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Abstract

Conventional algorithms used for parameter estimation in colocated multiple-input-multiple-output (MIMO) radars
require the inversion of the covariance matrix of the received spatial samples. In these algorithms, the number of
received snapshots should be at least equal to the size of the covariance matrix. For large size MIMO antenna arrays,
the inversion of the covariance matrix becomes computationally very expensive. Compressive sensing (CS) algorithms
which do not require the inversion of the complete covariance matrix can be used for parameter estimation with fewer
number of received snapshots. In this work, it is shown that the spatial formulation is best suitable for largeMIMO arrays
when CS algorithms are used. A temporal formulation is proposed which fits the CS algorithms framework, especially
for small size MIMO arrays. A recently proposed low-complexity CS algorithm named support agnostic Bayesian
matching pursuit (SABMP) is used to estimate target parameters for both spatial and temporal formulations for the
unknown number of targets. The simulation results show the advantage of SABMP algorithm utilizing low number of
snapshots and better parameter estimation for both small and large number of antenna elements. Moreover, it is
shown by simulations that SABMP is more effective than other existing algorithms at high signal-to-noise ratio.
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1 Introduction
Colocated multiple-input-multiple-output (MIMO) ra-
dars have been extensively studied in literature for surveil-
lance applications. In phased array radars, each antenna
transmits the phase shifted version of the same waveform
to steer the transmit beam. Therefore, in phased array
radars, the transmitted waveforms at each antenna ele-
ment are sufficiently correlated resulting in a single beam-
formed waveform. In contrast, MIMO radar can be seen
as an extension of phased array radar, where transmit-
ted waveforms can be independent or partially correlated.
Such waveforms yield extra degrees of freedom that can be
exploited for better detection performance and resolution
and to achieve desired beam patterns achieving uniform
transmit energy in the desired direction. ForMIMO radar,
many parameter estimation algorithms have been stud-
ied, e.g., Capon, amplitude-and-phase estimation (APES),
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Capon and APES (CAPES), and Capon and approxi-
mate maximum likelihood (CAML) [1, 2]. These algo-
rithms require the inverse of the covariance matrix of the
received samples. The covariance matrix of the received
samples is full rank if the number of snapshots is greater
than or equal to the number of receive antenna elements.
Therefore, the conventional algorithms like Capon and
APES require a large number of snapshots for param-
eter estimation. Moreover, for the case of large arrays,
the inversion of the covariance matrix of a larger num-
ber of received snapshots will become computationally
expensive.
Compressive sensing (CS) [3, 4] is a useful tool for

data recovery in sparse environments. Some efficient
algorithms are proposed that fall in the category of
greedy algorithms that include orthogonal matching pur-
suit(OMP) [5], regularized orthogonal matching pur-
suit (ROMP) [6], stagewise orthogonal matching pursuit
(StOMP) [7], and compressive sampling matching pursuit
(CoSaMP) [8]. There is another category of CS algo-
rithms called Bayesian algorithms that assume the a priori
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statistics are known. These algorithms include sparse
Bayes [9], Bayesian compressive sensing (BCS) [10] and
the fast Bayesian matching pursuit (FBMP) [11]. Another
reduced complexity algorithm based on the structure of
the sensing matrix is proposed in [12]. In addition to these
algorithms, support agnostic Bayesian matching pursuit
(SABMP) is proposed in [13] which assumes that the
support distribution is unknown and finds the Bayesian
estimate for the sparse signal by utilizing noise statistics
and sparsity rate.
The target parameters to be estimated are the reflec-

tion coefficients (path gains) and location of the target.
To estimate the reflection coefficient and location angle
of the target, existing CS algorithms can be utilized by
formulating the MIMO radar parameter estimation prob-
lem as a sparse estimation problem. It is shown in [14–16]
that the MIMO radar problem can be seen as an �1-norm
minimization problem. In direction of arrival (DOA) esti-
mation, a discretized grid is selected to search all possible
DOA estimates. The grid is equal to the search points
in the angle domain of MIMO radar. The complexity of
the CS method developed in [15] grows with the size
of the discretized grid. In [16], the minimization prob-
lem is solved based on the covariance matrix estimation
approach which requires a large number of snapshots. The
work in [17] does not provide a fast parameter estimation
algorithm and assumes that the number of targets, spar-
sity rate, and noise variance are known. The authors in
[18] have used CVX (a package to solve convex problems)
to solve the minimization problem obtained by CS formu-
lation of MIMO radar. The solution of CS problems by
CVX is computationally expensive for large angle grid. In
[19], off-grid direction of arrival is estimated using sparse
Bayesian inference where the number of sources or tar-
gets is assumed to be known. An off-grid CS algorithm
called adaptive matching pursuit with constrained total
least squares is proposed in [20] with application to DOA
estimation. Another algorithm based on iterative recov-
ery of off-grid target is proposed in [21, 22]. For recent
developments that are useful in off-grid recovery, please
see [23] and references therein.
In this work, our contribution is twofold. First, we

