
art methods, depending on the conditions. Furthermore,
the proposed SCB requires lesser memory than these
existing state-of-the-art methods. Our simulations show
that after clutter and direct signal cancellation using the
SCB algorithm, weak targets likely are not detectable.
Hence, in this paper, we use CLEAN algorithm [18–20]
for weak target detection. Although in this paper, we con-
centrate on the use of commercial FM radio signals, it
should be noted that the proposed method (SCB) can
be applied to any transmission of opportunity, such as
GSM transmissions, DAB or DVB-T and satellites. Indeed,
the choice of FM transmissions arguably results in wave-
forms with the worst ambiguity properties for target
detection.
The paper is organized as follows. Section 2 presents the

signal model and ambiguity function. Section 3 introduces
the ECA and SCA algorithms and describes the proposed
SCB technique, and in Section 4, three tests are intro-
duced for comparison of the performance of algorithms.
Finally, Section 5 is our conclusions.
Notations: Throughout this paper, we use boldface lower

case and capital letters to denote vector and matrix,
respectively. We use O(.) as the complexity order of algo-
rithms. diag(., . . . , .) denotes diagonal matrix containing
the elements on the main diameter. 0N×R is an N ×R zero
matrix and IN is an N × N identical matrix. Also (.)T , (.)∗
and (.)H stand for the transpose, conjugate and Hermi-
tian of a matrix or vector, respectively. The operator �.�
denotes the integer part (or floor) of a number.

2 Signal model and ambiguity function
The FM radio signals used in passive radar are in the
88- to 108-MHz band. For example, in Fig. 2, the spec-
trum of a commercial FM signal is showed that is used for
simulation scenario.

Fig. 2 Spectrum of FM signal used for simulated scenario

As seen in Fig. 1, two required signals are used for inter-
ference cancellation algorithms. One is the main received
signal from the surveillance antenna and another is an
auxiliary signal yielded from the reference antenna. If Tint
is the duration time of signal observation, the received
signal ssur(t) at the surveillance antenna is modelled as:

ssur(t) =Asurd(t) +
NT∑

m=1
amd(t − τm)ej2π fdmt

+
NC∑

i=1
ci(t)d(t − τci) + nsur(t), 0 ≤ t ≤ Tint,

(1)

where d(t) is the direct transmitted signal that is multi-
plied by the complex amplitude Asur. The variables am,
τm and fdm are the complex amplitude, delay and Doppler
frequency of the mth target signal (m = 1, . . . ,NT ),
respectively, that is NT is the number of targets. ci(t) and
τci are the complex amplitude function and delay of the ith
clutter (i = 1, . . . ,NC), that isNC is the number of clutters.
All delays are calculated with respect to the direct signal.
nsur(t) is the thermal noise contribution at the receiver
antenna.
The complex amplitudes ci(t) are considered slowly

varying functions of time, so that they can be repre-
sented by only a few frequency components around zero
Doppler:

ci(t) = ciej2π fcit , (2)

where fci and ci are Doppler shift and complex amplitude
of the ith clutter (i = 1, . . . ,NC), respectively. In the same
way, the received signal sref(t) at the reference antenna is:

sref(t) = Arefd(t) + nref(t), (3)

where Aref is a complex amplitude and nref(t) is the ther-
mal noise contribution at the reference antenna.
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The samples collected at the surveillance channel at
the time instants tn = nTs, (n = 0, 1, . . . ,N − 1)
are arranged in a N × 1 vector ssur, where Ts is the
sampling time and N is the number of samples to be
integrated. The sampling time is selected greater than
the resolution time (i.e. Ts > 1/B where B is the sys-
tem bandwidth). Similarly, we collect N + R samples of
the signal at the reference channel in a (N + R) × 1
vector sref. We use the ambiguity function for evalua-
tion of the interference cancellation algorithms and target
detection. The discrete ambiguity function equation is as
follows [9]:

ξ [l, p]=
N−1∑

i=0
ssur[i] s∗ref[i − l] e−

j2πpi
N , l = 0, . . . ,R,

p = 0, . . . ,P−1

(4)

where ssur[i] and sref[i] denote ssur(ti) and sref(ti), respec-
tively. Consider that the discrete delay l corresponds to the
delay T[l]= lTs and R is maximum delay bin of clutter.
Similarly, the discrete Doppler frequency bin p, corre-
sponds to the Doppler frequency fd[p]= p/(NTs) and P is
maximum Doppler bin of clutter.

