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Abstract

This paper considers the robust waveform design of multiple-input multiple-output (MIMO) radar to enhance targets
detection in the presence of signal-dependent interferences assuming the knowledge of steering vectors is imprecise.
Specifically, resorting to semidefinite programming (SDP)-related technique, we first maximize the worst-case
signal-to-interference-plus-noise ratio (SINR) over uncertain region to optimize waveform covariance matrix forcing a
uniform elemental power requirement. Then, based on least square (LS) approach, we devise the waveform
accounting for constant modulus and similarity constraints by the obtained waveform covariance matrix using cyclic
algorithm (CA). Finally, we assess the effectiveness of the proposed technique through numerical simulations in terms
of non-uniform point-like clutter and uniform clutter.

Keywords: Robust waveform design, Multiple-input multiple-output (MIMO), Signal-dependent interferences,
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1 Introduction
Recently, some advances in radar technology including
digital arbitrary waveform generators, solid state trans-
mitters, and high-speed and off-the-shelf processors [1–3]
have been greatly developed, making possible for modern
radar systems to adaptively adjust the synthesized trans-
mit waveform to detect environment. This adjustment of
transmit waveform can be used to significantly enhance
its ability of target detection, identification, and classifi-
cation. Nevertheless, usually, these techniques suffer from
inaccuracies on the knowledge of the actual target/clutter
processes, which is necessary to ensure an effective
adaptation.
Robust waveform design to resist uncertainty sets of

target or clutter parameters (i.e., Doppler frequency,
angle) has received considerable attention during the last
decades [4–19]. According to the structure of radar sys-
tems, these works can be classified into two categories.
The first one focuses on the robust design for mono-
static radar systems. Specifically, in [4], the design of
robust radar code under energy and similarity constraints
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is investigated to improve the worst-case signal-to-noise
ratio (SNR) over the possible target Doppler frequencies
by using semidefinite programming (SDP)-related tech-
nique. In [5], the robust approach based on SDP and
randomization with respect to the target Doppler is pro-
posed to synthesize the radar waveform accounting for
a peak-to-average-power ratio (PAR) and an energy con-
straint in order to the improvement of the worst-case
SNR. For the detection problem of the extended tar-
get with the uncertain set on target impulse response
(TIR), the robust transmit waveform accounting for con-
stant modulus constraint and receiving filter have been
designed jointly. In [6], considering worst-case SINR as
the performance measure and assuming an interval of
target Doppler shift are available, the robust design of
transmit sequence and receive filter under energy and
similarity constraints has been considered by exploiting
related SDP relaxation. Considering the same criteria,
the uncertain set, and waveform constraints, the related
generalized Dinkelbach’s procedure [7] is developed to
optimize radar waveform and doppler filter bank. For
extended targets considering the uncertainties on the TIR
and using the PAR and energy as signal constraints, in [8],
a design procedure, based on SDP relaxation and random-
ization technique, is proposed to devise robust transmit
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code and receive filter aiming to improve the worst-case
SINR. Assuming as figure of merit worst-case SINR, in
[9], a max-min approach against the uncertainly sets of
TIR for extended targets and the second-order statistics
of the interference, is exploited to devise the waveform
considering energy constraint.
The second category focuses on the robust wave-

