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Abstract

In continuous wave (CW) radar and high pulse repetition frequency pulse-Doppler (HPRF-PD) radar, the interference
plus noise sample snapshots are hard to be obtained. The desired signal in the received snapshots makes the
LCMV-based adaptive monopulse algorithm sensitive to pattern look direction error. A linearly constrained subarray
robust adaptive monopulse algorithm based on main lobe maintenance constraint and subspace tracking is
developed in this paper. The constraint of main lobe maintenance is obtained by signal subspace projection. The
bi-iterative least-square (Bi-LS) subspace tracking is used to update the signal subspace, and a power-associated
method is developed to determine the dimension of the projection subspace automatically. The proposed robust
adaptive monopulse algorithm can achieve high-angle estimation accuracy and good robustness to look direction
error while expending only one additional degree of freedom compared to conventional LCMV-based method.
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1 Background
The monopulse technique is utilized to perform high pre-
cision angle estimation for tracking radars. The target’s
angle is estimated using the ratio of difference to sum
beam outputs, called monopulse ratio. Because of the lin-
earity of monopulse ratio in 3dB beamwidth, the target’s
angle can be estimated by

θs − θ0 = [
g (θs) − g (θ0)

] /
Kθ , (1)

where θ0 and θs are the angle of the pattern look direc-
tion and the target direction, respectively, g (·) is the
monopulse ratio, and Kθ is the slope of the monopulse
ratio.
The adaptive array processing is first applied to

monopulse technique by Davis [1]. The adaptive
monopulse uses adaptive beamforming to form the sum
and difference beams and suppress the spatial interfer-
ences. For the large-scale adaptive array, computation
load and high data rate are two main bottlenecks for
realization of the adaptive monopulse method. Subarrray
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adaptive monopulse method can effectively alleviate such
pressures and ensure angle estimation performance when
limited number of interferences exist. An example of
the subarray geometry is illustrated in Fig. 1a, in which
regular and irregular subarray geometries are comprised.
Nickel extends the adaptive monopulse technique to
subarray and arbitrary array geometries and provides
modified formulas of monopulse ratio. Then he systemati-
cally analyzes the performance of the adaptive monopulse
technique and extends it to space-time processing [2–5].
The monopulse angle estimation in presence of main
lobe interference is discussed in [6], and a four-channel
monopulse framework is proposed. The monopulse
angle tracking problem in electronic countermeasures
or jamming is investigated in [7]. The performance of
monopulse angle tracking in noise or noise jamming is
analyzed in [8]. In [9], a novel adaptive angle tracking
loop filter is designed for three-dimensional monopulse
angle tracking.
In the adaptive monopulse angle tracking, the signal

of interest (SOI) may be present in any direction inside
the 3dB beam scope, which may cause the distortion
of the sum and difference patterns formed by linearly
constrained minimum variance (LCMV) algorithm [10].
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Fig. 1 The diagrams of subarray and angle definition. a Example of the subarray geometry. b The definition of (θ ,ϕ). The array locates in the
zoy plane

Therefore, the adaptive monopulse algorithm should be
robust to the look direction error. Themethods in [11–21]
are robust adaptive beamforming (RAB) methods. A
shrinkage-based diagonal loading (DL) method is pro-
posed in [11]. The loading level to the covariance matrix
can be determined automatically. In [12], the adaptive
beamforming is transformed to a fast Fourier trans-
form based weighted pattern synthesis problem with con-
straints on beamwidth and peak side lobe level. Robust
adaptive beamforming methods based on steering vector
estimation (SVE) can be found in [13–21]. The SVE-based
methods can achieve high performance by adjusting the
pattern look direction automatically to the SOI direc-
tion. The robust Capon beamformer (RCB) and doubly
constrained robust Capon beamformer (DCB) in [13, 14]
can estimate the steering vector of SOI and the SOI
power based on an uncertainty set. A modified cost func-
tion is proposed in [15] utilizing the subspace-associated
power component rather than all power components
in the covariance matrix. In [16–18], the optimization
cost functions for estimating the SOI steering vector are
modified and then transformed into convex optimization
problems. In [19], the signal steering vector is estimated
based onOracle approximating shrinkagemethod. In [20],
the SOI steering vector is estimated with the orthonor-
mal projection approximation subspace tracking and sub-
space projection. The uncertainty of the covariancematrix
is considered to optimize the worst-case performance.
In [21], a steering vector estimation method is devel-
oped based on maximum output power criterion and
subspace rotation.

However, the previous SVE-based robust beamforming
methods are unsuitable for subarray robust monopulse
beamforming for the following reason. In the monopulse
beamforming, the pattern look direction must be exactly
known. The difference beams are formed using the look
direction to guarantee the linearity of the monopulse
ratios near the pattern look direction. When the previous
SVE-basedmethods are applied to monopulse beamform-
ing, the pattern look direction is changed. The actual look
direction needs to be calculated utilizing the estimated
steering vector. However, the look direction is much dif-
ficult to be calculated from the subarray steering vector.
In a subarray antenna with irregular subarray geometries,
the exact position of the phase center of each subarray is
needed when calculating the direction. It is known that,
for an irregular subarray, the phase center is changed
according to the direction of the incoming signal and is
difficult to locate.
Therefore, we can conclude that the robust beamform-

ing methods which adjust the pattern look direction are
not suitable for robust monopulse beamforming on subar-
ray antenna. The main lobe constraint-based robust adap-
tive beamforming methods imposing multi-directional
constraints [22, 23] and derivative constraints [24] will
not change the look direction. However, the high cost of
degrees of freedom (DOFs) makes them limited in the
application to subarray monopulse beamforming.
The main propose of this paper is to design a robust