3 Clutter and direct signal cancellation
In this section, first we introduce two known algorithms
ECA and SCA for clutter and direct signal cancellation
in passive bistatic radars. Then the proposed algorithm is
presented.

3.1 Extensive cancellation algorithm (ECA)
The ECA is an effective way for clutter and direct signal
cancellation in the passive radars and is based on the least-
squares (LS) estimation [14]. If the surveillance vector ssur
is modelled with respect to the reference vector sref lin-
early, the objective function in the LS estimation can be
represented as follows:

min
θ

‖ ssur − Hθ ‖, (5)

where θ is the model parameters vector corresponding to
the likely clutters and H is a known matrix depending on
the positive integer p as:

H = B[�-psref . . . �-1sref sref �1sref . . . �psref] .
(6)

Here, B is an incidence matrix that selects only the last
N rows of the next multiplied matrix and has the below
form:

B =[ 0N×R
... IN]. (7)

�p is a diagonal matrix making the phase shift corre-
sponding to the pth Doppler bin, as:

�p = diag
(
1, ej2πpTs , . . . , ej2π(N+R−1)pTs

)
. (8)

Also, sref = [sref Dsref D2sref . . . Dk−1sref], where D
is a 0/1 permutation matrix that imposes a delay unit to
the next multiplied vector and k indicates the maximum
amount of delay in clutter samples. Indeed, the columns of
sref are the delayed versions of the zero-Doppler reference
signal. The columns of matrix H present a basis for the
M-dimensional clutter subspace, where M = (2p + 1)k.
The solution of (7) yields θ̂ = (HHH)-1HHssur; therefore,
the received signal after cancellation of direct signal and
clutter can be obtained as:

sECA = ssur − Hθ̂ = (IN − H(HHH)-1HH)ssur = P0ssur.
(9)

The computational complexity of the ECA algorithm is
O(NM2 + M3). This complexity is high because the esti-
mation of vector θ requires the inversion of the matrix
HHH with dimensionsM × M.

3.2 Sequential cancellation algorithm (SCA)
Aiming at reducing the computational load of the ECA
algorithm described in Section 3.1, a sequential solution
algorithm has been offered in [14] for clutter and direct
signal cancellation, called SCA.
Consider the matrix H = [x0 x1 · · · xM−1], where xi is

the (i+ 1)th column ofH. The sequential equations of the
SCA algorithm are as follows:

• Start with initial equations as:

PM = IN, (10)
s̄(M)
sur = ssur. (11)

• Then, the output vector of SCA algorithm is obtained
by implementing the below recursive equations for
i = M, . . . , 2, 1 respectively:

x̄(i)
j = Pixj for j = 0, 1, . . . , i − 1, (12)

Qi =
[
IN − x̄(i)

i-1x̄
(i)H
i-1

x̄(i)H
i-1 x̄(i)

i-1

]
, (13)

Pi-1 = QiPi (14)

• In each step of the above equations, the received
signal can be improved one level as:

s(i-1)sur = Pi-1ssur = Qis(i)sur. (15)

• After finishing the above loop, by using the final
projection matrix P0, the output vector sSCA is
obtained as follows:

sSCA = s(0)sur = P0ssur. (16)
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A schematic plan of the SCA algorithm containing the
clutter and direct signal cancellation is shown in Fig. 3.
Almost all steps of a SCA algorithm have been shown in

this figure. It is possible to limit the computational of the
cancellation algorithm by arresting it after stage S (S <

M). The computational complexity of the SCA algorithm
limited to S stage is O(NMS), which can be significantly
smaller than the computational cost of the corresponding
complete ECA algorithm.