form design for MIMO radar systems. Precisely, in [10],
based on the criteria of the mutual information (MI)
and minimum mean-square error (MMSE) estimation,
the minimax robust waveform design has been addressed
by leveraging the a priori knowledge of target power
spectral density lying in an uncertainty class of spectra-
bounded and signal-independent interference statistics.
In [11], assuming as figure of merit the cumulated power
of probing signal, the worst-case scenario against the
uncertain sets of targets locations have been considered
to design the waveform covariance matrix forcing a uni-
form elemental power constraint into each transmitting
antenna. In [13], a robust approach against uncertain-
ties on steering vectors is proposed to design the robust
transmit beampattern so as to minimize beampattern
sidelobes considering power constraint and 3 dB main-
beam width constraint. In [14], using the imperfect clut-
ter prior knowledge, the robust waveform design has
been addressed for maximizing the worst-case SINR. The
robust joint design problem of the space-time transmit
code (STTC) and the space-time receive filter (STRF) for
a moving point-like target is considered in [15] assum-
ing as figure of merit the worst-case SINR over the
actual and signal-dependent clutter statistics and con-
sidering both energy and similarity constraints on the
sought code. In order to improve the worst-case output
SINR over the unknown angle of the target of interest,
the robust design problem of transmit waveform satisfy-
ing energy constraint and the receive filter is investigated
under signal-dependent interferences [16]. In particular,
we here note that the signal-dependent interferences are
from the terrain and the objects of no tactical importance
within the illuminated area, generated by the reflections
of the signal and transmitted by the radar of interest
[17]. In other words, this is a kind of self-induced radar
interference, usually referred to as the reverberation phe-
nomenon, owing to the interaction of the transmitted
waveform with the scattering environment. These inter-
ferences would severely impair the target detectability
of radar systems. In [18], based on the worst-case SNR
over the uncertain on steering vector, an iterative algo-
rithm is presented to optimize the waveform covariance
matrix under a power constraint. In [19], assuming either
the peak sidelobe level (PSL) or the integrated sidelobe
level (ISL) as figure of merit, the robust waveform covari-
ance matrixes design has been addressed for the purpose
of optimizing the worst-case transmit beampattern over

steering mismatches accounting for power constraint and
3 dB main-beam width constraint.
In this paper, we still focus on the robust wave-

form design of MIMO radar considering practical con-
straints for enhancing target detectability in the presence
of signal-dependent interferences. Precisely, in order to
improve the worst-case SINR over the uncertain sets of
the steering vectors, we first synthesize waveform covari-
ance matrix accounting for a uniform power constraint by
resorting to SDP-related technique. Then, based on least
square (LS) approach, we exploit cyclic algorithm (CA) to
design waveform under constant modulus and similarity
constraints so as to approximate the obtained waveform
covariance matrix. Finally, at the analysis stage, we con-
sider two scenarios of non-uniform point-like clutter and
uniform clutter to evaluate the performance of the pro-
posed devise procedure. Results exhibit that the proposed
algorithm has the capability of ensuring an improved
worst-case performance.
The remainder of the paper is organized as follows.

In Section 2, we show the system model. In Section 3,
we consider the robust design of waveform covariance
matrix. In Section 4, we consider the waveform synthesis
under some practical constraints. In Section 5, we eval-
uate the performance of the proposed procedure. Finally,
in Section 6, we provide concluding remarks and possible
future research tracks.

1.1 Notation
We adopt the notation of using boldface for vectors a
(lower case) and matrices A (upper case). ‖A‖ denotes
the two-norm of A. The transpose, the conjugate, and
the conjugate transpose operators are denoted by the
symbols (·)T , (·)∗, and (·)† respectively. tr(·) denotes the
trace of square matric. IN denotes N × N-dimensional
identity matrix. CN and H

N are respectively the sets of
N-dimensional vectors of complex numbers and N × N
Hermitian matrices. The curled inequality symbol � (and
its strict form �) is used to denote generalized matrix
inequality: for any A ∈ H

N , A � 0means that A is a posi-
tive semidefinite matrix (A � 0 for positive definiteness).
The vec (A) denotes the column vector obtained by

stacking the columns of A. The letter j represents the
imaginary unit (i.e., j = √−1). For any complex number
x, we use �(x) respectively the real part of x. In addition,
|x| and arg(x) represent respectively the modulus and the
argument of x. E[ ·] denotes statistical expectation.