solve the spatial formulation for parameter estimation by
SABMP for on-grid targets assuming that the number of
targets and noise variance are unknown. Second, we solve
an alternate temporal formulation to find estimates for
the unknown parameters. We also make comparisons of
MSE and complexity of our work with the existing con-
ventional algorithms. Specifically, the advantages of using
a CS based algorithm are as follows:

1. The spatial formulation can recover the unknown
parameters when the number of snapshots is less
than the number of receiving antennas.

2. The proposed approach for parameter estimation is
capable of estimating unknown parameters even
away from the broadside of the beam pattern.

3. The recovery of the reflection coefficient in CS
temporal formulation using SABMP is better than
Capon, APES, and CoSaMP algorithms.

4. The complexity of SABMP algorithm is not much
effected by the number of receive antenna elements
in the spatial formulation.

1.1 Organization of the paper
The rest of the paper is organized as follows: In Section 2,
the signal model for MIMO radar DOA problem is for-
mulated. In Section 3, the system model is reformulated
in a CS environment for on-grid parameter estimation
along with the spatial and temporal formulations for large
and small arrays (Sections 3.1 and 3.2, respectively). In
Section 4, we show the derivation for the Cramér Rao
lower bound (CRLB). The simulation results are discussed
in Section 5, and the paper is concluded in Section 6.

1.2 Notation
We assume complex-valued data which is more general.
Bold lower case letters, e.g., x, and bold upper case let-
ters, e.g.,X, respectively, denote vectors andmatrices. The
notations xT and XT, respectively, denote the transpose
of a vector x and transpose of a matrix X. The notations
xH denote the complex conjugate transpose of a vector
x. The notation diag{a, b} denotes a diagonal matrix with
diagonal entries a and b.

1.3 Support agnostic Bayesian matching pursuit
CS technique is used to recover information from signals
that are sparse in some domain, using fewer measure-
ments than required by Nyquist theory. Let x ∈ CN be a
sparse signal which consists of K non-zero coefficients in
an N-dimensional space where K � N . If y ∈ CM be the
observation vector withM � N , then the CS problem can
be formulated as

y = �x + z (1)

where � ∈ CM×N is referred to as sensing matrix
and z ∈ CM is complex additive white Gaussian noise,
CN (0, σ 2

z IM). The theoretical way to reconstruct x is to
solve an �0-normminimization problem when it is known
a priori that the signal x is sparse and measurements are
noise free, i.e.,

min ‖x‖0, subject to y = �x. (2)

Solving the �0-norm minimization problem is NP-
hard problem and requires exhaustive search to find the
solution. Therefore, a more tractable solution [24] is to
minimize the �1-norm with a relaxed constraint, i.e.,
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min ‖x‖1, subject to ‖y − �x‖2 ≤ δ, (3)

where δ =
√

σ 2
z (M + √

2M). �1-norm minimization
problem reduces to a linear program known as basis
pursuit.
SABMP algorithm [13] is a Bayesian algorithm which

provides robust sparse reconstruction. As discussed in
[13], Bayesian estimation finds the estimate of x by solving
the conditional expectation

x̂ = E
[
x|y] =

∑
S

p(S|y)E [
x|y,S]

(4)

where S denotes the support set which contains the loca-
tion of non-zero entries and p(S|y) is the probability of S
given ywhich is found by evaluating Bayes rule. In SABMP
algorithm, the support set S is found by greedy approach.
Once the support set S is known, the best linear unbi-
ased estimator is found using y to estimate x. SABMP
algorithm, like other Bayesian algorithms, utilizes statis-
tics of noise and sparsity rate. SABMP algorithm assumes
prior Gaussian statistics of the additive noise and the spar-
sity rate. The estimates of noise variance and sparsity
rate need not to be known rather SABMP algorithm esti-
mates them in a robust manner. The statistics of locations
of non-zero coefficients or signal support are assumed
either non-Gaussian or unknown. Hence, it is agnostic
to the support distribution. SABMP is a low complexity
algorithm as it searches for the solution in a greedy man-
ner. The matrix inversion involved in the calculations is
done in an order-recursive manner which leads to further
reduction in complexity.

