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Abstract

This paper presents a methodology that aims at the incremental representation of areas inside environments in terms
of attractive forces. It is proposed a parametric representation of velocity fields ruling the dynamics of moving agents.
It is assumed that attractive spots in the environment are responsible for modifying the motion of agents. A switching
model is used to describe near and far velocity fields, which in turn are used to learn attractive characteristics of
environments. The effect of such areas is considered radial over all the scene. Based on the estimation of attractive
areas, a map that describes their effects in terms of their localizations, ranges of action, and intensities is derived in an
online way. Information of static attractive areas is added dynamically into a set of filters that describes possible
interactions between moving agents and an environment. The proposed approach is first evaluated on synthetic data;
posteriorly, the method is applied on real trajectories coming from moving pedestrians in an indoor environment.

Keywords: Kalman filtering, Interactive force models, Trajectory analysis, Representation of environments, Situation
awareness

1 Introduction
Analysis of trajectories performed by moving entities in
environments is an important topic for different fields
such as video surveillance [1], crowd/vehicle analysis [2, 3]
and in general for monitoring systems, on which the
dynamics of agents can lead to a better understanding
of patterns and situations of interest [4, 5]. Abnormality
detection is one of the most explored applications that
involves analysis of trajectories. In such approach, by char-
acterizing agents’ motions, it is possible to learn and iden-
tify normal/abnormal situations in a certain environment.
In general, approaches for abnormality detection are

based on a set of observations that define the regu-
lar behaviors in a scene. Afterwards, abnormalities are
defined as behaviors that do not match with patterns pre-
viously learned as normal, i.e., behaviors that have not
been observed before [6]. Accordingly, observations that
deviate from the characterized normal patterns are clas-
sified as potential abnormalities. Abnormality detection
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has been successfully used in real applications such as
identification of hazardous massive crowds [7, 8], recog-
nition of group activities [9, 10], traffic event classification
[3, 11–14], detection of anomalies in maritime trajectories
[15, 16], among others.
The recognition of motion patterns and interactions

from trajectories is a challenging task, in particular when
dynamics of moving agents are nonlinear through time
and space.Moreover, a quick analysis of existent bibliogra-
phy shows that current methods usually claim robustness
and reliability for highly restricted scenarios, broad sen-
sor availability and short video footages [17]. To alleviate
these issues, a common approach is to represent the state
of agents under a probabilistic framework and character-
ize the motion patterns by following a nonlinear Bayesian
state estimation. This approach has been successfully
applied in surveillance environments and complex motion
patterns [12, 18].
In the present work, abnormalities from a proposed

baseline model are used to parameterize characteristics of
environments by looking at trajectories of individuals in
an online way.
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The majority of approaches that deal with analysis of
trajectories are focused on characterizing agents’ dynam-
ics through time [19–21] or learning interactive forces
exerted by multiple moving agents. The latter can be
understood as an evolution of the seminal paper of
Helbing and Molnár [22], on which crowd motions are
described by a combination of simple interactive forces
between pedestrians. The methodology proposed by the
authors is based on social force models, a concept orig-
inally introduced by [23]. In a recent work, Seer et al.
[24] extend the work of Helbing by using three different
shapes of social forces models, namely radial [22], ellipti-
cal [25], and a split version of forces [26]. The work of Seer
is evaluated on real pedestrian trajectories.
A common trend in existent works is the character-

ization of moving agents’ trajectories based on their
interactions among them, without taking into account
the environment and its effects in the state of agents.
Our work is motivated by the approach of Seer [24],
with the main difference that the motion of our agents
is characterized by environment forces revealed hier-
archically due to interactions of the type agent-static
zone.
This work tackles the analysis of moving agents in cases

where the only information available is their location
through time. The proposed strategy can be used in places
on which a detailed map is unknown but agents’ positions
can be obtained via GPS or other localization systems
like Wi-Fi fingerprint for indoor environments [27, 28].
Furthermore, the proposed approach provides informa-
tion of the moving agents’ surroundings that can be useful
in cases of places monitored by cameras that provide
noisy measurements, partial/full occlusion, or scenes with
illumination changes [29].
The present work proposes a bank of Kalman filters

(KFs) that explains the motion of agents in a hierarchi-
cal way. Models obtained from the bank of filters are
incrementally learned by looking at abnormalities or devi-
ations from a reference formulation based on a random
walk behavior, such idea was first presented in [30], where
an offline non-parametric method was proposed to char-
acterize effects of static external objects in simulated
environments.
In the current work, dynamical models that describe

agents’ motions can be used to hypothesize a semantic
representation of the environment effects [5, 31]. In other
words, the agents’ motions incrementally reveal charac-
teristics of the environment. By considering a Bayesian
approach, the proposed method learns sequentially the
nonlinear dynamics of moving agents over segments
in which their orientations are relatively stable. Conse-
quently, such segments can be seen as letters that are part
of a vocabulary learned dynamically. As a future work,
these vocabularies are proposed to be used for identifying

normal and abnormal situations related to environment’s
characteristics revealed on the fly.
The novelties of this work are itemized as follows: (i)

It is proposed a Bayesian approach for understanding the
physical and non-physical surrounding areas of moving
agents based on their nonlinear dynamics. The proposed
formulation allows to characterize parts of environments
individually by using a bank of filters that encodes infor-
mation about learned models in an incremental way. (ii) A
parametric force field model based on a switching process
is proposed to understand agents’ motions. Such model
includes information about how static areas influence the
dynamics of moving agents. Additionally, only agents’
positions are necessary to understand the effect produced
by static areas through time. (iii) The proposed method-
ology does not need a broad sensor availability, since only
location information is needed, any type of trajectory can
be analyzed and modeled. Our approach is evaluated on
synthetic data and real trajectories of pedestrians in an
indoor place.
The rest of this article is organized as follows: A

description of the agents considered in this work is pro-
vided in Section 2. Force model and problem defini-
tion are described in Section 3. A hierarchical repre-
sentation of the environment is explained in Section 4.
Results obtained with synthetic and real data are given in
Section 5; Section 6 concludes the article.