2 Systemmodel
We consider a colocated narrow band MIMO radar sys-
tem with NT transmitting antennas and NR receiving
antennas. Each transmitting antenna emits a distinct
waveform sn(m), n = 1, 2, · · · ,NT , m = 1, 2, · · · ,M, with
M being the sample number of each transmitting pulse.
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Let us denote by s(n) =[ s1(n), s2(n), · · · , sNT (n)]T ∈ C
NT ,

the nth sample of the NT waveforms. At each receiver,
the received waveform is down-converted to baseband,
undergoes a pulse-matched filtering operation, and then
is sampled. Hence, the observations of the nth sample
for a far-field target at the azimuth angle θ0 can be
expressed as

x(n) = α0A(θ0)s(n) + d(n) + v(n), (1)

where

• α0 is a complex parameter accounting for the target
radar cross section (RCS), channel propagation
effects, and other terms involved into the radar range
equation.

• A(θ) = a∗
r (θ)at†(θ), in which for the azimuth angle

θ , at(θ) and ar(θ) denote, respectively, the transmit
spatial steering vector and the receive spatial steering
vector. In particular, for the uniform linear arrays
(ULAs), they are given by

at(θ) = 1√
NT

[ 1, ej2π
dT
λ
sin θ , · · · , ej2π dT

λ
(NT−1) sin θ ]T ,

ar(θ) = 1√
NR

[ 1, ej2π
dR
λ
sin θ , · · · , ej2π dR

λ
(NR−1) sin θ ]T

with dT and dR, respectively, the array inter-element
spacing of the transmitter and the receiver.

• d(n) ∈ C
NR , n = 1, 2, · · · ,M, accounts for K

signal-dependent uncorrelated point-like interfering
scatterers. Specifically, considering the kth
interfering source located at θk , k = 1, 2, · · · ,K , the
received interfering vector d(n) can be expressed as
the superposition of the returns from K interference
sources, i.e.,

d(n) =
K∑

k=1
ρkA(θk)s(n), (2)

with ρk being the complex amplitude of the mth
interferences.

• v(n) ∈ C
NR , n = 1, 2, · · · ,M, denotes additive noise,

modeled as independent and identically distributed
(i.i.d.) complex circular zero-mean Gaussian random
vector, i.e., v(n) ∼ CN (0, σ 2

v INR).

3 Robust waveform covariancematrix design
In this section, we formalize the problem of the design
of robust waveform covariance matrix in order to maxi-
mize the worst-case output SINR criterion under specific
practical constraints. Finally, we provide the related SDP
technique to solve the considered problem.

3.1 Output SINR
In this subsection, for signal-independent interferences,
we derive the expression of SINR with respect to wave-
form covariance matrix R. Specifically, according to the
signal model (1), the received useful power can be com-
puted as

1
M

M∑

m=1
E[ ‖α0A(θ0)s(m)‖2]

= 1
M

E[ ‖α0‖2]
M∑

m=1
s†(m)at(θ)aTr (θ0)a∗

r (θ0)at†(θ0)s(m)

= E[ ‖α0‖2] tr
(
at†(θ0)

M∑

m=1
s(m)s†(m)at(θ0)

)

= E[ ‖α0‖2]at†(θ0)Rat(θ0)
(3)

where R = 1
M

M∑
m=1

s(m)s†(m) stands for the wave-

form covariance matrix. Similarly, since the scatterers are
uncorrelated, the received disturbance power is given by

1
M

M∑

m=1
E

⎡

⎣
∥∥∥∥∥

K∑

k=1
αkA(θk)s(m)

∥∥∥∥∥

2⎤

⎦

=
K∑

k=1
E[ ‖αk‖2]at†(θk)Rat(θk).

(4)

Interestingly, inspection of (3) and (4) exhibits that the
receiving steer vectors have no effect on the useful power
as well as the interfering power. In addition, we also
observe that the useful power functionally depends on
waveform covariance matrix R so does the clutter power.
Finally, on the basis of the above equations, the SINR

can be defined as

ρ(R) = δ0at†(θ0)Rat(θ0)
K∑

k=1
δkat†(θk)Rat(θk) + σ 2

, (5)

with δk = E[ ‖αk‖2], where σ 2 denotes the noise power.
We notice that the objective function ρ(R) requires
the explicit knowledge of the steer vectors at(θk), k =
0, 1, · · · ,K . However, from a practical point of view, the
exact knowledge of at(θk) can not be available. Hence,
in the next subsection, some practical constraints are
considered to overcome this drawback.