2 Signal model
We focus on a colocated MIMO radar setup as illus-
trated in Fig. 1. In colocatedMIMO radar, the transmitting
antenna elements in the transmitter and the receiving

Fig. 1 Colocated MIMO radar setup

antenna elements in the receiver are closely spaced. Both
the transmitter and receiver are closely spaced too in a
monostatic configuration. In the monostatic configura-
tion, the transmitter and receiver see the same aspects of
a target. In other words, the distance between the target
and transmitter/receiver is large enough that the distance
between transmitter and receiver becomes insignificant.
Consider a MIMO radar system of nT transmit and nR
receive antenna elements. The antenna arrays at the trans-
mitter and receiver are uniform and linear, the inter-
element-spacing between any two adjacent antennas is
half of the transmitted signal wavelength, and there are
K possible targets located at angles θk ∈ [θ1, θ2, . . . , θK ].
Let s(n) denote the vector of transmitted symbols which
are uncorrelated quadrature phase shift keying (QPSK)
sequences. If z(n) denote the vector of circularly symmet-
ric white Gaussian noise samples at nR receive antennas
at time index n, the vector of baseband samples at all nR
receive antennas can be written as [25]

y(n) =
K∑

k=1
βk(θk)aR(θk)aTT (θk)s(n) + z(n), (5)

where (.)T denotes the transpose, βk denotes the reflec-
tion coefficient of the k-th target at location angle θk , while
aT (θk) =[1, eiπ sin(θk), . . . , eiπ(nT−1) sin(θk)]T and aR(θk) =
[1, eiπ sin(θk), . . . , eiπ(nR−1) sin(θk)]T, respectively, denote the
transmit and receive steering vectors. We have assumed
z(n) as uncorrelated noise. A correlated noise model can
be found in [26]. We are interested in estimating the two
parameters: DOA represented by θk and reflection coeffi-
cient βk which is proportional to the radar cross section
(RCS) of the target. It is assumed that the targets are in the
same range bins.

3 CS for target parameter estimation
CS formulation for target parameter estimation can be
done in two different ways. First, via spatial formulation
in which the samples at all antennas constitute a measure-
ment vector. In the second approach, termed as temporal
formulation, all snapshots in time at one antenna rep-
resent a measurement vector. These two methods are
discussed next.

3.1 Spatial formulation
Suppose each antenna transmit L uncorrelated sym-
bols, the matrix of all received samples can be written
as [18, 27]

Y =
K∑

k=1
βk(θk)aR(θk)aTT (θk)S + Z, (6)

where

Y =[y(0), y(1), . . . , y(L − 1)]∈ CnR×L (7)
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and

S =[s(0), s(1), . . . , s(L − 1)]∈ CnT×L (8)

is a matrix of all transmitted symbols from all antennas.
For independent transmitted waveforms, the rows of S
will be uncorrelated. It should be noted that (6) holds if
and only if the targets fall in the same range bins which is a
special case. The model in (6) can be generalized for delay
by adding the delay parameter in the transmitted wave-
form S. If the targets are in different range bin, there will
be another parameter of delay or time of arrival associ-
ated with each target making the problem more complex.
Since the targets are located at only finite discretized
locations in the angle range [−π/2,π/2], by dividing
the region-of-interest into N grid points {θ̂1, θ̂2, . . . , θ̂N }
and assuming AR =[aR(θ̂1), aR(θ̂2), . . . , aR(θ̂N )] ,AT =
[aT (θ̂1), aT (θ̂2), . . . , aT (θ̂N )], and B = diag{β1,β2, . . . ,
βN }, we have

Y = ARBAT
TS + Z (9)

It should be noted here that the diagonal elements of B
will be non-zero if and only if the target is present at the
corresponding grid location. IfN � K , the columns of the
matrix BAT