3.3 Sequential cancellation batch (SCB) algorithm
In order to improve the cancellation performance with a
limited computational load, a modification of the SCA is
proposed which is called SCB. The received signal at the
surveillance antenna is divided into sections with length
TB. If the entire length of the surveillance antenna sig-
nal is Tint, the total number of samples of the signal at
the antenna will be N = �Tintfs�, where fs is the sam-
pling frequency. The signal is divided into b packets with
NB = �N/b� available samples. First, the SCA algo-
rithm is applied to each of these packets distinctly. The
output of the SCA algorithm on each packet is a vec-
tor removed of the clutter and direct signal. Then, the

main cleaned vector is obtained from the union of these
sub-vectors. Finally, the main vector can be used for com-
puting and plotting the ambiguity diagram and target
detection.
In this manner, vectors ssurv(j) and sref(j) correspond-

ing to the (j + 1)th packet are defined as follows for j =
0, 1, 2, . . . , b − 1

ssurv(j) =
[
ssur

[
jNB

]
ssur

[
jNB+1

]
. . . ssur

[
(j+1)NB − 1

]]T,
(17)

sref(j) =
[
sref

[
jNB-R

]
sref

[
jNB-R+1

]
. . . ssur

[
(j+1)NB − 1

]]T.
(18)

If the output of the SCA algorithm on the jth packet
denotes vector sSCA(j), the total output sSCB removed from
the clutter and direct signal is obtained as:

sSCB =
[
sTSCA(0) sTSCA(1) . . . sTSCA(b−1)

]T
. (19)

A schematic plan of the SCB algorithm is shown in
Fig. 4. If we replace the applied SCA method with ECA

Fig. 3 Sketch of the sequential cancellation algorithm
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Fig. 4 A sketch of the SCB approach

method in the SCB algorithm (instead of the SCA block
that runs on the ith batch in the block diagram of Fig. 4),
the ECA-B method will be achieved which is explained in
[15] fully.
We use the observation or CLEAN algorithm [18–21]

for detection of the weak target. The Doppler frequency
(f̂i1), delay (τ̂i1) and amplitude (Âi1) of the ith strong target
(i = 1, . . . ,Ns1) can be extracted based on the infor-
mation of location of this strong target in the ambiguity
function where Ns1 is the number of strong targets which
are detected after SCB algorithms. Then, the estimated
echoes of the strong targets are subtracted from sSCB(t) as
follows:

s1sur(t) = sSCB(t) −
Ns1∑

i=1
Âi1d(t − τ̂i1)e2π jf̂i1t , (20)

where sSCB(t) is the signal removed from clutter
and direct signal by the SCB algorithm. By comput-
ing the ambiguity function of s1sur(t), the weak tar-
gets can appear. In the next processing, the estimated
echoes of new targets (the weak targets in ambigu-
ity function of s1sur(t)) are subtracted from s1sur(t) as
follows:

s2sur(t) = s1sur(t) −
Ns2∑

i=1
Âi2d

(
t − τ̂i2

)
e2π jf̂i2t . (21)

Here, the Doppler frequency ( f̂i2), delay (τ̂i2) and ampli-
tude (Âi2) of each weak target can be extracted based
on the information of location of these weak targets in
the ambiguity function of s1sur(t), and Ns2 is the number

of weak targets which are detected in ambiguity func-
tion of s1sur(t). The observation algorithm is repeated as
follows:

sjsur(t) = sj−1
sur (t) −

Nsj∑

i=1
Âijd(t − τ̂ij)e2π jf̂ijt , j = 2, 3, . . .

(22)

where f̂ij, τ̂ij and Âij are the the Doppler frequency,
delay and amplitude of unregarded weak targets which
appeared in the (j − 1)th stage and detected using the
ambiguity function of sj−1

sur (t). The algorithm is ended
when the below inequality occurs:

max
(
ξ

(
τd, fd

)) − min
(
ξ

(
τd, fd

))

max
(
ξ

(
τd, fd

)) < η, (23)

where ξ(τd, fd) is the ambiguity function of sjsur(t) at posi-
tion (τd, fd) and η is a small value selected between zero
and one in our simulations.
The computational complexity of the SCB algorithm in

each batch is O(NBMS). This means that the SCB algo-
rithm requires lesser memory than the ECA and SCA
algorithms. When the SCB algorithm is run on b batches,
the computational complexity will beO(bNBMS) which is
equal to the SCA algorithm because bNB equals N .
We remind that the computational complexity of ECA-

B method is O
(
NM2 + M3) similar to the ECA method;

but its required memory is O
(
NBM2 + M3) which is less

than that of ECA. Anyway, both computational complex-
ity and required memory of the proposed SCBmethod are
considerably less than those of ECA-B method.