2 Agent paradigm
This work proposes a method for identifying and charac-
terizing attractive areas in environments based on obser-
vations of cognitive entities that move through them.
Accordingly, the present approach assumes that such
moving entities can be represented as goal-based agents
described in the work of Russell and Norvig [32]. Deci-
sions made by such class of agents are based on a cognitive
perception of their surroundings combined with a goal to
be achieved. As can be seen in the diagram shown in Fig. 1,
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Fig. 1 Goal-based agent. Schematic diagram of an agent with explicit
goals proposed by [32]
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the agent’s goal plays a fundamental role at the moment of
taking a decision.
In this work, agents’ goals are considered to be areas

in the environment where agents tend to go. For mod-
eling such areas, it is considered to use a formulation
based on social force models. An idea was introduced
by Helbing and Molnár in [22] for understanding pedes-
trian dynamics. Consistently, each main effect described
in their work is here contextualized with the final pur-
pose of explaining effects produced by unknown attractive
areas in environments.
Helbing and Molnár propose that there are three main

effects with which the motion of single pedestrians can be
explained: (i) destination to reach—it consists in the short-
est path to follow in order to go towards a goal; (ii) influ-
ences caused by other pedestrians and barriers—in which
they define a repulsive force model for describing the
effect that pedestrians exert among others at the moment
of avoiding people. They also propose a repulsive model
to explain the effect of barriers, such as borders of build-
ings or obstacles. (iii) Temporary attractive effects— they
define amodel that explains the sudden attractiveness that
could be experienced by a pedestrian, it is the case of feel-
ing attraction to other people (friends, street artists, etc.)
or going towards static objects such as window displays.
Based on the three main effects described previously

for understanding pedestrian dynamics, it is proposed to
use the same reasoning to understand goal-based agents
dynamics. From this viewpoint, main goals are assumed
to be represented as (i) destinations to reach that can be
modeled as attractive fields in the environment. (ii) Influ-
ences caused by other pedestrians and barriers and (iii)
temporary attractive effects are proposed to be modeled
as noise that deviates agents from their main destinations.
Accordingly, the diagram in Fig. 2 explains the proposed
model to understand the dynamics of moving agents in a
scene.
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temporary deflecting 

effects (Noise)

Information 
processing

Decision

Motion

Uncontrolled 
factors (Noise)

Perturbations

Reaction
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Psychological 
and mental 
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Fig. 2 Schematic representation of processes that induce behavioral
changes. Proposed scheme to represent the motions of agents based
on [22]

In literature, the majority of works that deal with anal-
ysis of trajectories are focused on modeling and learning
agents’ motions through time [4, 12, 16, 19–21]. How-
ever, in the proposed methodology, since an interaction
between agents and the environment is assumed, it is use-
ful to consider an attractive force model for explaining
agents’ dynamics. Such model includes information about
environment properties that define how moving agents
are influenced by static areas in the scene. Accordingly,
when an agent’s motion pattern is observed, the under-
standing of environment static characteristics is enriched.
By considering that dynamics of agents can be seen as

the result of external forces acting on them, it is possible
to associate such forces with the internal motivations that
make agents perform certain actions (movements) [22] in
order to reach a particular destination. From this perspec-
tive, each destination point is proposed to be modeled as
an attractive area that exerts a force field in the environ-
ment.
The methodology proposed in this paper aims at the

incremental understanding of attractive effects that static
areas exert over moving agents. This work can be seen
a method to improve the situation awareness (SA) of an
environment by looking at moving entities. Formally, SA
is defined as “the perception of elements within a volume
of time and space, the comprehension of their meaning,
the explanation of their present (observed) status and the
ability to project the same in near future instants” [33].
Subsequently, the methodology proposed in this paper
increases the SA of environments incrementally as agents’
motions are observed.
As an individual agent model is proposed, the current

method aims at the understanding of agents’ surroundings
in terms of attractive areas (goals) in cases where interac-
tions with other agents are momentary, i.e., in situations
where interactions between individuals can be modeled as
a noise parameter. In cases of multi-agent systems com-
posed by a large density of individuals as proposed in [34],
the main goal of agents can be confused with the con-
stant evasion of multiple individuals and the proposed
approach would not work properly. Based on that, our
method is focused on cases where there is a low density of
agents that interact with each other.

3 Forcemodel and problem definition
Taking into consideration a classical mechanics approach,
a force is defined as a vectorial quantity that acts on a body
to cause a change in its state of motion [35]. Forces can
be classified in action-reaction pairs: when bodies, which
are in contact, change their momentum [35] and action-
at-a-distance forces: when agents interact without being
physically touched [36]. Throughout this work, motiva-
tions of agents are modeled as action-at-a-distance forces
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that can be characterized by looking at the motion of
individuals.
A force field �F is defined as a vector point-function

which has the property that at every point of the space
takes a particular value related to the magnitude and
direction of a force acting on a particle placed there
and whose mass is considered as one [37]. Accordingly,
moving agents’ dynamics are used to learn the effects
produced by force fields in the environment.
A central force field �F = f (r)r̂ is a particular case of

fields where the motion of agents is affected depending
on the distance r to the location of an attractive/repulsive
force source, called center of force. r̂ is a unit vector that
points in the direction of r. Based on that, this article pro-
poses radial force fields for modeling dynamics of agents
through time.
For characterizing the effect that an attractive area

exerts over moving agents, it is considered the second
Newton’s law �F = m�a, where m = 1 as proposed before.
Therefore, it is direct to infer that �F = �a, i.e., the force
exerted by an attractive area in the environment can be
measured as the agent’s acceleration at a particular point
where it is located.
It is hypothesized that information about the agent’s

speed V (t) can be inferred through time t. Then, it is pos-
sible to relate agents’ speeds with their accelerations as can
be seen in Eq. (1):

Vt2 =
∫ t2

t1
at1dt = at1(t2 − t1) + c, (1)

where t1 and t2 are two consecutive time instants, at1 rep-
resents the force magnitude that acts over an agent at
time t1 and c is an integration constant that represents
the agent’s velocity Vt1 at the instant t1. By considering a
number of n spatial dimensions from which trajectories of
moving agents are observed, the location of a single agent
can be expressed as shown in Eq. (2):

X = (d1, d2, . . . , dn). (2)

The velocity field experienced by an agent influenced by
a central force field in terms of its location X is shown in
Eq. (3):

�VX (t) = �aX (t−1)�t + �VX (t−1), (3)

where it is possible to observe that dependencies of time
t can be substituted by spatial coordinates X . Since force
fields are fixed in one location and their influences are
assumed to remain equal through time, agents’ dynamics
will depend only on their own location X .
A switching model is proposed to characterize the

velocity fields perceived by agents due to the presence of
attractive radial force fields. Based on this, two motion

stages are defined: i) When the agent is near to an attrac-
tive center of force (near range of interaction) and ii)
When the agent is far from it (far range of interaction).