monopulse algorithm which can form the anti-jamming
sum and difference beam patterns pointing to the
assumed direction while maintaining the pattern main
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lobes against distortion with fewer additional degrees of
freedom. The constraint for main lobe maintenance is
set approximating to the SOI steering vector. Thus, it
can achieve good performance and cost only one DOF.
Inspired by the steering vector estimation in [20], we use
signal subspace projection to obtain the constraint for
main lobe maintenance and subspace tracking to update
the time-varying signal subspace of the data snapshots.
The method developed in this paper can be classi-

fied into signal-processing-based beamforming methods.
The eigenspace-based beamforming methods [25, 26] and
reduced-rank beamforming methods [27–30] which use
eigenvalue decomposition to obtain the projection sub-
space and the reduced-rank subspace, the subspace track-
ing based beamforming methods [20, 31] and space-time
adaptive processing methods [32–34] which utilize sub-
space tracking to extract the signal subspace and inter-
ference subspace, the training data processing methods
[35–37] which preprocess the training data to improve the
beamforming performance in nonhomogeneous clutter
environments can be included in signal-processing-based
beamforming methods. The adaptive radar detectors,
as the adaptive beamformer orthogonal rejection test
(ABORT)-like detector [38], detection schemes in mis-
matched signal modes [39] and two-stage detection
schemes [40], can utilize spatial and temporal data to
adaptively discriminate the target signal from ECM signals
in presence of noise. These methods can also be included
in signal-processing-related beamforming techniques.
A crucial problem for our method is to estimate the

dimension of the projection subspace especially when the
number of signals is changed. For the proposed method,
the optimal projection subspace is the signal subspace.
The subspace tracking methods in [20] and [41–45] are
not able to update the dimension of the signal subspace
when subspace tracking. The dimension is fixed when
subspace tracking. In this paper, we develop a power-
associated method which maximizes the output signal to
noise ratio (SNR) to determine the dimension of the pro-
jection subspace. This power-associated method is incor-
porated with the bi-iterative least-square (Bi-LS) subspace
tracking [46] to adapt to the variation of the subspace
dimension when subspace tracking.
The rest of this paper is organized as follows. In

Section 2, we describe the signal model and the prob-
lem we work on. In Section 3, the proposed algorithm
is investigated according to the framework illustrated in
Fig. 2b. The simulation results are presented in Section 4
to demonstrate the efficiency of the proposed algorithm.
Section 5 concludes this paper.

2 Problemmodel
A plane array comprising M isotropic sensors is
considered in this study. There are r spatial and

temporal uncorrelated narrowband plane wave signals
incident on the array including the SOI and r −
1 interferences. The directions of these signals are
(θs,ϕs) ,

(
θj1 ,ϕj1

)
, . . . , (θj(r−1) ,ϕj(r−1) ), and the pattern look

direction is (θ0,ϕ0). The definitions of (θ ,ϕ) are illustrated
in Fig. 1b. The output of themth sensor can be denoted by

xm(t) = s(t)ej2π(ymus+zmvs)/λ +
r−1∑

k=1
jk(t)e

j2π
(
ymujk +zmvjk

)
/λ

+ nm(t),
(2)

where s(t) and jk(t) are the complex waveform of the SOI
and the kth interference. λ is the wavelength. (ym, zm)

denotes the position of themth sensor. nm (t) denotes the
white Gaussian noise added on the mth sensor. (u0, v0)
,(us, vs) and (ujk , vjk ) are direction cosines of (θ0,ϕ0),
(θs,ϕs) and (θjk ,ϕjk ), denoted by

u0 = sin(θ0)sin(ϕ0) v0 = cos(θ0)
us = sin(θs)sin(ϕs) vs = cos(θs)
ujk = sin

(
θjk

)
sin

(
ϕjk

)
vjk = cos

(
θjk

) . (3)

Then (2) can be represented in matrix form as

X(t) = AS(t) + N(t), (4)

where X (t) = [x1 (t) , x2 (t) , . . . , xM (t)]T denotes the
received signal vector.
S (t) = [

s (t) , j1 (t) , . . . , jr−1 (t)
]T denotes the signal

waveforms vector. N (t) = [n1 (t) , n2 (t) , . . . , nM (t)]T

is the noise vector. A =
[
a (us, vs) , a

(
uj1 , vj1

)
, . . . ,

a
(
uj

(r−1)
, vj

(r−1)

)]
is the array manifold matrix. “T” and

“H” are the matrix transpose and Hermitian transpose.
a (u, v) is the steering vector provided by

a(u, v) =
[
ej2π(y1u+z1v)/λ, · · · , ej2π(ymu+zmv)/λ, · · · ,

ej2π(yMu+zMv)/λ
]T

.

(5)

The covariancematrix is defined asR = E[X (t)XH (t)],
where “E[·]” denotes the mathematical expectation. The
covariance matrix can be estimated recursively by

R(t) = βR(t − 1) + (1 − β)X(t)XH(t), (6)

where 0 < β < 1 is the forgetting factor.
In a subarray antenna array, each element is connected

to a phase shifter. When the pattern look direction is
(u0, v0), the phase shift matrix P can be denoted by
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Fig. 2 Block diagrams of (a) adaptive monopulse angle tracking loop. b The proposed robust adaptive monopulse algorithm

P = diag(a0) =

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

ej2π(y1u0+z1v0)/λ

ej2π(y2u0+z2v0)/λ

ej2π(y3u0+z3v0)/λ

. . .
. . .

ej2π(yMu0+zMv0)/λ

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

. (7)

where “diag (·)” operates a vector to a diagonal matrix.
The subarray transformation matrix contains the phase
shift terms and the subarray forming matrix [3]. It can be
denoted by

Tb = PT, (8)

where T is the subarray forming matrix with dimension
M × N , and N is the number of subarrays. The nth (n =
1, 2, . . . ,N) column of matrix T contains the elements
summing up to the nth subarray.
The element data vector X(t) is transformed into subar-

ray output data vector Xb(t) with transformation matrix
Tb, denoted by

Xb(t) = Tb
HX(t), (9)

where the subscript “b” denotes subarray. The subarray
covariance matrix is provided by

