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Abstract

In this paper, a biquaternion beamspace, constructed by projecting the original data of an electromagnetic
vector-sensor array into a subspace of a lower dimension via a quaternion transformation matrix, is first proposed.
To estimate the direction and polarization angles of sources, biquaternion beamspace multiple signal classification
(BB-MUSIC) estimators are then formulated. The analytical results show that the biquaternion beamspaces offer us
some additional degrees of freedom to simultaneously achieve three goals. One is to save the memory spaces for
storing the data covariance matrix and reduce the computation efforts of the eigen-decomposition. Another is to
decouple the estimations of the sources’ polarization parameters from those of their direction angles. The other is to
blindly whiten the coherent noise of the six constituent antennas in each vector-sensor. It is also shown that the
existing biquaternion multiple signal classification (BQ-MUSIC) estimator is a specific case of our BB-MUSIC ones.
The simulation results verify the correctness and effectiveness of the analytical ones.

Keywords: Array signal processing, Biquaternion beamspace, Biquaternion beamspace music, Direction of arrival
estimation, Polarization parameters estimation

1 Introduction
An electromagnetic (EM) vector-sensor, which consists
of six spatially collocated antennas, measures the com-
plete electric and magnetic fields induced by EM signals
[1]. Except for spatially and temporally sampling the inci-
dent EM source signals as done by a scalar-senor array
[2, 3], an EM vector-sensor array can also record the
source direction information by the signal responses of
the six constituent antennas in each vector-sensor (see
the V (θk ,φk) item in (2)). Moreover, an EM vector-sensor
array-manifold is also sensitive to incident wavefields’
polarization states [4–6], which is useful in applications,
for example remote sensing [7]. It has been understood
that an EM vector-sensor array can record more source
information than the scalar-sensor one. However, its sig-
nal processing techniques are also more complex than
the scalar-sensor ones for at least two reasons. One is
that the number of antennas in a vector-sensor array is
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six times more than that in a scalar-sensor array with
the same array aperture. It means that more computation
efforts and memory spaces are required for vector-sensor
array signal processing. Another is that a computation
prohibitive four-dimensional (4D) search over the direc-
tion and polarization parameters is required [5], when the
traditional multiple signal classification (MUSIC) algo-
rithm for scalar-sensor array processing [2, 3] is directly
extended to the vector one. Thus, it is strongly desirable
to find some fast and computation effective techniques for
vector-sensor array signal processing.
To achieve a significant reduction in computation time,

many efforts have beenmade. For example, the beamspace
approaches have been proposed in [8–10] for a scalar-
sensor array processing case, in which the original sensor
data are projected into a subspace of a lower dimen-
sion (i.e., the beamspace) to reduce the data size. In the
vector-sensor case, Wong and Zoltowski in [5] projected
the array data into a spatio-polarizational beamspace to
decouple the polarization estimation from the direction
finding. With their techniques, only a 2D search is needed
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for estimating the sources’ direction angles before their
polarization parameters are estimated.
However, their beamspace for each source has to be

designed separately to decouple the polarization estima-
tion from direction finding.
Then a promising alternative for reducing the compu-

tation costs of the vector-sensor array processing is the
using of the quaternion and biquaternion algebra. Miron
et al. in [11] proposed a quaternion MUSIC (Q-MUSIC)
estimator for two-component vector-sensor array pro-
cessing. Zhang et al. in [12] improved the performance of
the Q-MUSIC estimator for colored noise, but only for a
two-component vector-sensor array. Miron’s research was
later extended to a three-component vector-sensor array
via the biquaternion algebra [13, 14], where a biquater-
nion version MUSIC (BQ-MUSIC) estimator was intro-
duced. Gong et al. in [15] improved its robustness to
colored noise by diagonalizing the biquaternion covari-
ance matrix. Using the calculation rules of the quaternion
and biquaternion algebras, the computation efforts and
memory spaces of their covariancematrix are significantly
reduced. To handle a six-component EM vector-sensor
array, Gong et al. in [16] proposed a quad-quaternion
MUSIC (QQ-MUSIC) estimator. Although it was shown
in [13] by Monte Carlo simulations that the BQ-MUSIC
estimator was robust to the coherent corrupting noise and
polarization errors, it was kept unknown what kind of
reasons were for the robustness. Furthermore, the BQ-
MUSIC was suitable for the direction finding of sources
with known polarization parameters. Unfortunately, both
the sources’ directions and polarization angles are nor-
mally unknown in applications. The QQ-MUSIC estima-
tor in [16] cannot also be used to estimate the polarization
angles of the sources. The geometric algebra model (G-
MODEL) of an EM vector-sensor array is given in [17].
It is, however, kept unknown how to use it for array pro-
cessing applications. On the other hand, The biquaternion
Capon beamformer was proposed in [18] and [19], but
they cannot estimate the polarization angles of a source.
In this paper, the techniques of projecting the out-