3.1 Near range of interaction
In order to model the way by which moving agents arrive
in attractive areas, it is considered a parametric function
that describes their velocities depending on the distance r
to a center of force. The proposed model is based on a top
speed from which the agent continuously experiments a
deceleration according to a function inspired by the repul-
sive terms offered by [22, 25] and the deceleration factor
described on [26].
Consistently, for characterizing the arrival of agents in

attractive areas, it is proposed a velocity field �Gnear(r) that
defines how their dynamics vary as they approach closer
to an attractive area. Two global terms can explain such
velocity field, one related to a baseline velocity and other
based on a deceleration term, as described in Eq. (4):

�Gnear(r) =

⎛
⎜⎜⎜⎝ β︸︷︷︸

Baseline
velocity

− αe
−r2
σ2︸ ︷︷ ︸

Deceleration
term

⎞
⎟⎟⎟⎠ r̂, (4)

where r is defined as the Euclidean distance between an
agent and the attractive area in question, such that r =
||X − X0||2, where X represents the agent’s location and
X0 is the unknown position of the attractive area. σ is an
unknown parameter that defines the way in which mov-
ing agents decelerate while they approach the center of
force X0. Low values of σ 2 are associated with abrupt
agent decelerations; and high values are related to smooth
decrements of speed while agents advance towards X0.
β is the top speed from which agents start decelerating
until they arrive at the attractive area. α defines the final
speed that an agent will have when arrives at X0. In the
ideal case α = β , which implies that moving agents reach
the attractive point with a null speed. Figure 3 shows the
proposed parametric function �Gnear(r) for approximating
velocity fields in a near range of interactions over a two-
dimensional plane (x, y). For visualization purposes, it is

considered X0 =
[
x0
y0

]
, x0 = 0, y0 = 0, σ 2 = 15, β = 1

and α = 1.
Each velocity field in a near range of interactions can be

described by the set of parameters ξ =[β ,α,X0, σ ]. For
estimating each of them, it is proposed an iterative gradi-
ent descent method explained in detail on Section 4.3.
As can be seen in Eq. (4), since β and α are always

positive, it is assumed that moving agents decrease their
speeds while they approach the attractive areas. Accord-
ingly, the proposed model applies to moving agents that
tend to remain on the attractive center of forces, i.e., their
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Fig. 3 Proposed attractive velocity field representation that explains
motion of agents in a near range of interaction

speeds tend to be null near it. By taking into consideration
the latter assumption, it is possible to define a distance
rswitch, from which agents start decreasing their velocity at
approaching to X0.
In this sense, the model described in Eq. (4) is valid

for r ≤ rswitch. When distances between agents’ locations
and attractive areas are greater than rswitch, another model
must be proposed to characterize the agents’ dynam-
ics in terms of attractive forces. Under this perspective,
the following section introduces a way to model agents’
velocities when they are located at far distances from X0.

3.2 Far range of interaction
When moving agents are located at a distance r > rswitch
from an attractive area, it is proposed to use a probability
density function (PDF) to describe the agents’ velocities
until they start reducing their speeds due to a near range
of interactions effect previously explained in Section 3.1.
From this viewpoint, the model of a far range of interac-
tion works until agents present a continuous deceleration
through time, which indicates they start approximating to
an attractive area.
PDFs are proposed to characterize interactions at far

distances from attractive centers of force due to their
properties for representing stochastic phenomena. It is
hypothesized that agents’ velocities at far ranges of inter-
action can be slightly affected by multiple factors different
from the effect of attractive forces in the environment.

Nonetheless, at this stage, it is assumed a predominant
agents’ velocity due to their interactions with an attractive
area, i.e., it is assumed a main constant influence on the
agents’ velocity due to a particular destination point (goal)
that makes them move towards a center of force X0.
In this work, it is proposed to represent the velocity’s

magnitude of an agent localized in r > rswitch as the L2
norm among the velocities experienced in each spatial
axis, such that ||VXfar ||2, whereVXfar represents the agent’s
velocity in a single location measured in a far range of
interaction. Based on that, the set of all velocities’ magni-
tudes due to an attractive area in a far range of interaction
can be written as

||Vfar(set)||2 = {||VXfar,1 ||2, ||VXfar,2 ||2, . . . , ||VXfar,J ||2},
where J is the total number of measurements taken in a
far range of interaction. Since a main constant velocity is
assumed during this stage, it is defined a random variable
γ that distributes according to the log-normal distribu-
tion lnN (μ, σ 2

far) that is adjusted based on ||Vfar(set)||2.
Such distribution allows to represent variables that are
only defined for positive values and that can be concen-
trated mainly in one value, as it is the case of velocities’
magnitudes in far range of interactions. From this view-
point, velocity fields in such stage can be written as shown
in Eq. (5):

�Gfar(r) = γ r̂. (5)

as explained before, γ is a random variable that distributes
in accordance a log-normal distribution. After character-
izing near and far interactions between agents and an
attractive area of the environment, it is possible to define
a full effect �Gm(r) produced by a particular area m, such
as shown in Eq. (6):

�Gm(r) =
{ �Gm

near(r) r ≤ rswitch
�Gm
far(r) r > rswitch.

(6)

Consequently, as different agents move through an envi-
ronment, a total set of fields �GM(r) can be obtained, where
M is the number of identified attractive areas that have
been characterized inside a scene. From this perspec-
tive, each effect can be seen as a letter that is part of a
vocabulary which is learned hierarchically as new agents
move inside an environment. The next section describes
a methodology that aims at the incremental learning of
environment properties based onmoving agents’ observa-
tions.

4 Hierarchical environment representation
The present section explains a methodology by which
effects generated by static attractive areas can be modeled
as control parameters into an initial Kalman filter (KF)
formulation from which effects of interactive areas can be
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extracted and then modeled into it. It is also shown how
trajectories that are globally nonlinear in terms of space
can be incrementally grouped into segments in which
agents’ dynamics preserve a constant orientation. Each
identified segment is here explained by an attractive veloc-
ity field whose effect is modeled through the switching
formulation described in Section 3. Finally, it is proposed
that each trajectory can be seen as a sequence of attrac-
tive areas acting on the moving agents. This process can
be considered as the activation of different letters in the
environment (each one associated to an attractive area)
that gives a semantic representation of activities in the
environment.