Rxb(t) = Tb
HR(t)Tb. (10)

The monopulse processing can be done with subarray
outputs [3]. For subarray monopulse, the LCMV-based
beamforming weights can be obtained by solving the
optimization problem as follows:

{
argmin

wn
wH
n Rxbwn

s.t. CHwn = f
, (11)
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where C is the constraint matrix and f denotes the
response corresponding to C [10]. The adaptive weight
vector can be denoted by:

wn = Rxb
−1C

(
CHRxb

−1C
)−1f. (12)

For conventional LCMV-based monopulse algorithm
[6], the response in the pattern look direction is con-
strained, and the output power of the beamformer is
minimized. If there are no look direction errors, the beam-
former can provide the optimal SNR.When look direction
error exists, the constraint mismatches the SOI direction,
and the main lobe of the beam pattern may be distorted.
The distortion obviously deteriorates angle estimation
accuracy. In the rest of this paper, we use coventional
LCMV algorithm to represent the conventional LCMV-
based monopulse algorithm presented in [6].
In monopulse angle tracking, we assume that the length

of one data block is a monopulse processing period,
and the angle measurements in each processing period
are averaged to achieve a steady performance. Since the
monopulse processing period is a short period, the tar-
get angle can be regarded unchanged. The target angle
is tracked by the angle tracking loop filter from one
monopulse processing period to the next. The block dia-
gram of adaptive monopulse angle tracking loop is pre-
sented in Fig. 2a. The pattern look direction in the current
monopulse processing period is fixed and provided by the
angle tracking loop filter. The loop filter utilizes the angle
measurements in the current period and previous peri-
ods, and predicts the most probable target angle in the
next period. Because of the dynamic target movement, the
SOImay be deviated from the assumed look direction, but
inside the scope of the 3 dB beam width. This condition
causes look direction error. Themain lobes of the sum and
difference beams formed by the conventional LCMV algo-
rithm will be distorted, and angle estimation performance
will be degraded. Therefore, a robust adaptive monopulse
algorithm is incorporated into the monopulse angle track-
ing loop, as illustrated in the dashed box in Fig. 2a. In this
paper, we only focus on the adaptive monopulse beam-
forming and angle estimation, and we do not discuss the
angle tracking problem.
The block diagram of the proposed robust adaptive

monopulse algorithm is shown in the dashed box in
Fig. 2b. In Fig. 2b, â (t) is the constraint of main lobe
maintenance; ys, yu and yv are the outputs of sum and dif-
ference beams. The signal subspace is updated through
Bi-LS subspace tracking and the subspace dimension is
determined by the power-associated method. Thereafter,
the constraint of main lobe maintenance is obtained
through subspace projection. Finally, a robust LCMV
beamformer with constraints on main lobe maintenance
and monopulse ratio curve is developed to obtain the

sum and difference beam outputs. The angle of SOI is
estimated using sum and difference beam outputs.

3 The proposed robust adaptivemonopulse
algorithm

3.1 Robust LCMV beamformer with main lobe
maintenance constraint (RMM-LCMV)

In order to relieve the pattern distortion caused by look
direction error, an RMM-LCMV beamformer is devel-
oped for forming the sum and difference beams. For con-
ventional LCMV-based monopulse beamformer [6], the
constraint Cs and corresponding response fs of the sum
beam are constructed as

Cs = TH
b a (u0, v0) = ab (u0, v0) , (13)

fs = 1, (14)

where, ab(u0, v0) is the subarray steering vector in direc-
tion (u0, v0). Thus, the weight vector of the sum beam
formed by the conventional LCMV algorithm (i.e.,ws) can
be denoted by

ws = Rxb
−1ab

/(
aHb Rxb

−1ab
)
. (15)

For the difference beams, constraints are imposed on
the slope of the monopulse ratio curve in the main lobe
region and null point in the look direction to guarantee
the linearity of the monopulse ratio curve. As in [6], con-
straints are imposed on monopulse ratios gu and gv in the
directions (u0±�u, v0), (u0, v0±�v) and (u0, v0) to satisfy

gu (u0 ± �u, v0) − gu (u0, v0) = Re
{

�u (u0 ± �u, v0)
�s (u0 ± �u, v0)

}

= ±Ku�u,
(16)

gv (u0, v0 ± �v) − gv (u0, v0) = Re
{

�v (u0, v0 ± �v)
�s (u0, v0 ± �v)

}

= ±Kv�v,
(17)

where �s(u, v), �u(u, v) and �v(u, v) are the sum beam,
azimuth difference beam and elevation difference beam
responses in direction (u, v), respectively; Ku and Kv
are the azimuth and elevation monopulse ratio slopes.
For conventional LCMV-based monopulse algorithm, the
constraints Cu, Cv and the corresponding responses fu, fv
of azimuth and elevation difference beams are denoted by

Cu = [ab (u0 − �u, v0) , ab (u0, v0) , ab (u0 + �u, v0)] ,
(18)

Cv = [ab (u0, v0 − �v) , ab (u0, v0) , ab (u0, v0 + �v)] ,
(19)
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fu =
⎡

⎣
−KuaHb (u0 − �u, v0)ws�u

0
KuaHb (u0 + �u, v0)ws�v

⎤

⎦ , (20)

fv =
⎡

⎣
−KvaHb (u0, v0 − �v)ws�v

0
KvaHb (u0, v0 + �v)ws�v

⎤

⎦ . (21)

In our RMM-LCMV beamformer, an additional con-
straint is applied to the sum and difference beams to
maintain the main lobes. Assume that the constraint of
main lobe maintenance at time index t is â (t). Then, the
responses corresponding to the above constraint are the
responses of the quiescent sum and difference patterns on
â (t) as defined in (22)-(24).