TS will be sparse. Therefore, (9) can be written
as

[y(0), y(1), . . . , y(L − 1)] = AR[x̃(0), x̃(1), . . . ,
x̃(L − 1)]+Z, (10)

where x̃(l) = BAT
Ts(l) for l = 0, 1, . . . , L − 1 is a sparse

vector. For a single snapshot, we can solve

y(l) = ARx̃(l) + z(l) (11)

by optimizing the cost function

min
x̃(l)

‖x̃(l)‖1 subject to ‖y − ARx̃(l)‖2 ≤ η (12)

and assuming AR as the sensing matrix using convex
optimization tools. The sensing matrix AR is a struc-
tured matrix similar to the Fourier matrix. For guaran-
teed sparse recovery, there are conditions on the sensing
matrix. One such condition is called restricted isometry
property (RIP) [28] which says for a matrix � satisfies RIP
with constant δk if

(1 − δk)‖x‖22 ≤ ‖�x‖2 ≤ (1 + δk)‖x‖22 (13)

for every vector x with sparsity k. For guaranteed sparse
recovery in unbounded noise, δ2k should be less than

√
2−

1. To find the exact value of δk is a combinatorial problem
which requires exhaustive search. For noiseless recovery
of sparse vectors, coherence criteria is more tractable. The
coherence of a sensing matrix with column norms 1 is
given by

μ(�) = max
i�=j

|〈φi,φj〉| (14)

where {i, j} = 1, 2, . . . ,N and φi is the i-the column of
�. In general for any matrix, 
, 0 < μ ≤ 1 but for
guaranteed sparse recovery μ should be as small as pos-
sible and it must be less than one. The sensing matrix
AR can be used for sparse reconstruction because it
satisfies the coherence criteria with μ(AR) < 1. The
convex optimization methods require randomness in the
sensing matrix. The structure in sensing matrix deteri-
orates the performance of convex optimizations meth-
ods due to high μ(
). But, the properties of structured
sensing matrix can be exploited for reduced complexity
sparse reconstruction. It is shown in [12] that for Toeplitz
matrix exhibiting structure and μ(
) � 0.9, Bayesian
reconstruction is more efficient than convex optimization
methods. Furthermore, the matrix AR has Vandermonde
structure and its usage for sparse recovery with a similar
matrix to AR is also discussed in [17]. Ref [29] ana-
lyzed Fourier-based structured matrices for compressed
sensing.
Group sparsity algorithms were used to solve (10) for

multiple snapshots and showed that the complexity grows
with the number of measurement vectors as well as han-
dling of the sensing matrix becomes difficult due to a
Kronecker product involved in the construction of the
group sensing matrix [30]. Since the column vectors x̃(l),
for l = 0, 1, . . . , L − 1 in (12) are sparse, using AR as the
sensing matrix, CS algorithms can be used to estimate the
location and corresponding values of non-zero elements
in x̃(l). Once they are known, the reflection coefficients
and location angles of the targets can be easily found.
The formulation developed in (9) can be considered as

block-sparse and can be solved by SABMP for block sparse
signals [31]. SABMP is a low complexity algorithm and
provides an approximate MMSE estimate of the sparse
vector with unknown support distribution. The authors
would like to emphasize that SABMP does not require
the estimates of sparsity rate and noise variance rather
it refines the initial estimates of these parameters in an
iterative fashion. Therefore, we will assume that the noise
variance and the number of targets are unknown. More-
over, SABMP is a low complexity algorithm because it
calculates the inverses by order-recursive updates. The
undersampling ratio in CS environment is defined as the
length of sparse vector divided by the number of measure-
ments, i.e., N/M. As the undersampling ratio increases,
the performance of CS algorithms deteriorates (please see
[13] and the references therein). The results in [13] show
that the best performance of SABMP algorithm can be
achieved when the undersampling ratio is 1 < N/M <

7. Since the number of measurements is nR, it can be
deduced for the number of receiving antennas thatN/7 <

nr < N . For a given grid size and to maintain a low under-
sampling ratio, the spatial formulation is best suitable for
large arrays.
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3.2 Temporal formulation
For smaller antenna arrays, where nR � N , the formula-
tionmentioned above can have a very high undersampling
ratio which will lead to poor sparse recovery. To overcome
this problem, by taking the transpose of (9) an alternate
formulation can be written as

YT = STATBAT
R + ZT (15)