4.1 Kalman filter modeling
Supposing location measurements of single agents in an
environment are defined as Zk for each instant of time k
and assuming that such measurements are equally time
spaced, i.e., �k remains constant, it is possible to define
the agent state vector Xk as its position and velocity at
k. Accordingly, let measurements and state of agents be
related by the expression Zk = HXk + νk , where νk repre-
sents a zero-mean normal distributed noise due to errors
on the measurements taken at time k and H is a matrix
that maps the actual state space Xk onto the observations
Zk .
Since the proposed method aims at the hierarchical

learning of agents’ temporally non-linear motions, ini-
tially, a random walk model centered on agents’ observa-
tions is hypothesized as the most general way to represent
unknown dynamical behaviors. Based on this, observa-
tions of moving agents that deviate from a random walk
model can be used to incrementally explain effects of
attractive areas in a particular location Zk from which the
deviation was observed.
Dynamics of agents are modeled by a bank of Kalman

filters that grows sequentially as new patterns associated
with attractive areas in the environment are revealed by
looking at agents’ motions through time. Accordingly,
Eq. (7) shows the initial KF dynamical model based on a
random walk model from which the bank of filters is built
up afterwards.

Xk+1 = FXk + wk , (7)

where

Xk =
[
Xk
Ẋk

]
, F =

[
In
0n,n

]
,

wk is a zero-mean normal distribution associated with
the random noise of the proposed dynamic model and
n represents the number of observed dimensions of the
environment as shown in Eq. (2).
Let X0

k|k−1 be the prediction of a KF based on the ran-
dom walk model described in Eq. (7) given the updated

state estimation at the time k − 1, i.e., X0
k−1|k−1. It is

assumed that significant deviations from the KF’s predic-
tions carry information about effects of unknown attrac-
tive areas. Accordingly, when themeasurement Zk arrives,
it is possible to compute Ỹ 0

k , called innovation of mea-
surement residual, which is defined as shown in Eq. (8):

Ỹ 0
k = Zk − HX0

k|k−1, (8)

where X0
k|k−1 = FX0

k−1|k−1 and it is defined as the ran-
dom walk KF’s prediction. In general, innovations can
be seen as a quantity that measures the deviation that a
proposed dynamical model presents respecting observa-
tions. In the ideal case, the value Ỹ 0

k would tend to zero,
whichmeans that the proposedmodel, based on a random
walk dynamics, can explain the observations of agents in
the environment correctly. Following this reasoning, in
cases where innovations are significantly different from
zero, the dynamical model should be modified in order to
describe more accurately the observed agents’ dynamics.
To do so, it is considered a modification in random walk
model, the new model formulation is shown in Eq. (9):

Xk+1 = FXk + BUk + wk , (9)

where a control parameter BUk is introduced in order to
obtain innovations that tend to zero. Uk can be seen as
a velocity contribution that makes an agent follow cer-
tain motion when it is located at the coordinates Zk . B
is a matrix that maps such velocity contribution into the

agent’s state, such that B =
[

�kIn
In

]
.

Similarly to the random walk model, innovations of
the proposed new model are defined as Ỹ 1

k = Zk −
HX1

k|k−1. Accordingly, in order to make Ỹ 1
k = 0, it is pro-

posed to use the innovations produced by the random
walk model, Ỹ 0

k , into the control parameter BUk of the
proposed new model. By taking into consideration that
X1
k|k−1 = FX1

k−1|k−1 + BUk−1, it is possible to rewrite the
expression of innovations generated by the new model as
shown in Eq. (10):

Zk+�k − H
(
FX1

k−1|k−1 + BUk−1
)

= 0. (10)

By substituting the updated state produced by the KF
based on the proposed new model with the updated state
found with the random walk based model, such that
X1
k−1|k−1 := X0

k−1|k−1, it is possible to rewrite Eq. (10) as
shown next:

(
Zk+�k − HFX0

k−1|k−1

)
︸ ︷︷ ︸

Random walk KF’s
innovation:Ỹ 0

k

−HBUk−1 = 0 (11)
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from which it is possible to infer that

Ỹ 0
k = HBUk−1 =⇒ Uk = Ỹ 0

k
�k

}
Valid in Zk . (12)

As can be seen in Eq. (12), the control vector Uk is a
velocity quantity related to the effect that attractive forces
exert over moving agents in the particular measurement
Zk . For this viewpoint, since different agents localized in
the same coordinated point Zk can be motivated by dif-
ferent attractive areas, each velocity field effect should be
individuated and included into the KFs’ dynamic models
that compose the proposed bank of filters as shown (13):

As := (Xk+�k = FXk + BUs
k + wk), (13)

where Us
k = Ỹ 0

k,s
�k , s is the indexation of each poten-

tial attractive area and As corresponds to the dynamical
model associated to each of them. In this sense, each As
represents a new KF model built from the innovations
produced by the random walk model described in (7).
At the moment of defining an attractive model As, infor-
mation about innovations generated by the previously
characterized set of dynamical models {A1,A2 . . . ,As−1}
should be taken into consideration in order to merge sim-
ilar velocity field models. In this work, a merging process
of similar velocity fields is considered as a post process-
ing step and a classic k-means algorithm is used to group
similar fields. From this viewpoint, the proposed bank
of KFs is created incrementally by observing deviations
from a reference random walk model. Each learned new
model includes information about attractive properties of
the environment.
In order to relate the proposed attractive field described

in Eq. (6) to the control inputs Us
k , it is necessary to

identify parts on a trajectory in which velocity effects
produced by radial attractive force fields are valid. For
this purpose, it is considered a method for segmenting
trajectories explained in Section 4.2.