μd = w0
H â(t)

/‖w0‖22 , (22)

μu = wH
u0 â(t), (23)

μv = wH
v0 â(t), (24)

where μd, μu and μv are the responses of the sum and dif-
ference beams; w0 = Tb

Ha(u0, v0) is the quiescent sum
beam weight. wu0 and wv0 are the quiescent difference
beam weights denoted by

wu0 = Cu
(
Cu

HCu
)−1 fu, (25)

wv0 = Cv
(
Cv

HCv
)−1fv. (26)

The main lobes of the sum and difference patterns
formed by the RMM-LCMV beamformer can be main-
tained distortionless. By incorporating the constraint of
main lobe maintenance with conventional LCMV con-
straints, the constraints of RMM-LCMV can be obtained.
For the sum beam, the constraint Csr and the correspond-
ing response fsr of RMM-LCMV are denoted by

Csr = [
ab (u0, v0) , â (t)

]
, (27)

fsr = [1,μd]H . (28)

The weight vector of the sum beam formed by RMM-
LCMV can be obtained by

wsr(t) = R−1
xb (t)Csr

(
Csr

HR−1
xb (t)Csr

)−1
fsr . (29)

For the difference beams, the constraint and response
matrices of RMM-LCMV are constructed as

Cur = [
ab (u0− �u, v0) , ab (u0, v0) , ab (u0+ �u, v0) , â(t)

]
,

(30)

Cvr = [
ab (u0, v0− �v) , ab (u0, v0) , ab (u0, v0 + �v) , â(t)

]
,

(31)

fur =

⎡

⎢⎢
⎣

−KuaHb (u0 − �u, v0)wsr�u
0

KuaHb (u0 + �u, v0)wsr�u
μ∗
u

⎤

⎥⎥
⎦ , (32)

fvr =

⎡

⎢⎢
⎣

−KvaHb (u0, v0 − �v)wsr�v
0

KvaHb (u0, v0 + �v)wsr�v
μ∗
v

⎤

⎥⎥
⎦ , (33)

where Cur and Cvr are the constraints of azimuth and
elevation difference beams, fur and fvr are the correspond-
ing responses. The weight vectors of the difference beams
formed by RMM-LCMV are computed as

wur(t) = R−1
xb (t)Cur

(
Cur

HR−1
xb (t)Cur

)−1
fur , (34)

wvr(t) = R−1
xb (t)Cvr

(
Cvr

HR−1
xb (t)Cvr

)−1
fvr . (35)

where Rxb can be obtained by (6) and (10).
The output of the sum and difference beams are

denoted by,

ys (t) = wH
sr (t)Xb (t) , (36)

yu (t) = wH
ur(t)Xb (t) , (37)

yv (t) = wH
vr(t)Xb (t) . (38)

The angle of SOI can be estimated by

us (t) = u0 + real
(
yu (t)

/
ys (t))

)
Ku, (39)

vs (t) = v0 + real
(
yv (t)

/
ys (t))

)
Kv, (40)

where real(·) denotes the real part of a complex value. The
output power of the sum beam can be denoted by,

Ps = fHsr
(
Csr

HR−1
xb (t)Csr

)−H
CH
srR

−1
xb (t)Csr

(
Csr

HR−1
xb (t)Csr

)−1
fsr .

(41)

In the LCMV beamformer, the output power is min-
imized. When the interferences are suppressed by the
adaptive beamforming, the output power of the sum beam
mainly comprises the output power of the SOI and the
noise. The ratio of the sum beam output power Ps to the
output noise power Pn is denoted by

Ps
Pn

= Ps
σ 2
n ‖w‖22

= 1 + wHRsw
σ 2
n ‖w‖22

= 1 + SNRout (42)

where σ 2
n is the noise power; Rs is the covariance matrix

of the SOI and w = wsr . Therefore, the ratio Ps/‖w‖22 can
be exploited to evaluate the output SNR.
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3.2 Computation of the main lobe constraint
For the subarray antenna, the constraints of main lobe
maintenance need to be selected carefully to save DOFs.
When expending only one additional DOF, we prove in
the Appedix A that the constraint should be approximat-
ing to the steering vector of the SOI to obtain the highest
output SNR. The steering vector of the SOI needs to be
estimated rapidly. As is stated previously, estimating the
angle of the SOI directly using the approximated steering
vector is difficult in the cases that the subarray has arbi-
trary geometry. Therefore, the monopulse processing is
still needed for angle estimation.
Assume that the actual steering vector of SOI can be

denoted by

ab = ab0 + �, (43)

where ab0 is the steering vector of the assumed direction,
i.e., the pattern look direction. � is the error vector of ab0;
it is caused by look direction error. The estimation value
of � can be obtained from [20] as follows,

�̂ = (δ − 1) ÛnÛH
n ab0, (44)

where

δ =
(
ζ−1ab0HÛnÛH

n ab0
)−1/2

, (45)

ζ ≈
∥
∥∥ÛH

n (ab0 + �)

∥∥∥
2
. (46)

In the expressions above, Ûn is the estimation of noise
subspaceUn. When Ûn approachesUn, ζ approximates to
0 and δ approaches 0. As a result,

�̂ = −UnUH
n ab0 (47)

By substituting (47) into (43), we can obtain

ab = ab0 − UnUH
n ab0 = (

I − UnUH
n

)
ab0 = UsUH

s ab0,
(48)

where Us denotes the signal subspace. (48) demonstrates
the conclusion in [47, 48]. The steering vector of the SOI
can be estimated by projecting ab0 to the signal subspace.
Assuming that the estimated steering vector is ab, we

use â = ab as the constraint of main lobe mainte-
nance. When the vector â locates in the subspace spanned
by the steering vectors of interferences, â is outside the
main lobe scope. The projection value

∣∣(âHab0
) /‖ab0‖22

∣∣
is much smaller than 1.We can exploit (49) as a judgement
criterion of â.