SinceB is sparse, X̄ = BAT
R will consist of sparse column

vectors, the new sensing matrix will be

� = STAT ∈ CL×N . (16)

Similar to the argument of target range bins on (6), the
model in (15) holds if and only if the targets fall in the same
range bins. Moreover, if there is any delay in waveform S,
it will effect the RIP of � . Although the sensing matrix
� exhibit structure, the coherence of this sensing matrix
is less than 1. Here, we are assuming that the transmitted
waveforms matrix S is known at the receiver and AT can
be reconstructed at the receiver in the absence of any cal-
ibration error. Therefore, the second formulation for CS
becomes

Ȳ = �X̄ + Z̄, (17)

where Ȳ = YT and Z̄ = ZT. As long as μ(�) < 1,
the solution obtained for X̄ is the sparsest solution. More
specifically, if any vector x̄ in X̄ satisfies the following
inequality

‖x̄‖0 <
1
2

(
1 + μ(�)−1) (18)

then �1-minimization recovers x̄ [32, 33].
With this new formulation, the advantage that we get

is that the undersampling ratio will become N/L. Using
a similar argument for the undersampling ratio as made
in the spatial formulation, it can be shown that N/7 <

L < N because the number of measurements is now L.
Since the undersampling ratio is determined by the num-
ber of snapshots for a given grid size, this formulation is
more suitable for small arrays. This formulation also has
the additional advantage of increasing the number of grid
points N for finer resolution by keeping a low undersam-
pling ratio N/L by increasing the number of snapshots L
at the same time.

4 Cramér Rao lower bound
In the following subsections, we discuss the CRLB for two
cases, i.e. for known θk and for unknown θk respectively.
Although both θk and βk are unknown, yet we need to dif-
ferentiate between the two cases of CRLB based on the
assumption that either the target lies on-grid or off-grid.
For CRLB, the error has to be consistent. In order to keep
the consistency of error for CRLB, we will use the CRLB
for known θk when the target is on-grid and we will use
CRLB for unknown θk when the target is off-grid.

4.1 CRLB for known θk
Let us define:

η = [ �(βk) 
(βk)
]

(19)

The Fisher information matrix (FIM) for the unknown
parameters is given by the Slepian-Bang’s formula assum-
ing that the noise samples are uncorrelated.

F(η) = 2
σ 2
z

�
[N−1∑
n=0

(
∂uH(n)

∂η

∂u(n)

∂ηT

)]
(20)

where

∂uH(n)

∂η
=

⎡
⎢⎢⎣

∂uH(n)

∂�(βk)
∂uH(n)

∂
(βk)

⎤
⎥⎥⎦
2×nR

, (21)

∂uH(n)

∂ηT
=

[
∂u

∂�(βk)

∂u
∂
(βk)

]

nR×2
(22)

and

u(n) = βk(θk)aR(θk)aTT (θk)s(n) (23)

The two terms with partial derivatives in (22) are found
to be:

∂u(n)

∂�(βk)
= aR(θk)aTT (θk)s(n) (24)

and
∂u(n)

∂
(βk)
= jaR(θk)aTT (θk)s(n) (25)

The other two partial derivatives in (21) can be found by
using the identity ∂xH = (∂x)H. Thus, (20) can be solved
by using (24) and (25). The CRLB is found by inverting
F(η).

4.2 CRLB for unknown θk
Next, we derive CRLB for unknown θk . Let us define:

α = [ �(βk) 
(βk) θk
]

(26)

The Fisher information matrix for the unknown param-
eters is given by the Slepian-Bang’s formula assuming that
the noise samples are uncorrelated.

F(α) = 2
σ 2
z

�
[N−1∑
n=0

(
∂uH(n)

∂α

∂u(n)

∂αT

)]
(27)

where

∂uH(n)

∂α
=

⎡
⎢⎢⎢⎢⎢⎢⎣

∂uH(n)

∂�(βk)
∂uH(n)

∂
(βk)
∂uH(n)

∂θk

⎤
⎥⎥⎥⎥⎥⎥⎦
3×nR

(28)
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and
∂uH(n)

∂αT =
[

∂u
∂�(βk)

∂u
∂
(βk)

∂u
∂θk

]

nR×3
(29)

The partial derivatives with respect to �(βk) and 
(βk)
are given in (24) and (25), respectively. The third partial
derivative is found as follows by taking the second order
derivative. Therefore,

∂u(n)

∂θk
= βk

(
jπ cos(θk)

) (
aTT (θk)ATs(n)aR(θk)

+ aTT (θk)s(n)ATaR(θk)
)

(30)

where

AT = diag{0, 1, . . . , nT − 1}
FIM can be found by above Eq. (30) along with (24) and

(25) and the inversion of F(α) leads to CRLB.