3.2 Uncertain sets of steering vectors and power
constraint

In practical considerations, due to array non-idealities and
imperfect calibration, the actual steering vector can not
be exactly known. To this end, we enforce some quadratic
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constraints into ak , k = 0, 1, · · · ,K , (where we write
at(θk) into ak for simplifying the notations) i.e.,

Ak ={ak|0 ≤ a†kBkmak + 2R(b†kmak) + bkm ≤ ukm,
m = 1, 2}, k = 0, 1, · · · ,K ,

(6)

where Bkm ∈ H
NT , bkm ∈ C

NT , and bkm, ukm both are
real values for m = 1, 2, k = 0, 1, · · · ,K . We remark that
generalized similarity and conical and norm constraints
are the special cases of (6). In particular, the detailed
illumination of these constraints can be obtained in [19].
Furthermore, to control the amount of transmitted

power, we force a uniform power constraint in each trans-
mitting antenna, i.e.,

Ru = {R ∈ H
NT |R ≥ 0,R(i, i) = c, i = 1, 2, · · · ,NT },

(7)

where c is the transmitted power of each emitter.

3.3 Waveform covariance matrix design problem
Based on the aforementioned discussion, the robust
design problem of waveform covariance matrix R to opti-
mize the worst-case SINR over mismatching steer vectors
can be summarized as follows:

max
R∈Ru

⎡

⎢⎢⎢⎣ min
ak∈Ak ,k∈K

δ0a0†Ra0
K∑

k=1
δkak†Rak + σ 2

⎤

⎥⎥⎥⎦ , (8)

where K = {0, 1, · · · ,K}. (8) is in general NP-hard which
has no closed-form solution.

3.4 Waveform covariance matrix design algorithm
In this subsection, we focus on studying the solution of
(8) by using SDR-related technique. Before proceeding
further, we first transform (8) as follows:

max
R∈Ru

⎡

⎢⎢⎢⎣

min
a0∈A0

δ0a0†Ra0

K∑
k=1

max
ak∈Ak

δkak†Rak + σ 2

⎤

⎥⎥⎥⎦ . (9)

Interestingly, we observe that (9) can be solved by
exploiting SDR technique [19]. Specifically, after the same

line of reasoning as [19], this problem is tantamount to
SDP problem given by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
R̄,t,t1

t1

s.t. u01x01 + u02x02 + x03 ≥ t1
K∑

k=1
uk1yk1 + uk2yk2 + yk3 ≥ −1

R̄(i, i) = ct, i = 1, 2, · · · ,NT(
δ0R̄ 0
0 −x03

)
− (x01 + w01)

(
B01 b01
b†01 b01

)

−(x02 + w02)

(
B02 b02
b†02 b02

)
� 0,

−
(

δkR̄ 0
0 yk3

)
− (yk1 + zk1)

(
Bk1 bk1
b†k1 bk1

)

−(yk2 + zk2)
(
Bk2 bk2
b†k2 bk2

)
� 0, k = 1, 2, · · · ,K ,

R̄ � 0, t ≥ 0, t1 ∈ R,
x01 ≤ 0, x02 ≤ 0, x03 ∈ R,w01 ≥ 0,w02 ≥ 0
yk1 ≤ 0, yk2 ≤ 0, yk3 ∈ R, zk1 ≥ 0, zk2 ≥ 0,
k = 1, 2, · · · ,K .