4.2 Trajectory segmentation
Since it is hypothesized that movements of agents are
produced by static areas that exert radial attractive
force fields, it is expected that trajectories performed
by agents are spatially quasilinear and pointing every
time at the direction of a main attractive area. Nev-
ertheless, in real cases, motions of agents do not have
the same orientation in every moment. However, they
can be divided into quasilinear segments on which the
assumption of interactions with attractive radial fields
is valid.
The possibility of dividing a trajectory into quasilinear

segments can be associated with the presence of mul-
tiple motivations that an agent follows as time evolves.
In other words, a moving agent can be attracted by

multiple areas that can be seen as dynamical motiva-
tions that change in time as the agent moves through
the environment reaching multiple goals. An example of
this behavior can be clearly identified in airplane trajec-
tories, where aircrafts perform different approaches to
intermediate points during a flight. Figure 4 depicts an
example of such behavior for a commercial flight that
goes from Amsterdam to Brussels on a latitude-longitude
plane.
In Fig. 4, spatial quasilinear segments in the trajectory

are identified with different colors. Red crosses show the
points in which transitions between different quasilinear
segments take place. Accordingly, from Fig. 4, it is possible
to see how multiple quasilinear paths can explain a single
trajectory in terms of spatial transitions. Accordingly, each
segment identified in Fig. 4 is proposed to be explained by
an attractive area that exerts a radial force field over the
environment.
Angles produced by the estimated velocities Uk are

used in order to segment the trajectory into quasilinear
motions in an online way. Since the control vector Uk can
be seen as the agent’s velocity due to the interaction with
external forces when at observing Zk , the orientation of
this vector can be used as a measurement of alignment
with attractive centers of force. If an agent is approaching
to an attractive area in the environment, it is expected that
orientations of Uk do not change significantly through
time. Based on this, it is proposed to define a window time

Fig. 4 Segmentation of spatially nonlinear trajectories. Partition of an
aircraft’s path into quasilinear segments
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tw in which directions of velocities Uk remain stable. Let
Wa be the windowed version of the velocitiesUk such that:

Wk = {Uk ,Uk+1,Uk+2, . . . ,Uk+a},

where a is the number of samples that fit in an interval of
time tw. Once a number of a velocities Uk is obtained, the
window data Wk is used to approximate the parameters
of a von Mises distribution μθ and κθ . This distribution is
selected due to its properties of representing the direction
of entities in a probabilistic way, μθ represents distribu-
tion’s mean and 1

κθ
is analogous to the variance in a normal

distribution.
Defining μ̂θ ,k and κ̂θ ,k as the estimated parameters of

the von Mises distribution based on the window dataWk ,
it is proposed a deviation angle θdev from which it is pos-
sible to distinguish when an agent moving aligned to a
particular attractive area. Accordingly, when an accumu-
lated probability higher than 0.9 is obtained in the range
[ μ̂θ ,k − θdev, μ̂θ ,k + θdev], it is hypothesized that the agent
is attracted to an area. Velocity contributions calculated in
following times, i.e., from Uk+a+1 onwards are compared
with the current von Mises distribution through a Maha-
lanobis distance DM [38], in order to evaluate whether it
belongs to the previously estimated distribution of if it is
necessary to hypothesize a new one. For doing so, a dis-
tance limit Dθ is introduced, such that if a number of nθ

velocities contributions produce a distance DM > Dθ ,
the process is reinitialized with a new window Wk+a∗+1,
where a∗ is the minimum window size a together with
the following velocity contributions that were classified
as part of the von Mises distribution estimated from the
windowWk .
In this work, each quasilinear segment, indexed with the

letter s, is associated with the presence of an attractive
area in the environment, see Eq. (13). Accordingly, once a
segment is detected, a velocity field approximation is iter-
atively performed based on an attractive force hypothesis.
Algorithm 1 describes the proposed sequential process for
identifying quasilinear motions in agents’ dynamics and
approximating velocity fields from them.
Some algorithms for segmenting signals into linear

components and reconstruction of trajectories were iden-
tified. However, for the particular problem addressed in
this work, where moving agents are influenced by a main
goal, information about the direction and magnitude of
their velocities should be taken into consideration tomake
a correct segmentation in terms of attractive forces. The
number of segments identified with this approach cor-
responds to the quantity of potential attractive areas in
the environment. A list of the principal characteristics of
identified algorithms for piecewise linear segmentation
and reconstruction of trajectories are compared with the
current proposal in Table 1.

Algorithm 1: Segmentation/field approximation.
Data:
* [Z,U] Measurements with their respective velocity
contributions.
* [a] Minimum window size.
* [θdev] Tolerance angle for considering quasilinear agents’
dynamics.
* [Dθ ] Maximum distance to distiguish a new velocity
contribution from a probability distribution.
* [nθ ] Number of velocity contributions that do not belong
to a probability distribution before proposed a new
segmentation.
* [s] Segment (attractor) counter
* [trajstable] Indicator of alignment in the agent’s motion
* [n�] Counter of velocity contributions that do not belong
to the current probability density function
* [ Is, Fs] Initial and final measurements’ indexes
corresponding to the segment (attractor) s.
Result:
* Velocity field estimations based on attractivive influences.
Procedure:
N ← size of Z
if N == a then

θU ← orientations of U
[ μ̂θ , κ̂θ ]← von Mises parameters based on θU
if CDF([ μ̂θ − θdev, μ̂θ + θdev] ) > 0.9 then

s = s + 1
Is ← assignation of first index of [Z,U]
trajstable ← TRUE
n� = 0
Velocity field estimation related to attractor s

end if
else

Redefined [Z,U] with their last (a − 1) values
end if

end if
else

if stableTrajectory == TRUE then
DM ← Mahalanobis distance between last θU and
current von Mises probability distribution
if DM < Dθ then

[ μ̂θ , κ̂θ ]← von Mises parameters based on θU
Velocity field estimation related to attractor s

end if
else

trajstable ← FALSE
n� = n� + 1
if n� == nθ then

Fs ← assignation of last index of [Z,U]
Remove all the elements [Z,U]

end if
end if

end if
end if
Wait new observation and append it to Z and U
Execute Segmentation/Field approximation Algorithm

From Table 1, it can be seen that the proposed method
presents the advantage of being online. additionally, it uses
the dynamics of agents as inputs for performing the seg-
mentation process. Since produced segments are assigned
to central force fields, the agents’ velocity angles result to
be an important feature for detecting alignment with goals
that agents desire to reach by taking the shortest possible
path.
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Table 1 Comparison among strategies for segmenting and reconstructing signals

Method used in Segmentation/Reconstruction Type Input features Error measure Output

[40] Batch (top-down) Data from etch machine �2 distance between line
and data points

Identification of states in a
HMM

[41] Online (Sliding window +
top down)

Data points series �2 distance between line
and data points

Signal’s piecewise linear
representation

[42] Online (Slope change
threshold)