Ansari et al. EURASIP Journal on Advances in Signal Processing  (2016) 2016:134 Page 6 of 11

4 Results and discussion
In this section, we investigate the performance of the pro-
posed algorithm and compare it with the ECA, SCA and
ECA-B methods. For this purpose, we use two different
Doppler-delay scenarios. First, in scenario #1 represented
in Fig. 5, we consider nine clutters in the form of blue stars
and three targets in the form of red circles.
The clutter and target specifications are shown in

Tables 1 and 2, respectively. Also, the signal-to-noise ratio
(SNR) of the direct signal is assumed to be 60 dB.
Figure 6 shows the ambiguity function of the received

signal in scenario #1, in a two-dimensional (2-D) mode
without removing the direct signal and clutter. In Fig. 6a,
it is seen that the peaks of targets are masked by the peaks
of direct signal and clutters, and the targets are not dis-
tinguishable. In Fig. 6b, the output of ambiguity function
is drawn for l = 0. In this figure, the strong peak cor-
responding to the direct signal (with zero Doppler and
zero delay) is presented obviously. The output of ambi-
guity function for p = 0 is also presented in Fig. 6c.
In this figure, it is shown that the clutter is delayed
up to 0.25 ms, and most of the amounts of ambigu-
ity function are in zero delay, indicating the direct path
signal.
First, we implement the ECA algorithm under scenario

#1. Figure 7a shows the 2-D ambiguity function of the
received signal after the direct signal and all echoes of
clutter cancellation by the ECA algorithm. The simulation
conditions are k = 50 and Doppler bin (−1, 0, 1), where p
is 1. As seen in Fig. 7a, the two strong targets now appear,
but the weak target is still not detectable. Figure 7b shows
the ambiguity function versus delay in Doppler shift l = 0.

Fig. 5 Representation of scenario #1

Table 1 Clutter echo parameters in scenario #1

Clutter #1 #2 #3 #4 #5 #6 #7 #8 #9

Delay (ms) 0.05 0.1 0.15 0.2 0.25 0.1 0.17 0.22 0.25

Doppler (Hz) 0 0 0 0 0 1 1 1 1

CNR (dB) 40 30 20 10 5 27 18 8 5

This figure shows that the direct signal and all clutters cor-
responding to the delays inside the first k bins have been
removed.
Then, the SCB algorithm is simulated based on sce-

nario #1. The information required for the simulation
is shown in Table 3. Figure 8a shows the 2-D ambigu-
ity function of the received signal after cancelling all the
clutters and direct signal using the SCB algorithm. This
simulation has been prepared with S = 100, Doppler bin
(−1, 0, 1) and k = 50. The cancellation of the direct sig-
nal and clutter causes the strong targets to be seen better,
and by using a simple detector such as the cell-averaging
constant false-alarm rate (CA-CFAR), they can simply
be detected. Nonetheless, the weak target has not been
detected. Figure 8b, c shows the ambiguity function ver-
sus delay for Doppler shifts −50 and 100 Hz, and Fig. 8d,
e shows the ambiguity function versus Doppler for delays
0.3 and 0.5 ms, respectively. In these four figures, it is seen
that unlike the weak targets, the locations of two strong
targets are shown obviously.
For illustrating the modified SCB method equipped

with CLEAN technique, Fig. 9a shows the 2-D ambigu-
ity function output of received signal after removing the
direct signal and all the clutters by the SCB algorithm,
and the strongest target using the observation algorithm
(consider that Fig. 9 presents the ambiguity function of
s1sur(t)). Here, the weak target now appears as a strong
peak. Figure 9b shows the ambiguity function versus delay
for Doppler 50 Hz and Fig. 9c shows the ambiguity func-
tion versus Doppler for delay 0.6 ms. In these figures, the
location of the weak target is observed obviously.
In the following, three tests are introduced for evalua-

tion of SCB in comparison with ECA, SCA and ECA-B
algorithms.