(10)

In particular, given an R∗ to problem (9), (R∗ t̄, t̄, t̄1) is an
optimal solution to (10), where

t̄ =
( K∑

k=1
max
ak∈Ak

δkak†R∗ak + σ 2
)−1

(11)

and t̄1 = mina0∈A0 δ0a0†R∗a0. Conversely, assuming that
(R̄∗, t∗, t∗1) is an optimal solution to (10), R∗/t∗ is an
optimal solution to (9).
Finally, it is worth pointing out that, for the case of no

steering vector mismatches, the optimization problem (8)
can be recast as

max
R∈Ru

δ0a0†Ra0
K∑

k=1
δkak†Rak + σ 2

, (12)

which can be efficiently computed by related SDP tech-
nique [20].

4 Constrained waveform design with known R
In this section, we consider the waveform design prob-
lem by minimizing approximation error accounting for
constant modulus and similarity constraints. Finally, we
provide CA [21] to design the transmit waveform by
exploiting the obtained R.

4.1 Constant modulus and similarity constraints
In practical applications, the synthesized waveform
should be unimodular (i.e., constant modulus) due to
the limit of non-linear radar amplifiers. Hence, we
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here enforce the modulus of each element of sn,
n = 1, 2, · · · ,NT to be constant, i.e., |sn(m)| = √

c,
n = 1, 2, . . . ,NT ,m = 1, 2, · · · ,M.
Additionally, we enforce NT different similarity con-

straints on the emitting waveforms, which employs a
known code as a benchmark allowing the designed code to
enjoy some good ambiguity characteristics of the known
code, namely

‖sn − sn0‖∞ ≤ ξn, n = 1, 2, · · · ,NT , (13)

where sn0 ∈ C
M is the reference sequence vector at the n-

th transmission interval and ξn is a real parameter ruling
the extent of the similarity. Without loss of generality, we
assume the same similarity parameter ξ (i.e., ξ = ξ1 =
· · · = ξNT ) [20, 22, 23], on the sought transmit waveform.

4.2 Constrained waveform design problem
In order to approximate a desired waveform covariance
matrix R computed by (9), based on LS approach, thus the
waveform synthesis problem under constant modulus and
similarity constraints can be expressed as,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min
S

‖SS† − R‖2
s.t. ‖sn − sn0‖∞ ≤ ξn, n = 1, 2, · · · ,NT ,

|sn(m)| = √
c, n = 1, 2, . . . ,NT ,

m = 1, 2, · · · ,M,

(14)

where S =[ s1, s2, · · · , sNT ]T ∈ C
NT×M.

4.3 Waveform synthesis algorithm
In this subsection, we study the design procedure of trans-
mit signal. Specifically, after some algebraicmanipulations
about similarity constraint [22] and according to [21], the
waveform synthesis problem can be equivalent to
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min
S,U

‖S − √
MR

1
2U‖2

s.t. UU† = INT ,
arg sn(m) ∈[ γnm, γnm + δn] ,
|sn(m)| = √

c, n = 1, 2, . . . ,NT ,m = 1, 2, · · · ,M,
(15)

where S =[ s1, s2, · · · , sNT ]T , U ∈ C
NT×M is an arbi-

trary unitary matrix demanding UU† = INT , and γnm =
arg s0n(m) − arccos(1 − ξ2/2), δn = 2 arccos(1 − ξ2/2)
with ξ = ξn√

c . In particular, we can observe that for ξ = 0,
the designed sn is identical to known s0n, whereas the sim-
ilarity constraint boils down to only the constant modulus
constraint when ξ = 2.
In particular, here we resort to CA to solve (15). Pre-

cisely, given a S, the closed-form solution to (15) is U =
U lU†

r , where both U l ∈ C
NT×NT and Ur ∈ C

M×NT are
unitary matrixes demanding

√
MR

1
2 S = U l�U†

r with
� ∈ H

NT being a diagonal matrix. The detailed derivation
can be found in [21]. Exploiting the estimated U , we can

find the nearest matrix to approximate
√
MR

1
2U . Specifi-

cally, with given a U , (15) associated to the mth variables
of sn is expressed as

⎧
⎪⎨

⎪⎩

min
sn(m)

‖sn(m) − znm‖2
s.t. arg sn(m) ∈[ γnm, γnm + δn] ,

|sn(m)| = √
c,

(16)

with znm is the (n,m)th entry of
√
MR

1
2U . After some

algebraic manipulations, (16) can be transformed as
⎧
⎪⎨

⎪⎩

max
sn(m)

R{sn(m)znm}
s.t. arg sn(m) ∈[ γnm, γnm + δn] ,

|sn(m)| = √
c.