⎧
⎨

⎩

∣∣∣ â
Hab0

‖ab0‖22

∣∣
∣ ≥ ρ, â is inside the main lobe scope

∣∣∣ â
Hab0

‖ab0‖22

∣∣∣ < ρ, â is outside the main lobe scope
(49)

where ρ is a user-defined threshold. When the scope is set
as the 3 dB beamwidth, ρ can be set to be 0.707.

3.3 Subspace tracking and subspace dimension
estimation

In the proposed method, the signal subspace and the
beamforming weights are updated in each snapshot to
handle the dynamic cases. Conventional subspace decom-
position method based on eigenvector decomposition
(EVD) is unable to update the signal subspace in real-
time because of its high computational complexity. In this
section, the Bi-LS subspace tracking [46] is exploited to
track the dynamic signal subspace rapidly and accurately,
and a power-associatedmethod is developed to determine
the dimension of the projection subspace.
The Bi-LS algorithm proposed in [46] computes the

optimal low-rank matrix approximation. Bi-LS algorithm
achieves fast singular value decomposition (SVD) based
on QR-decomposition and Givens rotation to reduce the
computational complexity. The steps of the exponen-
tial window Bi-LS algorithm are shown in Table 1. In
Table 1,Xb(t) is the subarray output data vector defined in
Section 2; Irc is the rc-dimensional identity matrix, where
rc is the dimension of the tracked subspace; UB(t) is the
obtained subspace. Xb(t) andUB(t) are the input and out-
put of Bi-LS. Other symbols in Table 1 are intermediate
variables of Bi-LS algorithm and detailed explanation of
them can be found in [46]. The computational complexity
of Bi-LS algorithm is Nrc2 + O(6Nrc).
When the dimension rc = rmax + 1, where rmax is the

largest possible number of signals, UB(t) converges to the
right principal singular vectors of XH

b . TA(t)DA(t)TB(t)
is the SVD of the rc × rc upper triangular matrix RA(t).
The largest rc singular values of Xb can be approximated

Table 1 Exponential window Bi-LS algorithm

Initialization:QB(0) =
⎡

⎣ Irc

0

⎤

⎦

N×rc

, RA(0) = Irc , α: the forgetting factor

For each t, Do:

h(t) = QB
H(t − 1)Xb(t);⎡

⎣ RA(t)

0 . . . 0

⎤

⎦ = GA(t)

⎡

⎣ α1/2RA(t − 1)

(1 − α)1/2hH(t)

⎤

⎦, GA(t) is the Givens rotation

matrix;
[
qHA (t)∗] =[ 0 · · · 0 1]GH

A (t);

x⊥(t) = Xb(t) − QB(t − 1)h(t);

RA(t)q̃A(t) = qA(t) solve q̃A(t);⎡

⎣ RB(t)

0 . . . 0

⎤

⎦ = GB(t)

⎡

⎣ Irb

(1 − α)1/2 ‖x⊥(t)‖ q̃HA (t)

⎤

⎦, GB(t) is the Givens

rotation matrix;

[QB(t) ∗] =
[
QB(t − 1) x⊥(t)

‖x⊥(t)‖
]
GH
B (t);

[TA , DA , TB] = svd (RA (t));

UB (t) = QB (t) TB (t)
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by the rc singular values of RA(t), i.e., the diagonal ele-
ments ofDA(t) [46]. The columns ofUB(t) are arranged so
that the corresponding singular values are in descending
order. If the dimension of the signal subspace is rd(t), the
signal subspace can be denoted by the first rd(t) columns
of UB(t).
For our proposed robust monopulse algorithm, select-

ing the projection subspace from UB(t) is a key problem.
It can be concluded from Appendix A and (48) that the
optimal projection subspace is the signal subspace. When
the dimension of the projection subspace is equal to the
dimension of the signal subspace, the output SNR can be
maximized.
Generally, the MDL criterion [49] can be exploited to

determine the dimension of the signal subspace. But in
the proposed method, the following condition may limit
its application to Bi-LS subspace tracking. TheMDL crite-
rion needs to use all N eigenvalues of Rxb (t) to determine
the dimension. Assume that the eigenvalues of Rxb (t)
are denoted by λ1 ≥ λ2 ≥ · · · ≥ λrc ≥ · · · ≥
λN . The largest rc eigenvalues of Rxb (t) can be obtained
from the diagonal elements of DA(t), while the smallest
N − rc ones cannot be obtained by Bi-LS. The eigenval-
ues obtained from Bi-LS denoted by λ̂1 ≥ λ̂2 ≥ · · · ≥
λ̂rc , satisfies [ λ̂1, λ̂2, · · · , λ̂rc ]= μλ[ λ1, λ2, · · · , λrc ], where
μλ is a scalar. Since μλ is unknown in Bi-LS, we can-
not use [ λ̂1, λ̂2, · · · , λ̂rc ] to obtain the remaining N −
rc eigenvalues. An alternative approach is to regard the
smallest N − rc eigenvalues equal to λ̂rc . However, by
this approach, they are larger than the actual eigenval-
ues according to the eigenvalue distribution presented
in [50]. This condition may fluctuate the performance
of MDL criterion. The inaccurately estimated dimen-
sion of the signal subspace may affect the computation
of the main lobe constraint and may further deterio-
rate the performance of main lobe maintenance and the
output SNR.
In this section, determining the dimension of the pro-

jection subspace is transformed to the maximization of
the output SNR of the proposed beamformer by a power-
associated method. When the output SNR is maximized,
we can conclude from Appendix A and (48) that the pro-
jection subspace is equal to the signal subspace. Then the
subspace dimension can be obtained.
The maximization of the output SNR is equivalent to

the maximization of the ratio Ps/‖w‖22 presented in (41)
and (42). The dimension of the projection subspace rd can
be estimated by maximizing Ps(k)/‖wk‖22 with respect to
the dimension k and constraining the scope of constraint
vector âk ,

rd(t) = argmax
k

Ps(k)
/‖wk‖22

s.t.
∣∣(âHk ab0

) /‖ab0‖22
∣∣ ≥ ρ

1 ≤ k ≤ rc
. (50)