Data points series Distance between
reference slopes

Signal’s piecewise linear
representation

[43] Batch (bottom-up) High frequency data
points

�2 distance between line
and super-interval data

Identification of events

[44] Online (furthest candidate
segmenting point)

Data points series Maximum vertical distance
to a line

Signal’s piecewise linear
representation

[44] Online (Backward
segmentation)

Data points series Maximum vertical distance
to a line

Signal’s piecewise linear
representation

[45] Offline (nonlinear state
estimation)

Aircraft sensor data Root-mean-square error Aircraft path
reconstruction

[46] Offline Interactive Multiple Mode
filter data

Distance to predefined
modes of flight

Identification of modes of
flight

Proposed work Online (sliding window
and angle distributions)

Velocity vectors from bank
of filters

Mahalanobis distance
between angle and
distribution

Velocity vectors linked to
an attractive field

It is possible to see fromAlgorithm 1 that the final result
of the proposed method consists of a set of velocity fields
related to attractive areas identified by quasilinear seg-
ments in the agents’ motions. Accordingly, as a segment
grows in time, an iterative estimation of the velocity field’s
characteristics is performed based on themodel described
in Sections 3.1 and 3.2. Section 4.3 explains in detail how
this process is performed as new agents’ observations are
obtained.

4.3 Learning of environment properties
Let the pair of vectors [Zk ,Uk] be the agent’s observa-
tions with their respective control vectors obtained by
the KF based on the random walk model proposed in
Eq. (7). Additionally, suppose that [Zk ,Uk] are acquired
incrementally such that algorithm 1 is applied as new
observations arrive such that [Zs

k ,U
s
k] are vectors that

belong to a particular segment s, i.e., they are produced
due to an unique attractor.
Since parameters Us

k are related to velocity components
that deviate agents from a random walk behavior, it is
proposed to use them in order to fit the velocity field
model presented in Eq. (6). Accordingly, for distinguishing
between far and near ranges of interaction, magnitudes
of Us

k are analyzed through consecutive time instants,
such that: If ||Us

k||2 values decrease continuously in a
range of time �Kswitch, the moving agent is assumed to
be in a near range of interaction, proposed in Eq. (4). For
this case, its measurements and control vectors will be
labeled as [Zs

k(near),U
s
k(near)]. Otherwise, themoving agent

is assumed to follow the far range of interaction model

described in Eq. (5), in such case, its measurements and
control vectors will be labeled as [Zs

k(far),U
s
k(far)].

In order to characterize the velocity field in a far range
of interaction associated to a segment s, the magnitudes
||Us

k(far)||2 are used to estimate the random variable λs,
such as proposed in Eq. (5).
Estimating the center of force X0 in a far range of

interaction is not possible since there is not conclusive
information about velocity decrements. Nonetheless, it is
feasible to determine a line on which the center of force
belongs. Such line is defined from the last observation Zk
and has a slope determined by the mean of λs.
[Zk(near)s ,Us

k(near)] are used to estimate the unknown
parameters in Eq. (4) for a particular attractive area
s. The measurement and control input from which
next ||U2

k ||2 values start decreasing are labeled as
[Zs

k(switch)
,Us

k(switch)
]. The magnitude ofUs

k(switch)
is taken

as an estimation of to the term β of Eq. (4), such that
β̂s = ||Us

k(switch)
||2. Additionally, it is assumed α̂s = β̂s,

such that moving agents tend to remain on the attractive
center of force when they arrive in it. Then, an itera-
tive gradient descent is proposed to minimize the error
between magnitudes ||Us

k(near)||2 and the proposed veloc-
ity field formulation of Eq. (4) based on the sparse space
representation of the observed data Zk(near).
Accordingly, the function to optimize is the mean

square error between ||Us
k(near)||2 and the proposed veloc-

ity field function described in (4) with the fixed values
of α = α̂s and β = β̂s. By assuming a total number of
N measurements with their control inputs identified in
a near attractive range of interaction for an area s, i.e.,
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[Zk(near)s ,Us
k(near)] with k from 1 to N, the function to

optimize is shown in Eq. (14):

J(σ ,X0) = 1
N

N∑
k=1

(
‖Us

k(near)‖2 − G (rnear)
)2

. (14)

Since G(rnear) is a differentiable function respecting the
parameters σ and X0, a classical gradient descent algo-
rithm is performed by taking the partial derivative of the
function J(σ ,X0) respecting each of them. Both expres-
sions are shown in Eq. (15):

∂J
∂X0

= 4α
Nσ 2

N∑
k=1

ψkekrk ,

∂J
∂σ

= 4α
Nσ 3

N∑
k=1

ψkekr2k ,
(15)

where

rk = (Zk(near) − X0), ek = αe−
r2k
σ2 ,

ψk = Uk(near) + ek − β .

As a moving agent is approaching an attractive cen-
ter of force, the number N of measurements identified
in a near range of interaction will increase as more vec-
tors [Zs

k(near),U
s
k(near)] are available. In other words, each

time that N increases, new estimations σ̂s and X̂0,s made
by gradient descent process are obtained. Supposing that
a total number of Q estimations of X̂0 and σ̂ have been
obtained by the multiple computations of the gradient
descent method, it is proposed to fuse all of them for a
given segment s, i.e., [ X̂0,s,q, σ̂s,q] where q goes from 1 toQ,
by performing a weighted average over the Q estimations
such as shown in Eq. (16):

[
X̂0,s(avg), σ̂s(avg)

]
=

Q∑
q=1

([
X0,s,q, σs,q

]
w1,qw2,s,q

)
, (16)

where w1,q is a weight related to the number of samples
with which the gradient descent was executed in the iter-
ation q. Each w1,q is normalized respecting the maximum
number of samples with which the gradient descent have
been performed. w2,s,q is a weight related to the error
Js,q(β ,α, σ ,X0) obtained on each iteration q at estimating
the properties of the attractor associated to the segment
s. w2,s,q values are normalized respecting the lowest error
obtained.
The pair of parameters [ X̂0,s(avg), σ̂s(avg)] obtained by

applying Eq. (16), is the final estimation of the velocity
field parameters [X0, σ ] related to the effects of an attrac-
tive area based on the segment s. X̂0,s(avg) represents the
estimated location of the attractive center of force associ-
ated to based the segment s and σ̂s(avg) encodes informa-
tion about the shape of its effect in the environment.