(17)

Further, the above problem is equivalent to
{
max
ϕnm

cos(ϕc + ϕnm)

s.t. ϕnm ∈[ γnm, γnm + δn] ,
(18)

where ϕnm and ϕc are the phases of sn(m) and z∗nm, respec-
tively. Hence, the optimization solution of (18) can be
obtained by

ϕ∗
nm = −ϕc,−ϕc ∈[ γnm, γnm + δn] ; (19)

otherwise, the optimal solution ϕ∗
nm is given

ϕ∗
nm =

{
γnm + δn cos(ϕc+γnm + δn) ≥ cos(ϕc + γnm)

γnm cos(ϕc+γnm + δn) < cos(ϕc + γnm).
(20)

Based on the above discussion, we can perform the same
procedure to obtain the remaining variables among S.
Finally, the CA procedure involved in designing S andU is
summarized as Algorithm 1. It is worth pointing out that
the total computational complexity of CA is related with
the iteration number, the size of S. In particular, each iter-
ation requires to handle a singular value decomposition
(SVD) of NT × M dimension matrix with corresponding
to computational complexity O(MN2

T + N3
T )[24].

5 Numerical results
In this section, we evaluate the performance of proposed
design technique of robust waveform focusing on a uni-
form linear array (ULA) transmit elements with NT = 16
assuming an inter-element spacing dt = λ/2. In particular,
we consider the orthogonal linear frequency modulation
(LFM) as the reference waveform s0 [20]. Specifically, the
(nt , k)th entry of the reference S(0) is given by

S(0)(nt ,m) = exp{j2πnt(m − 1)/N} exp{jπ(m − 1)2/N},
(21)

where nt = 1, 2, · · · ,NT and m = 1, 2, · · · ,M. We sup-
pose that the target is located at θ0 = 0◦ with power
σ 2
0 = 25 dB. As to the Gaussian white noise, we set the
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Algorithm 1 : CA for optimizing S
Require: R, ξn;
Ensure: An optimal solution S∗;
1: Construct γnm, δn, n = 1, 2, · · · ,NT ,m = 1, 2, · · · ,M.
2: Initialize ρ(0) = 0 and U(0) whose elements are inde-

pendent and identically distributed with zero-mean
and standard deviation 1;

3: Compute all elements among S(0) by using (19) and
(20);

4: i = i + 1;
5: Perform the SVD for

√
MR

1
2 S(i−1) and construct the

unitary matrixesU(i)
l and U(i)

r ;
6: Compute U(i) = U(i)

l U(i)
r

H
;

7: Compute ρ(i) = ‖U(i) − U(i−1)‖2;
8: Compute all elements among S(i) by using (19) and

(20);
9: If |ρ(i) − ρ(i−1)| ≤ κ , where κ is a user selected

parameter to control convergence, output S∗ = S(i);
Otherwise, repeat step 4 until convergence.

noise variance to σ 2
v = 0 dB. The nominal ULA steering

direction is given by

ā(θ) = 1√
NT

[ 1, ej2π
dT
λ
sin θ , · · · , ej2π dT

λ
(NT−1) sin θ ]T .

Additionally, we consider c = 1, Bk1 = INT , bk1 =
ā(θk), bk1 = 1, uk1 = ε, Bk2 = INT , bk2 = 0, bk2 = −1,
uk2 = 0, k = 0, 1, · · · ,K . To solve the convex optimisation
problem (10), we resort to the CVX toolbox [25]. Finally,
we consider the exit condition κ = 10−4 for Algorithm 1,
i.e.,

|ρ(n) − ρ(n−1)| ≤ 10−4. (22)

Hereafter, for any fixed waveform covariance matrix R,
the worst-case SINR ρwr can be obtained by

ρwr =
min
a0∈A0

δ0a0†Ra0

K∑
k=1

max
ak∈Ak

δkak†Rak + σ 2
, (23)

where the numerator and denominator of (23) can be effi-
ciently computed by related SDP technique [19], respec-
tively.