In (50), wk denotes the sum beam weight when the
dimension rd = k; âk = UBk(t)UH

Bk(t)ab0 = âk−1 +
uk(t)uHk (t)ab0, whereUBk(t) comprises the first k columns
of UB(t) and uk(t) is the kth column. By replacing â with
âk in (22), (27) and (28), Ps(k) and wk can be obtained.
The constraint

∣
∣(âHk ab0

) /‖ab0‖22
∣∣ ≥ ρ constrains the vec-

tor âk to be in the main lobe, and ρ is defined in (49). The
method in (50) requires 3(rc + 1)N2+12(rc + 1)N+O (rc)
complex multiplications. Since the computation for each k
is parallel, the computational complexity can be less than
3(rc + 1)N2 + 12(rc + 1)N + O (rc) .
To further reduce the computational complexity of (50),

we use the estimated eigenvalues to shrinkage the range of
k. Define rp = rd (t − 1) + 1. When there are additional
signals present at snapshot index t, λ̂rp (t) > λ̂rp (t − 1).
Thus if λ̂rp (t) > λ̂rp (t − 1), the range of k is set as 0 <

rd (t − 1) − 1 ≤ k < rc. (50) can be written as

rd (t) = arg max
k

Ps(k)
/‖wk‖22

s.t.
∣∣(âHk ab0

) /‖ab0‖22
∣∣ ≥ ρ

0 < rd (t − 1) − 1 ≤ k < rc
(51)

If λ̂rp (t) ≤ λ̂rp (t − 1), the possible range of k is set as
0 < k ≤ rd (t − 1) + 1 < rc. (50) can be written as

rd (t) = argmax
k

Ps(k)
/‖wk‖22

s.t.
∣∣(âHk ab0

) /‖ab0‖22
∣∣ ≥ ρ

0 <k ≤ rd (t − 1) + 1 < rc
(52)

The steps of the subspace tracking and subspace dimen-
sion estimation method are listed in Table 2. The power-
associated method not only uses the information of
eigenvalues and eigenvectors but also exploits the beam-
forming outputs, which makes it more suitable for the
proposed algorithm.

Table 2 Subspace tracking and subspace dimension estimation

For each t, Do:

Bi-LS algorithm listed in Table 1 and obtain UB (t) and DA (t);
[
λ̂1, λ̂2, . . . , λ̂rc

]
obtained from diag(DA);

rp = rd (t − 1) + 1;

If λ̂rp (t) > λ̂rp (t − 1)

rd (t) = argmax
k

Ps(k)
/‖wk‖22

s.t.
∣
∣(âHk ab0

) /‖ab0‖22
∣
∣ ≥ ρ

0 < rd (t − 1) − 1 ≤ k < rc

else

rd (t) = argmax
k

Ps(k)
/‖wk‖22

s.t.
∣∣(âHk a0

) /‖a0‖22
∣∣ ≥ ρ

0 < k <= rd (t − 1) + 1 < rc

The signal subspace Us(t) is composed of the first rd(t) columns of UB(t).
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3.4 Steps of the proposed algorithm
The steps of the proposed robust adaptive monopulse
algorithm are summarized below. For the tth snapshot:

(1) Track the signal subspace and determine the
dimension of the projection subspace as listed in
Table 2.

(2) The constraint for main lobe maintenance, i.e., â (t),
can be obtained from step 1. â (t) = âk , k = rd (t).

(3) When
∥∥â (t) − â (t − 1)

∥∥2
2 ≤ ε and ε is the error

bound, compute the weight vector of the sum and
difference beams of the proposed method at
snapshot index t using (22)–(35).

(4) The outputs of adaptive sum and difference beams at
snapshot index t are obtained by (36)–(38).

(5) Estimate the direction of the SOI using (39) and (40).
Then average the angle measurements in one
monopulse processing period.

As is stated previously, the proposed algorithm is
developed for subarray adaptive monopulse in consider-
ation of the limitations of the SVE-based and main lobe
constraint-based robust beamforming methods. It can
also be applied to adaptive monopulse on the full array.
The low cost of DOFsmakes the proposed algorithmmore
suitable for subarray adaptive monopulse than previous
methods. The proposed algorithm can also be utilized
to adaptively form the sub-beams of the four quadrant
monopulse approach (Section 2 in [3]) and the multiple
squinted beams approach (Section 3 in [51]) to improve
the robustness of these sub-beams to pattern look direc-
tion error when the interference-plus-noise covariance
matrix is unavailable.

4 Numerical simulations and discussions
The performance of the proposed robust adaptive
monopulse algorithm is demonstrated by simulations
based on the array geometry in Fig. 1a. The array work-
ing in Ka band consists of 960 isotropic elements and
is divided into 12 subarrays shown in different symbols
and different colors. The array elements are at 0.58 wave-
length separation and on a triangular grid. Each element
is connected to a digital controlled phase shifter. The ele-
ment noise is assumed to be additive white Gaussian noise
with zero-mean and unit variance. For all simulations,
the directions of the two interferences are (56◦, 0◦) and
(60◦, 40◦); The assumed pattern look direction is fixed at
(90◦, 0◦). The parameter α in Bi-LS is set to 0.999. Three
scenarios are made to simulate the performance of the
proposed algorithm.