By replacing the vector of parameters’ estimations ξ̂s =
[ β̂s, α̂s, X̂0,s(avg), σ̂s(avg)] in Eq. (4), it is possible to obtain an
expression that explains the effect of an attractive area in
a near range interactions, such that �̂Gs

near(r) = �Gnear(ξ̂s).
Similarly, for a far range of interaction, it is possible to
write �̂Gs

far(r) = λ̂s. Consequently, a final estimation of
attractive effects can be defined as

�̂Gs(rs) =
{ �̂Gs

near(rs) r ≤ rs(switch)

�̂Gs
far(rs) r > rs(switch),

where rs(switch) represents the distance from which agents
start decreasing their velocities at approaching the attrac-
tor and rs = ||Zk −X0,s||2 is the distance between an agent
and its center of force. Estimated velocity fields �̂Gs(rs)
can be used to rewrite Eq. (13) in terms of the proposed
parametric function such as shown next:

As := Xk+�k = FXk + B �̂Gs(rs) + wk . (17)

As explained before, the purpose of this paper is to
estimate the velocity fields �Gs(rs) generated by attractive
areas in environments. From Eq. (17), it is possible to see
that a bank of filters composed of the effects of attractive
fields related to each segment s is obtained by applying
the proposed methodology. From this viewpoint, each KF
dynamical model As can be seen as a letter that is learned
on the fly as patterns in agents’ motions are detected.
Consequently, as multiple letters are observed and char-
acterized, it is possible to build a vocabulary in terms of
learned environment properties. In the next section, some
results at modeling such properties in synthetic and real
trajectories are shown and discussed.

5 Results
The proposed method was tested in two different sce-
narios: (i) synthetic data, in which an environment with
different attractive areas is proposed and whose charac-
teristics are inferred based on agents that move towards
different goals; (ii) pedestrian dataset, where dynamics of
people moving through an indoor place are analyzed and
attractive points in the environment are identified.

5.1 Synthetic data
In order to validate the proposedmethod, a simulated sce-
nario in which moving agents are motivated by different
attractive zones is considered. Three radial attractors that
influence moving agents are proposed as shown in Fig. 5.
It is proposed that agents interact with at least one

attractor before they reach their final destination. In this
sense, situations in which agents change dynamically their
destinations (goals) are simulated and analyzed in an
online way. This simulation assumes that agents always
start moving from a random side of the environment such
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Fig. 5 Synthetic data layout. A scenario composed by three attractive
zones is proposed to test the method

as shown in Fig. 5. Noise from a uniform distribution
U(−b, b) is considered in order to affect the motion of
agents in directions x and y. The value of b is selected
according to the speed that agents present each instant
of time, such that it is adjusted to a specific signal-to-
noise ratio SNR = || �VX ||2/b, where �VX (t) is the velocity
exhibited by an agent in a location X . Attractive areas’
effects are simulated according to the formulation shown
in Eq. (4) with β = −α. The selected values of the param-
eters for each attractor are shown in the first column of
Table 2.
It was considered a total of 150 trajectories that start

randomly from one side of the environment and whose

Table 2 Estimated attractive parameters for different SNRs

Attractor ground truth SNR = 10 SNR = 6 SNR = 1.5⎡
⎢⎢⎢⎢⎢⎣

x1 = 0

y1 = 0.75

β1 = 0.09

σ 2
1 = 0.1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

−0.0022

0.7716

0.0976

0.1558

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

−0.0025

0.7823

0.1019

0.1897

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

0.0028

0.7385

0.0361

0.0163

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x2 = −0.6

y2 = 0.25

β2 = 0.108

σ 2
2 = 0.2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

−0.599

0.2528

0.109

0.1923

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

−0.6029

0.2536

0.1154

0.2207

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

−0.5748

0.2634

0.0067

0.0029

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x3 = 0.55

y3 = −0.7

β2 = 0.117

σ 2
3 = 0.3

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

0.5587

−0.7121

0.133

0.3706

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

0.5596

−0.7147

0.138

0.3887

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

0.539

−0.675

0.0042

0.0011

⎤
⎥⎥⎥⎥⎥⎦

final/intermediate(s) points of attraction are also selected
at random. The proposed method was applied to the tra-
jectories in order to recognize attractive effects in the
environment.
By taking the estimations of attractive centers of force

generated by agents that behave according to a near range
of interaction explained in Section 3.1. It is possible to
obtain a map with different locations of attractive points
such as shown in Fig. 6. As can been seen, similar centers
of force can be clustered by using a classic k-means algo-
rithm in order to identify attractive areas in the scene that
combine information of similar attractors’ estimations.
From Fig. 6, it can be seen that each identified cluster

corresponds to an attractive zone. Crosses are calculated
by taking the average position of all the velocity fields that
belong to a particular cluster. Similarly, the average of σ

and β components of velocity fields is taken in order to
characterize the properties of each merged attractor.
Attractors resulting from the clustering process can

be seen as letters that conform a vocabulary that char-
acterizes the environment. Accordingly, the parameters
associated with each letter can be expressed as shown in
Eq. (18):

ξ(merg),m = 1
Pm

Pm∑
pm=1

(ξ̂pm), (18)

where m indexes each identified cluster composed by
similar estimated fields that in turn are indexed as
pm. ξ̂pm represents the estimated parameters ξ̂s =

Fig. 6 Clusters of simulated data. Result of attractive clusters based on
synthetic trajectories



Campo et al. EURASIP Journal on Advances in Signal Processing  (2017) 2017:13 Page 12 of 15

[ β̂s, α̂s, X̂0,s(avg), σ̂s(avg)] coming from a segment s and rela-
beled according to the clusters (letters) reached with the
k-means algorithm.
In order to evaluate the algorithm performance, it

is possible compare the parameters estimated for each
merged attractor with the respective ground truth val-
ues. Accordingly, Table 2 shows the values estimated at
different SNRs for each attractor.
From Table 2, it can be seen that estimations of centers

of force locations are not affected drastically at the pres-
ence of noise. However, it is observed a significant change
in the estimations β and σ when SNR is close to 1. Such
behavior indicates that at low SNRs the main direction
of trajectories is preserved but the magnitudes of their
velocities are significantly affected.
In order to illustrate how the overall performance in

the estimation of ξ̂s =[ β̂s, α̂s, X̂0,s(avg), σ̂s(avg)] at differ-
ent SNRs, it is proposed to take the following expression
shown in Eq. (19):