4.1 Evaluation using CA and TA tests
In this section, the CA and TA tests are introduced
for comparing the clutter and direct signal cancellation

Table 2 Target echo parameters in scenario #1

Target #1 #2 #3

Delay (ms) 0.3 0.5 0.6

Doppler (Hz) –50 100 50

SNR (dB) 4 2 –10
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a

b

c

Fig. 6 The ambiguity function output in dB before cancellation in
scenario #1. a 2-D output. b Section at delay 0. c Section at Doppler 0

algorithms. Initially, the CA and TA are written as follows:

CA = 10 log
(

input clutter amplitude peak
output clutter amplitude peak

)
, (24)

a

b

Fig. 7 The ambiguity function output in dB after direct signal and all
clutter cancellation (k = 50, p = 1 andM = 150) by the ECA
algorithm in scenario #1. a 2-D output. b Section at l = 0

TA = 10 log
(

input target amplitude peak
output target amplitude peak

)
, (25)

where, the phrases “input clutter/target amplitude peak”
and “output clutter/target amplitude peak” indicate the
amplitude of clutter/target before and after the clut-
ter and direct signal cancellation, respectively. For eval-
uating the SCB algorithm in comparison with the
ECA, SCA and ECA-B algorithms using the CA and

Table 3 Selected parameters for simulation of the SCB algorithm

Observation time Tint 1 s

Sampling time Ts 0.005 ms

Number of batch b 10
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a

b c

ed

Fig. 8 The ambiguity function output in dB after direct signal and all clutter cancellation by the SCB algorithm with Doppler bin (−1, 0, 1) in
scenario #1 a. 2-D output. b Section at Doppler –50 Hz. c Section at Doppler 100 Hz. d Section at delay 0.3 ms. e Section at delay 0.5 ms

TA tests, we consider scenario #2 containing one
target and one clutter (spot clutter1 or exponential
spectrum clutter2) with characteristics tabulated in
Table 4.
According to scenario #2, we obtain the values of CA

and TA of the algorithms. For clutter and direct signal
cancellation, p is considered as −1, 0 and 1. Since the
CA and TA of SCB algorithm depend on the number
of batches (b), we consider these quantities for various
values of b. In Fig. 10, a simulated CA curve of the
SCB algorithm is depicted versus the number of batches
in comparison with that of the ECA, ECA-B and SCA
algorithms. It is observed that the CA of SCB and ECA-B
is similar, and when the clutter has an exponential spec-
trum, the CA is reduced by 6 dB (in both SCB and ECA-B

methods). It is seen that the CA of SCB with ten batches
(b = 10) is close to that of ECA and SCA. By increas-
ing b from 10 to 30, the CA of SCB increases. For b
more than 30, further attenuation for clutter is no longer
available.
Figure 11 shows a TA curve of SCB algorithm versus the

number of batches in comparison with that of ECA, SCA
and ECA-B algorithms. It is seen that in the SCB algo-
rithm with b less than ten batches, similar to the ECA and
SCA, the amplitude of the target in the ambiguity function
almost is not reduced after clutter/direct signal cancella-
tion. Nevertheless, as seen in Fig. 11, the amplitude of the
target after cancellation will be reduced by increasing the
number of batches from ten. This may cause the target not
to be detected from the ambiguity function. It is observed
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a

b

c

Fig. 9 The ambiguity function output in dB after direct signal, all
clutters, and strong target cancellation by SCB algorithm in scenario
#1. a 2-D output. b Section at Doppler 50 Hz. c Section at delay 0.6 ms

that the TA of SCB and ECA-B is similar, and when
the clutter has an exponential spectrum, the TA is not
changed.