Scenario 1 : The performance of the proposed method
is simulated when the dimension of the signal subspace
changes. The following assumptions are made: In the first

1000 snapshots, only the SOI is present.Whereas, SOI and
two interferences are present in the following 2000 snap-
shots. The direction of SOI is (91◦, 1◦). The performance
of the power-associated method is simulated when SNR is
set to 3, −10, and −20 dB. The interference-to-noise ratio
(INR) is 35 dB. The deviation of the true and the tracked
signal subspace is denoted by

D (t) = 10log10
∥∥∥Û (t) Û(t)H − U (t)U(t)H

∥∥∥
2

F
(53)

where U(t) and Û (t) are the true and the tracked signal
subspace respectively; ‖·‖F denotes the Frobenius norm.
The estimated dimension of the projection subspace,

i.e., rd(t), with the power-associated method is shown in
Fig. 3a, b, and c. The estimated dimension can approx-
imate the optimal dimension, i.e. the dimension of the
signal subspace. When the interference is present in the
snapshots after t = 1000, the power-associated method
can track the dimensional variation of the signal subspace.
In Bi-LS, only the principal eigenvalues are obtained. This
condition leads to the performance fluctuation of MDL
criterion [49]. The tracking of the signal subspace shown
in Fig. 3d can converge quickly after the actual dimension
of the signal subspace is obtained.
The convergence of the output signal to interference

plus noise ratio (SINR) versus snapshots is also simulated
when SNR=-20dB and -10dB. As illustrated in Fig. 4a,
b, the output SINR of conventional LCMV algorithm [6]
deteriorates obviously due to the look direction error;
However, the output SINR of the proposed algorithm can
converge quickly even when there exist additional inter-
ferences in the snapshots after t = 1000. Comparing
Fig. 4a and b with Fig. 4d, we can also find that the conver-
gence speeds of the signal subspace when SNR = −20 dB
and SNR = −10 dB are approximate, but the output SINR
of SNR = −20 dB converges faster than that of SNR = −10
dB. For the SOI with higher input SNR, the look direction
error has a greater impact on the adaptive beam pattern
and the output SINR. Therefore, it requires more snap-
shots for the proposed algorithm to obtain a high main
lobe maintenance performance and output SINR.

Scenario 2: Firstly, we compare the output SINR of
the proposed robust adaptive monopulse algorithm with
those of the conventional LCMV algorithm [6], RCB [13],
DCB [14], RAB with derivative constraints [24], RAB
with multi-directional constraints [23] and the method
in [47]. In the two simulations, the directions of SOI are
(91◦, 1◦) and (90.5◦, 0.5◦), respectively. The input SNR
at the array elements varies from -30dB to 10dB, and
input INR is 35dB larger than the input SNR. T =
1000 snapshots are exploited. The RAB with multi-
directional constraints imposes constraints on direc-
tions (90◦, 0◦), (90◦,−1◦), (90◦, 1◦), (89◦,−1◦), (89◦, 0◦),
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Fig. 3 The estimated signal subspace and its dimension. a SNR = −20 dB; b SNR = −10 B; c SNR = 3 dB; d Subspace estimation deviations

(89◦, 1◦), (91◦,−1◦), (91◦, 0◦), and (91◦, 1◦). The RAB
with derivative constraints imposes 0, 1, and 2-ordered
derivative constraints with respect to u and v.
The comparisons of the output SINR are illustrated

in Fig. 5a, b, respectively. RCB [13], DCB [14], and the
method in [32] can obtain superior output SINR by auto-
matically adjusting the look direction to SOI. But these
methods are not designed for monopulse beamforming

and are not suitable for forming the difference beams of
subarraymonopulse. The output SINR of RABwithmulti-
directional constraints [23] is higher than that of RAB
with derivative constraints [24]; however, both of them
cannot obtain a consistent performance when the SOI is
incident from (91◦, 1◦) and (90.5◦, 0.5◦). The output SINR
of the proposed method is relatively lower than that of the
method in [47] and higher than those of RCB and DCB.

Fig. 4 The convergence of the output SINR versus snapshots. a SNR = −20 dB; b SNR = −10 dB
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Fig. 5 Performance comparison of output SINR versus input SNR. a (θs ,ϕs) = (91◦ , 1◦); b (θs ,ϕs) = (90.5◦ , 0.5◦)

The proposed method only imposes two constraints for
forming the sum beam, which is much less than the RAB
with multi-directional constraints and RAB with deriva-
tive constraints. The performance degradation of RAB
with multi-directional constraints and RAB with deriva-
tive constraints is caused by the deteriorative constraint
performance when the SOI direction is away from the
constraints.
Then, the angle estimation performance of the proposed

robust adaptive monopulse algorithm is compared with
those of the conventional LCMV algorithm and RAB with
multi-directional constraints. In the four simulations, the
directions of SOI are set to (90.5◦,−0.5◦), (90.5◦, 0.5◦),

(89.5◦,−0.5◦), and (89.5◦, 0.5◦). The sum and difference
beam patterns formed by these methods when the SOI
direction is (89.5◦,−0.5◦) and input SNR is 10 dB are
illutrated in Figs. 6 and 7. The beam patterns of conven-
tional LCMV algorithm and RAB with multi-directional
contraints suffer from distortions; the beam patterns of
the proposed algorithm can maintain distortionless. All
of these algorithms can suppress the interferences. The
angle estimation accuracy is illustrated in Fig. 8. The angle
estimation accuracy of conventional LCMV algorithm
deteriorates obviously due to the look direction error.
The RAB with multi-directional constraints can maintain
good performance in low SNR cases, but its performance

Fig. 6 Sum and difference beam patterns in ϕ of these methods; a sum beam patterns; b difference beam patterns
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Fig. 7 Sum and difference beam patterns in θ of these methods; a sum beam patterns; b difference beam patterns

deteriorates when SNR is higher than −5 dB. The pro-
posed method can still maintain high angle estimation
accuracy when the SNR grows.
The results demonstrate that the proposed method

can obtain higher performance than RAB with multi-
directional constraints and RAB with derivative

constraints, and only costs one additional DOF compared
to conventional LCMV algorithm.