5 Simulation results
We present here some simulation results to validate the
methods discussed in this work. We assume a single tar-
get located at θk . The parameters to be estimated are the
reflection coefficient βk and DOA of the target θk . To
assess the performance of the algorithms, the unknown
parameters are generated randomly according to θk ∼
U(−60◦, 60◦) and βk = ejϕk of amplitude unity where ϕk ∼
U(0, 1). The grid is uniformly discretized between −90◦
to +90◦ with N grid points. The number of grid points
N is 512 in all the simulations. All algorithms are iterated
for 104 iterations. The noise is assumed to be uncorrelated
Gaussian with zero mean and variance σ 2. The algo-
rithms that are included for comparisons are Capon, APES
and CoSaMP algorithms. In the simulation results, while
referring to SABMP means the SABMP for block sparse
signals. Also, for CoSaMP algorithm, its block-CoSaMP
version [34] is used.

5.1 CS spatial formulation
We discuss the simulation results for the spatial formula-
tion. Figures 2 and 3 shows the mean square error (MSE)
performance for βk and θk , respectively. The number of
antenna elements nT and nR is 16 and the number of snap-
shots L is 20. This is the case where L > nR. Both APES
and Capon algorithms require L > nR to evaluate the
correlation of the received signal. The estimation perfor-
mance of βk for Capon reaches an error floor because
Capon estimates are always biased [1]. APES algorithm
shows the best estimation for βk for SNR greater than −8
dB. Both SABMP and CoSaMP algorithms do not per-
form well due to high under-sampling ratio. But, SABMP
has better performance than CoSaMP algorithm for βk
estimation. For θk estimation, the results in Fig. 3 show
that the Capon algorithm has the best performance at
SNR greater than 3 dB. In Capon algorithm, at high SNR,

Fig. 2MSE performance for βk estimation. Simulation parameters:
L = 20, nT = 16, nR = 16,N = 512, θk ∼ U (−60◦ , 60◦) but on-grid,
βk = ejϕk where ϕk ∼ U (0, 1)

the covariance matrix of received signals becomes close
to singular causing poor estimation of θk . That is why,
the results are not plotted after 22 dB. Nevertheless, the
results available in Fig. 3 will serve the purpose of com-
parison. SABMP performs worse in this scenario because
it requires more measurements for better sparse recovery.
All four algorithms reach an error floor because the grid
is finite. In [35], this phenomenon is referred to as off-grid
effect.
In Figs. 4 and 5, we discuss the case when L < nR. To

simulate this case, we choose nT and nR equal to 128 and
L is kept to 10 only. In this case, both Capon and APES

Fig. 3MSE performance for θk estimation. Simulation parameters:
L = 20, nT = 16, nR = 16,N = 512, θk ∼ U (−60◦ , 60◦) but falling
off-grid, βk = ejϕk where ϕk ∼ U (0, 1)
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Fig. 4MSE performance for βk estimation. Simulation parameters:
L = 10, nT = 128, nR = 128,N = 512, θk ∼ U (−60◦ , 60◦) but on-grid,
βk = ejϕk where ϕk ∼ U (0, 1). No recovery for Capon and APES
methods

will fail to recover the estimates due to rank deficiency
of received signal covariance matrix. However, CoSaMP
and SABMP algorithms will still be able to work for both
βk and θk estimation. For βk estimation, SABMP algo-
rithm has better estimation than CoSaMP algorithm up
to SNR 22 dB. At high SNR, both CoSaMP and SABMP
algorithms almost have the same performance for βk
estimation. Both CoSaMP and SABMP are not able to
achieve the CRLB due to high under-sampling ratio. The
results obtained in Fig. 5 show that SABMP algorithm has