5.1 Non-uniform point-like clutter
In this subsection, we consider a non-uniform point-like
clutter scenario where the angles and corresponding pow-
ers of seven interfering sources are reported in Table 1.
Figure 1 shows the worst-case SINR behavior versus

uncertain parameter ε considering the non-robust and
robust design of waveform covariance matrix, respec-
tively. Note that the curve of non-robust case is plotted

Table 1 The angles and corresponding powers of seven
interfering sources

Angle (deg) −20 5 35 60 70 −30 −15

Power (dB) 20 20 30 25 28 30 10

based on the obtained R according to (8) when no steer-
ing vector mismatches are foreseen at the design stage.
These curves both decrease as the uncertain parameter ε

grows up, implying that the steering vector mismatches
indeed impair the detection performance. Interestingly,
the robust design exhibits an improvement gain of SINR
than that of non-robust design. In particular, the higher
ε, the gap of SINR between robust design and non-robust
design becomes larger and larger.
In the following, based on the R computed by SDP-

related technique, we will focus on the waveform synthesis
under constant modulus and similarity constraints by
exploiting Algorithm 1. Specifically, we fix the uncertainly
parameter ε = 0.04 for the following simulations. In addi-
tion, the approximation error η between the obtained R̂
using Algorithm 1 and R is computed by

η = ‖R̂ − R‖. (24)

Figure 2 depicts the approximation error η behavior
versus iteration number considering different similarity
levels for M = 20. Notice that these obtained curves
are averaged results of 100 statistic independent trials.
As expected, the η decreases with the increasing iteration
number. Besides, the higher similarity level ξ , the lower η

is achieved due to the feasible set of optimization problem
(15) becomes larger and larger.
Next, we analyze the impact of similarity parameters

and sample length M on the approximation error η

and SINR. In particular, we plot both the η and SINR
(dB) behaviors versus sample length M considering ξ =
0.3, .7, 1.1, 1.7, 2 in Fig. 3a, b, respectively. Notice that the
black line in Fig. 3b represents the theoretical value with-
out the synthetic loss of SINR. Results highlight that both
the approximation error and SINR are associated with
both similarity parameter ξ and sample length M. Pre-
cisely, as ξ and M increases, the better approximation
between R̂ and R can be achieved, which leads to higher
gains of SINR. This is a reasonable behavior since the
more degree of freedom (DOF) of waveform at design
stage is obtained. In particular, when M ≥ 220, the curve
of SINR at ξ = 2 overlaps with the theoretical curve show-
ing that the constant modulus constraint causes no loss
of SINR in the correspondence of the analysed parame-
ters. However, it is worth pointing out that a loss of SINR
can be observed due to the introduction of the similarity
constraint. For example, we have the SINR gain of 2.8 dB
from the black line in Fig. 3b, whereas the SINR becomes
2.2 dB at ξ = 1.7. Besides, interestingly, for large M, both
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Fig. 1 The worst-case SINR (dB) behavior versus uncertain parameter ε in non-uniform clutter environment considering the non-robust and robust
design of waveform covariance matrix

an increasing trend for SINR and a reducing trend for η

show unremarkable in Fig. 3b. This performance behavior
provides a foundation for how to choose M at waveform
design stage. Finally, it is worth highlighting that a trade-
off should be considered between similarity level, sample
length, and SINR.

5.2 Uniform clutter
In this subsection, we consider a uniform clutter scenario
where we select [−10◦, 50◦] as clutter region which is uni-
formly discretized with a grid size 1◦. In particular, for
each azimuth clutter bin, we consider a clutter-to-noise
ratio (CNR) of 30 dB.