Scenario 3 : The angle estimation deviation versus SOI
direction (θs,ϕs) is simulated. The 3dB beamwidth (BW)
of the array is 3◦. In this simulation, the SNR is −10 dB

Fig. 8 Performance comparison of angle estimation deviations versus input SNR. a (θs ,ϕs) = (90.5◦ ,−0.5◦); b (θs ,ϕs) = (90.5◦ , 0.5◦); c (θs ,ϕs) =
(89.5◦ ,−0.5◦); d (θs ,ϕs) = (89.5◦ , 0.5◦)
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(a) (b)
Fig. 9 Angle estimation deviations versus SOI direction using the conventional LCMV algorithm; a deviation in θ ; b deviation in ϕ

and INR is 30 dB. θs varies from 88◦ to 92◦ and ϕs varies
from −2◦ to 2◦. The angle estimation deviations of the
proposed robust adaptive monopulse algorithm and con-
ventional LCMV algorithm are simulated and compared.
As illustrated in Fig. 9a, b, the angle estimation deviation
of conventional LCMV algorithm is obviously larger than
0.1BW (0.3◦), and it deteriorates dramatically when the
SOI is deviating from the look direction. The angle esti-
mation deviation of the proposed algorithm is illustrated
in Fig. 10a and 10b. The dashed lines in these figures
donote the boundaries of the 3 dB BW. The deviation is
lower than 0.1 BW within the 3 dB scope. The simulation

results demonstrate that the proposed algorithm can
maintain high angle estimation accuracy in the mainlobe
region when look direction error exists.

5 Conclusions
In consideration of the limitations of the SVE-based and
main lobe constraint-based robust beamforming meth-
ods for performing subarray monopulse beamforming,
we develop a linearly constrained subarray robust adap-
tive monopulse algorithm, which is different from previ-
ous methods. The constraint of main lobe maintenance
constructed by signal subspace projection expends only

(a) (b)
Fig. 10 Angle estimation deviations versus SOI direction using the proposed algorithm; the dashed lines denote the boundaries of 3 dB beamwidth;
a deviation in θ ; b deviation in ϕ
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one DOF. Then, we develop a power-associated method
to determine the dimension of the projection subspace
and combine it with Bi-LS subspace tracking to adapt
to the dimensional variation of the signal subspace. The
power-associated method can achieve high performance
when only the principal eigenvalues and the principal
eigenvectors can be obtained in Bi-LS. Simulation results
demonstrate that the proposed algorithm can maintain
high anti-jamming capability and angle estimation per-
formance when look direction error exists. The proposed
algorithm can also be applied to adaptive monopulse on
the full array. The low cost of DOFs makes it particularly
suitable for the subarray adaptive monopulse technique.

Appendix A
In this Appendix, we prove that the highest output SNR
of RMM-LCMV can be obtained by setting the constraint
of main lobe maintenance as the SOI steering vector. The
weight vector of RMM-LCMV can be denoted by

wsr = R−1
xb Csr

(
CH
srR

−1
xb Csr

)−1
fsr

= R−1
xb Csr

(
CH
srR

−1
xb Csr

)−1
CH
srCsr

(
CH
srCsr

)−1fsr
(54)

where Rxb is nonsingular and positive semidefinite. If we
define the quiescent weightWq as

Wq = Csr
(
CH
srCsr

)−1fsr , (55)

Wq is equal to w0. Subtituting (55) into (54), we can
obtain

wsr = R−1
xb Csr

(
CH
srR

−1
xb Csr

)−1
CH
srWq

= R−1/2
xb R−1/2

xb Csr
(
CH
srR

−1/2
xb R−1/2

xb Csr
)−1

CH
srR

−1/2
xb R1/2

xb Wq.

(56)

We define

PRC = R−1/2
xb Csr

(
CH
srR

−1/2
xb R−1/2

xb Csr
)−1

CH
srR

−1/2
xb ,

(57)

as the projection operator of the column space of
R−1/2
xb Csr , and B as a (N − 2) × N-dimensional matrix

which is orthogonal to the columns of Csr . BCsr = 0.
Then, we can obtain
(
R1/2
xb BH

)H (
R−1/2
xb C

)
=

(
BR1/2

xb

) (
R−1/2
xb C

)
= BC = 0.

(58)

From (58), we can find that the columns of R1/2
xb BH are

orthogonal to the columns of R−1/2
xb C. Therefore,

PRC = I − R1/2
xb BH

(
BR1/2

xb R1/2
xb BH

)−1
BR1/2

xb . (59)

Substituting (59) into (56), we can obtain

wsr = R−1/2
xb

[
I − R1/2

xb BH
(
BR1/2

xb R1/2
xb BH

)−1
BR1/2

xb

]
R1/2
xb Wq

=
[
I − BH(

BRxbBH)−1BRxb
]
Wq

= Wq − BH(
BRxbBH)−1BRxbWq.

(60)

The output of RMM-LCMV can be denoted by

ys(t) = wH
srXb(t) = WH

q Xb(t)−WH
q RH

xbB
H(

BRxbBH)−HBXb(t).
(61)

When the constraint of main lobe maintenance is set
as the steering vector of SOI, i.e., â = TH

b a (us, vs),
BCsr = 0 and Bâ = 0. The component of SOI in
WH

q RH
xbB

H(
BRxbBH)−HBXb(t) is negligible. Therefore, in

(61), the SOI component is fully enhanced by the quies-
cent weightWH

q Xb(t), and the interferences and the noise
are suppressed. The output SNR of RMM-LCMV can be
maximized.
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