Fig. 5MSE performance for θk estimation. Simulation parameters:
L = 10, nT = 128, nR = 128,N = 512, θk ∼ U (−60◦ , 60◦) but falling
off-grid, βk = ejϕk where ϕk ∼ U (0, 1). No recovery for Capon and
APES methods

slightly better performance than CoSaMP algorithm for θk
estimation.
We show the complexity comparison in Fig. 6. The plot

is shown for processing time against nR. For all cases of
nR, the number of snapshots L is 10 for CS. For both
Capon and APES algorithms, if we keep L = 10, it will
not recover the unknown parameters. However, the com-
parison remains fair if we assume L at least equal to
nR because the computational burden is on the inver-
sion of the covariance matrix. It can be seen that as
nR increases, the processing time for Capon and APES
algorithm increases significantly. Since the size of the
covariance matrix is equal to nR × nR, the size of covari-
ance matrix increases with nR. Both Capon and APES
need to invert the covariance matrix obtained from the
received samples which increase the processing time with
increased nR. For SABMP, the increase in computation is
mainly dependent on L in spatial formulation and is less
dependent on nR. That is why SABMP complexity does
not change drastically with nR. From Fig. 6, we can note
that for nR greater than or equal to 32, the complexity
of SABMP algorithm is lower than APES but higher than
Capon algorithm. CoSaMP algorithm has lower complex-
ity than SABMP algorithm but is increasing significantly
with nR because its complexity is dependent on both the
number of measurements nR and the number of blocks
L. Since it has lower complexity, a trade-off between per-
formance and complexity exists between SABMP and
CoSaMP with spatial formulation.

5.2 CS temporal formulation
In this subsection, we present simulation results for the
temporal formulation as an alternative to the spatial one.
First, we make a comparison of resolution. Figure 7 shows

Fig. 6 Complexity comparison. Simulation parameters: nT = nR , SNR
= 20 dB, θk ∼ U (−60◦ , 60◦) but on-grid, βk = ejϕk where
ϕk ∼ U (0, 1)
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Fig. 7 Resolution comparison. Simulation parameters: L=256, nT =10,
nR = 10, SNR = 0 dB (left), SNR = 25 dB (right)

a comparison of resolution of the three algorithms. APES
has wider resolution than both Capon and SABMP algo-
rithms. Capon has finer resolution, but its amplitude
is biased downwards. SABMP algorithm gives the best
resolution because on-grid CS algorithms are based on
recovery of non-zero entries. That is why SABMP algo-
rithm provides a single sample at the target location. A
similar behavior can be anticipated for CoSaMP algorithm
because it is also an on-grid CS algorithm.
The MSE of βk and θk estimates is shown in Figs. 8 and

9, respectively. The number of snapshots L = 256 and the
array size is kept small, i.e. nT = 10 and nR = 10. We plot
the MSE obtained by existing algorithms Capon, APES
and CoSaMP along with SABMP for comparison. CRLB is
also plotted for comparison. In Fig. 8, we assume that the
target lies on the grid to plot MSE of βk and to compare
it with CRLB for known θk . Otherwise, we need infinite
grid points to compare the performance of algorithms

Fig. 8MSE performance for βk estimation. Simulation parameters:
L = 256, nT = 10, nR = 10,N = 512, θk ∼ U (−60◦ , 60◦) but on-grid,
βk = ejϕk where ϕk ∼ U (0, 1)

Fig. 9MSE performance for θk estimation. Simulation parameters:
L = 256, nT = 10, nR = 10,N = 512, θk ∼ U (−60◦ , 60◦) but falling
off-grid, βk = ejϕk where ϕk ∼ U (0, 1)

with CRLB. The simulation results show that SABMP per-
forms better than all three Capon, APES and CoSaMP
algorithms to estimate βk at high SNR. This better per-
formance of SABMP is due to its Bayesian approach and
its robustness to noise. Moreover, the coherence of the
sensing matrix is also less than 1 which guarantees sparse
recovery at low noise. In Fig. 9, we simulate the algorithms
by generating θk anywhere randomly and not necessarily
on the grid. Due to this reason, it can be seen that MSE of
θk reached the error floor which is due to the discretized
grid and depends on the difference between the two con-
secutive grid points. For θk estimation, SABMP performs
better than APES algorithm after 10 dB but worse than
Capon algorithm. CoSaMP algorithm has the worst per-
formance because it cannot work well with structured
sensing matrices.
The above mentioned simulation results are obtained