Fig. 2 The approximation error η behavior versus iteration number in non-uniform point-like clutter environment for ξ = 0.3, 0.7, 1.1, 1.7, 2,M = 20
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(b)

(a)

Fig. 3 The approximation error η and SINR (dB) behaviors versus sample lengthM considering ξ = 0.3, 0.7, 1.1, 1.7, 2 in non-uniform point-like
clutter environment, the black line representing the theoretical value of SINR, a η , b SINR

In Fig. 4, the worst-case SINR behavior considering
the non-robust and robust design of waveform covari-
ance matrix is plotted versus uncertain parameter ε. The
similar observation as Fig. 1 can be obtained. Indeed,
the increasing ε, both the non-robust design and robust
design experience worse and worse SINR values due to
the enlargement of mismatches between actual steer-
ing vectors and nominal ones. Again, it can be found
that the robust design ensures a enhanced worst case

performance in comparison with that of non-robust
design. Finally, it is also interesting to notice that the
gap between curves of non-robust design and robust
design becomes larger and larger with the improvement
of ε.
In Fig. 5, the approximation error η behavior, averaged

over 100 independent trials of Algorithm 1, is plotted ver-
sus iteration number for ξ = 0.3, 0.7, 1.1, 1.7, 2, M = 20.
Again, the smaller η can be obtained as the increasing of
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Fig. 4 The worst-case SINR (dB) behavior versus uncertain parameter ε in uniform clutter environment considering the non-robust and robust
design of waveform covariance matrix

iteration number and ξ , revealing the better approxima-
tion between R̂ and R.
In Fig. 6, the approximation error η and SINR (dB)

behaviors are plotted versus sample lengthM considering
ξ = 0.3, 0.7, 1.1, 1.7, 2. Notice that the obtained curves are
averaged results of 100 independent trials of Algorithm 1
and the black line in Fig. 6b stands for the theoretical value
without the synthetic loss of SINR. Again, we observe
that the higher ξ , the lower η and the better SINR can be

reached since the enlargement of the feasible sets of (15).
In particular, we also find that both constant modulus and
similarity constraints result in a loss of SINR. Specifically,
we see the theoretical value of SINR is about−8.7 dB from
the black line in Fig. 6b, whereas it becomes about −9.9
and −9.4 dB for ξ = 1.7 and 2, respectively. Besides, both
an increasing trend for SINR and an opposite trend for η

can be obtained as M increases, whereas these trends are
not apparent for large M. As a consequence, in practice,

Fig. 5 The approximation error η behavior versus iteration number in uniform clutter environment for ξ = 0.3, 0.7, 1.1, 1.7, 2,M = 20
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Fig. 6 The approximation error η and SINR (dB) behaviors versus sample lengthM considering ξ = 0.3, 0.7, 1.1, 1.7, 2 in uniform clutter environment,
the black line representing the theoretical value of SINR, a η, b SINR

we should reasonably consider the selection of sample
length as well as the similarity parameter.

6 Conclusions
In this paper, we have considered the robust design of
MIMO radar waveform under practical constraints for
enhancing the targets delectability in the presence of
signal-dependent interferences. Summarizing,

• We have optimized the waveform covariance matrix
to improve the worst-case SINR against the uncertain

sets of steering vector under a uniform power
constraint through SDP-related technique. Based on
LS approach, we have designed the MIMO waveform
to approximate the desired waveform covariance
matrix by using CA accounting for constant modulus
and similarity constraints.

• We have provided numerical simulations to assess
the performance of the proposed procedure. Results
that the proposed algorithm enjoys the ability of
ensuring an improved worst-case performance. We
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also observed that the approximation error decreases
with the improvement of similarity level and sample
length. As a consequence, we should choose
reasonably the parameters of similarity level and
sample length according to practical requirements.

Possible future research tracks might concern the exten-
sion of the proposed framework to account for both
uncertain sets of angle and Doppler frequency of targets
and interferes [15, 26], as well as the joint design of the
transmit signal and receive filter for MIMO radar [20].
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