ετ = ϕτ

max(ϕ1,ϕ2, . . . ,ϕT )
, (19)

where

ϕτ = sum{ϑτ }, ϑτ = λτ

γ
,

γ = max({λ1, λ2, . . . , λT }), λτ = sum{�τ },

�τ = {ρ1,τ , ρ2,τ , . . . , ρM,τ }, ρm,τ = |ξm − ξ̂m,τ |,
m and τ index the attractive zones and the different

SNRs respectively. The total number of attractors and
SNRs are represented with M and T. ξm represents the
ground truth of the parameters that define the attractor
m. ξ̂m,k is the estimation of attractive parameters related
to an attractorm at a specific SNR k.
By taking the normalized error expressed in Eq. (19), it is

possible to obtain the performance results shown in Fig. 7
for different signal-to-noise ratios. Variances produced by
estimations of the three attractive zones are plotted as
error bars for each SNR case.
From results obtained with simulated data, it is possible

to see that the proposed approach recognizes and charac-
terizes radial attractive fields with different intensities and
shapes at several SNR values by looking at the motion of
individuals. Additionally, the proposed method does not
need a large number of data vectors and parameterizes
areas according to a known function. This represents a
an advantage in comparison with our previous approach
[30] that needs trajectories all around the environment
for estimating correctly the effects of force fields in envi-
ronments. For validating our method on real data, it is
proposed to analyze a dataset composed by pedestrians’
trajectories in an indoor environment.

Fig. 7 Performance of simulated data. The normalized error produced
with the proposed method is shown for different SNR values

5.2 Pedestrian dataset
The dataset proposed by Yi in [39] was used to test our
approach. The database is composed by 12,684 pedes-
trian trajectories in an indoor place where each individual
is manually labeled from a one-hour crowd surveillance
video. In their work, they identify 10 zones that act as
source/destination points for pedestrians and it is man-
ually labeled in Fig. 8, as can be seen, an 11th zone is
introduced as the center point of the scene that is hypoth-
esized to be an attractor for some pedestrians that interact
with it. Consequently, the plot shown in Fig. 8 can be

11

Fig. 8 Zones of interest in pedestrian database. Ten
source/destination zones identified by [39] plus a center zone of
interaction
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seen as a map of attractors in the scene. By using our
approach, it is expected to identify those points in terms
of their location and the effect they produce on moving
pedestrians.
By grouping similar estimations of attractive centers

of force generated by pedestrians that behave according
to a near range of interaction, it is possible to obtain a
map of the attractive zones’ locations such as shown in
Fig. 9. Similar to the case of synthetic data, parameters
that belong to the same attractive zone are averaged based
on Eq. (18) to obtain the parametrization of each merged
version of attractive fields in the scenario. Estimations of
attractive zones’ locations are depicted as red crosses on
Fig. 9.
In order to visualize the presence and effect of each

attractive zone, it is proposed a map that is shown in
Fig. 10. Areas with null values (blue colors) represent the
absence of attractive fields. Zones with larger values (red
colors) represent the presence of attractors that where
agents feel more attracted in terms of intensity. The shape
of fields are visualized as the radius around each center
of force (black cross) until the color map becomes totally
blue. Consistently, the larger such radius is, the near range
of interaction effect becomes broader, i.e., a larger period
of deceleration is detected.
Results obtained in this database demonstrate that from

the dynamics of moving agents it is possible to infer
the locations and characteristics of attractive areas. Par-
ticularly, qualitative results can be seen by comparing
our approximation of attractive centers of force shown
in Fig. 10 with the zones manually labeled by [39] and
depicted in Fig. 8. It can be seen that zones labeled as
{C,A, I,B,G, J ,H ,E} in Fig. 10 correspond respectively to
the labels {1, 2, 3, 5, 6, 7, 8, 9, 10} in Fig. 8.

Clusters of attractive areas

0 500 1000 1500 2000

0

200

400
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K

Fig. 9 Clustering of attractive centers of forces. Similar estimated
centers of forces are grouped to characterize attractive areas

Fig. 10 Characterized attractive areas in the environment. A
representation of attractive areas in terms of their intensity, location,
and shape is depicted on the environment

Since there is not a ground truth available to verify the
intensity or shape of attractors associated to β and σ val-
ues respectively, the only comparison that can be done it
is terms of centers of force localizations between Figs. 8
and 10 as proposed before.
Additionally, it was identified the area labeled with let-

ter F corresponds to an effect of a queue that pedestrians
follow through the video. Zones identified as K and D are
related to pedestrians’ interactions with the central object
of the scene. Both, queue and object’s effect are illustrated
in Fig. 11. According to that, it is demonstrated that the
proposed methodology is capable of recognizing effects

Area with 
permanent 

queue

Object of 
interaction

Fig. 11 Characteristics of the environment. Areas that become
relevant according to the context of the environment
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derived from contextual situations in the environment by
looking at movements of dynamical agents through time.

6 Conclusions
A method for characterizing attractive forces in statical
environments based on movements of agents is proposed.
To do that, it is put forward a methodology based on
the minimization of innovations from a Kalman filter
based on a random walk model. Innovations from this
model are used in order to the explain external effects that
affect agents’ motions. Information that encodes proper-
ties of the environment effects on agents is proposed to
be added as a control input into the initial random walk
formulation.
An incremental learning of environment properties is

considered. Characteristics of attractive zones around
observed agents are learned on the fly. A method for
individuating attractive fields effect based on radial force
hypothesis is proposed based on a quasilinear segmen-
tation of the agents’ dynamics. An iterative method that
approximates velocity fields produced by attractive zones
is proposed when only information about agents’ dynam-
ics is available.
Obtained maps can be used to perform further analysis

by following a semantic approach where each character-
ized attractive area (letter) can be considered as part of
a vocabulary, if activation sequences of attractive areas
are detected with the proposed bank of filters, it would
be possible to extract information about situations in an
environment.
For future work, it is proposed to adopt a semantic rep-

resentation of learned static areas properties, such that
more complex interactions between agents and environ-
ments can be characterized by applying the built bank of
filters based on attractive effects to new trajectories. For
this approach, it is planned to using the innovations with
their covariance matrices produced by the built bank of
filters to characterize repulsive effects in environments.
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