for L > nR. Now, we discuss the case when L < nR and
the number of snapshots is low. In the simulation results
shown in Figs. 10 and 11, the number of snapshots L is 8
only. In this case, there will be no recovery by both Capon
and APES methods due to rank deficiency of covariance
matrix. But both CS algorithms can work in this scenario.
SABMP performs better than CoSaMP algorithm for both
βk and θk estimation. SABMP cannot achieve the CRLB
because of very low number of measurements in this case.
Next, we compare the performance of algorithms at

two different target locations. We choose one location at
5◦ and a second location at 70◦. The simulation results
in Figs. 12 and 13 show estimation performance for θk
and βk respectively. The performance of all algorithms is
degraded for θk = 70◦ case because it comes in the low
power region. For βk estimation, the results show that for
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Fig. 10MSE performance for βk estimation. Simulation parameters:
L = 8, nT = 10, nR = 10,N = 512, θk ∼ U (−60◦ , 60◦) but on-grid,
βk = ejϕk where ϕk ∼ U (0, 1). No recovery for Capon and APES
methods

the θk = 5◦, the APES and SABMP algorithms achieve the
bound earlier than θk = 70◦.
We compare the complexity of the discussed algorithms.

Figure 14 gives the processing time plotted against the
number of grid points N. The results show that SABMP
algorithm has the higher complexity than Capon and
APES algorithms but lower than CoSaMP algorithm.
CoSaMP algorithm has the highest complexity due to a
Kronecker product involved in the construction of its
sensing matrix. The complexity of SABMP is depen-
dent on the number of multiple-measurement-vectors. In

Fig. 11MSE performance for θk estimation. Simulation parameters:
L = 8, nT = 10, nR = 10,N = 512, θk ∼ U (−60◦ , 60◦) but falling
off-grid, βk = ejϕk where ϕk ∼ U (0, 1). No recovery for Capon and
APES methods

Fig. 12MSE performance for βk estimation. Simulation parameters:
L = 256, nT = 10, nR = 10,N = 512, θk = 5◦ (solid lines) & θk = 70◦
(dashed lines) but on-grid, βk = ejϕk where ϕk ∼ U (0, 1) and is same
for all iterations

this case the number of multiple-measurement-vectors
is equal to number of receive antennas. Therefore, there
exists a tradeoff between performance and complexity of
Capon, APES, CoSaMP and SABMP algorithm.
Lastly, we show a comparison of receiver operating char-

acteristic (ROC) curves. At high SNR, the probability of
detection for all algorithms is 1 almost for all probabilities
of false alarm. Therefore, MSE criteria is better to com-
pare performance of different algorithms at high SNRs.
However, we can choose small SNR value of -12 dB to plot
ROCs for all four algorithms. Figure 15 shows the ROC

Fig. 13MSE performance for θk estimation. Simulation parameters:
L = 256, nT = 10, nR = 10,N = 512, θk = 5◦ (solid lines) & θk = 70◦
(dashed lines) but falling off-grid, βk = ejϕk where ϕk ∼ U (0, 1) and is
same for all iterations
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Fig. 14 Complexity comparison. Simulation parameters: L=256
, nT = 10, nR = 10, SNR = 20 dB, θk ∼ U (−60◦ , 60◦) but on-grid,
βk = ejϕk where ϕk ∼ U (0, 1)

comparison of the four algorithms discussed. The proba-
bility of detection is close to one for both Capon and APES
algorithms for a wide range of probability of false alarm.
SABMP algorithm has a little worse performance than
both Capon and APES algorithms because we have cho-
sen a low SNR value of -12 dB but SABMP performance
gains are at usually at high SNRs. CoSaMP algorithm has
slightly better performance than SABMP algorithm for
low values of probability of false alarm but its performance
deteriorates afterwards.

Fig. 15 ROC comparison. Simulation parameters: nT = 10, nR = 10,
SNR = −12 dB, θk ∼ U (−60◦ , 60◦) but on-grid, βk = ejϕk where
ϕk ∼ U (0, 1). (Markers are added in this plot only for the purpose of
identification of different curves)

6 Conclusions
In this work, the authors solved the MIMO radar param-
eter estimation problem by two methods: the spatial
method for large arrays and temporal method for small
arrays by a fast and robust CS algorithm. It is shown that
SABMP provides the best estimates for parameter estima-
tion at high SNR even when the number of targets and
noise variance are unknown.
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