Table 4 Clutter and target parameters in scenario #2 for
calculation of CA and TA in SCB, ECA and SCA algorithms

Delay (ms) Doppler (Hz) SNR (dB)

Clutter1 0.25 0 25

Clutter2 0.25 Exponential Spectrum
between −1 and 1 Hz

25

Target 0.6 100 5

4.2 Evaluation using CFAR target detection
In this section, in order to evaluate the proposed algo-
rithm based on the target detection criteria, we use a CA-
CFAR detector after clutter and direct signal cancellation
using the mentioned algorithms. We use receiver oper-
ating characteristic (ROC) curves for detection perfor-
mance comparison. In this manner, first, clutter and direct
signal are removed by the SCB (or ECA and ECA-B) algo-
rithm, and then targets are detected based on the output
of ambiguity function and CA-CFAR detector. The detec-
tors based on the ECA, ECA-B and SCB algorithms are
called ECA-CA, ECA-B-CA and SCB-CA, respectively.
For comparing the ECA-CA, ECA-B-CA and SCB-

CA algorithms, we consider scenario #3 where targets
have been placed according to Table 5 in Delay-Doppler
page and there are nine clutters with fc = 0 (or
one clutter with exponential spectrum between −1
and 1 Hz), 5 dB < CNR < 30 dB and maxi-
mum delay 0.3 ms, where CNR denotes clutter-to-noise
ratio.
In Fig. 12, the curves of detection probability Pd versus

SNR of ECA-CA, ECA-B-CA and SCB-CA detectors are
plotted for nominal probability of false alarm Pfa = 0.01.
It is observed that the ROC of SCB and ECA-B is

similar, and when the clutter has an exponential spec-
trum SNR is reduced to 4 dB in both methods. It is

10 20 30 40 50 60 70 80 90 100
42

44

46
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Number of batches
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B

)

SCB
ECA
SCA
ECA−B
SCB(Exp. spectrum)
ECA−B(Exp. spectrum)

Fig. 10 The CA curve of SCB versus the number of batches in
comparison with that of ECA, ECA-B and SCA in scenario #2
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Fig. 11 The TA curve of SCB versus the number of batches in
comparison with that of ECA, ECA-B and SCA in scenario #2

seen that by decreasing the number of batch in the SCB
algorithm, the performance of the SCB-CA improves so
that the ROC of SCB-CA with b = 10 is close to the
ROC of ECA for both targets T1 and T2. This means
the SCB-CA detector performs similar to the ECA-CA
detector if the number of batch is low. Consider that
the SCB-CA has less computational complexity than
that of ECA-CA. The ECA-CA and SCB-CA detec-
tors degrade if Doppler frequency of target tends to be
0 Hz.

5 Conclusions
In this paper, the SCB algorithm is proposed for cancel-
lation of static and non-static clutters as well as elimina-
tion of direct signal component in passive bistatic radars
based on projections of the received signals onto a sub-
space orthogonal to the signal subspace of the clutter
and the subspace of the previously detected targets. The
SCB algorithm is first used for clutter and direct signal
cancellation and detection of strong targets. To enhance
the detection performance, the observation algorithm is
then investigated and applied for detection of targets with
weak signals. The simulation results revealed that the SCB
algorithm performers well in the detection of targets com-
pared with the state-of-the-art methods. The TA, CA and
CFAR detection tests were used for comparing the SCB
with the ECA, ECA-B and SCA algorithms. These tests

Table 5 Clutter and target parameters in scenario #2 for
calculation of CA and TA in SCB, ECA, ECA-B and SCA algorithms

Target T1 Target T2

Delay (ms) 0.1 0.9

Doppler (Hz) 10 50
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Fig. 12 The curves of detection probability versus SNR of ECA-CA,
ECA-B-CA and SCB-CA detectors for nominal probability of false alarm
Pfa = 0.01 in scenario #3

showed that targets may hide in the ambiguity function
when the number of batches increases. The SCB algo-
rithm has lesser computational complexity than the ECA
and ECA-B algorithms. Moreover, the proposed method
requires lesser memory than these algorithms and the
SCA method.
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