put data of an electromagnetic vector-sensor array into a
biquaternion beamspace via a quaternion beamformer (or
a quaternion transformation matrix) are first proposed.
The general form of the biquaternion beamspace multiple
signal classification (BB-MUSIC) estimator is formulated
by using the eigen-decomposition (EVD) of the biquater-
nion matrix [13, 20]. In our biquaternion beamspace, it
is found that the quaternion transformation matrix offers
us some additional degrees of freedom to handle the
direction finding and polarization estimation. Using these
degrees of freedom, we achieve the foregoing three goals
as follows. First of all, we report two notable properties of
a set of quaternion transformationmatrices. One is to save
the memory spaces for storing the data covariance matrix

to 4/9 of the traditional cases, and reduce the multiplica-
tions of the eigen-decomposition of the data covariance
matrix from O((6M)3) to O((4M)3) for an array of M
vector-sensors.
Another is to blindly whiten the noise coherence of the

selectric or magnetic components of each vector-sensor
in an array which cannot be done by the methods in the
literature.
After that, two types of the quaternion transformation

matrices are analytically chosen to conduct two enhanced
versions of the BB-MUSIC estimator. Such two estima-
tors are capable of decoupling the estimations of polar-
ization parameters from those of the direction angles.
One of the proposed BB-MUSIC estimators, termed as
DOA-BB-MUSIC, is able to estimate the direction angles
of the sources without any polarization information of
them. However, theoretical analyses also indicate that the
DOA-BB-MUSIC estimator cannot estimate the polar-
ization parameters either. Then another version of the
enhanced BB-MUSIC estimator, nominated as DOA-P-
BB-MUSIC estimator, is presented to fulfill both the
direction and polarization angle. The DOA-P-BB-MUSIC
estimator requires a 2D search to find the direction angles
first. After that the polarization parameters are obtained
by another 2D search or finding the optimal solutions
of the formulated linear equations. However, the above-
mentioned estimators can only naturally whiten the noise
coherence of the electric or magnetic components of each
vector-sensor in an array. To construct a biquaternion
beamspace, which can be used to blindly whiten all of
the noise coherence of the electric and magnetic com-
ponents of each vector-sensor in an array, an optimal
problem with a solution is given. Based on such a con-
structed biquaternion beamspace, an enhanced DOA-P-
BB-MUSIC estimator, nominated as DOA-PB-BB-MUSIC
estimator, is then proposed for the direction findings
and polarization estimations. The performances of the
proposed estimators are tested by simulations, which con-
firm the correctness and effectiveness of our theoretical
analyses.
Besides, the analytical results of the quaternion transfor-

mation matrix also show that the BQ-MUSIC in [13] can
be considered as a special case of our BB-MUSIC estima-
tor. Using the biquaternion beamspace theory presented
herein, the reasons why the BQ-MUSIC estimator in [13]
is robust to coherent noise and polarization errors are
analytically presented by comparing the covariance of the
complex and biquaternion algorithms.
The rest of the paper is organized as follows. In

Section 2, the biquaternion beamspace and its measure-
ment model are given by applying a quaternion trans-
formation matrix to the traditional long vector model.
Then in Section 3, the general form of our BB-MUSIC
estimator is derived, the techniques to de-correlate the
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noise coherence are presented. In Section 4, two extended
versions of BB-MUSIC estimator focusing on decoupling
the polarization estimation from the direction finding are
presented. The construction method of the biquaternion
transformation matrix is introduced in Section 5. Simu-
lation and comparison results with other estimators are
reported in Section 6. Section 7 concludes this work.

2 Biquaternion beamspace and its measurement
model

Similar to [13], we will use R,C,H, and HC to denote the
sets of real numbers, complex numbers, quaternions, and
biquaternions, respectively.

2.1 The long vector model
Suppose that the completely polarized plane waves from
K narrow-band sources, traveling through a nonconduc-
tive homogenous isotropic medium, are impinging on an
array of M(M ≥ K) identically oriented electromagnetic
vector-sensors locating irregularly in a 3D region. Let the
azimuth and elevation angles of the kth source be φk
and θk , respectively. Thus, φk ∈ [0, 2π ), and θk ∈[−π

2 ,
π
2
]
. The spatial phase factor for the kth source to

the lth vector-sensor centered at location (xl, yl, zl) can be
written as

ql(θk ,φk) = eI
2π
λ

(xl sin θk cosφk+yl sin θk sinφk+zl sinφk) (1)

where λ is the length of the electromagnetic wave and I is
the imaginary unit of a complex number1.
The spatial response, in matrix notation, of the sig-

nal from the kth source to the lth vector-sensor can be
expressed by [4–6]

gl (θk ,φk , γk , ηk) =

ql (θk ,φk)

⎡

⎢⎢⎢⎢⎢⎢
⎣

− sinφk cosφk cos θk
cosφk sinφk cos θk

0 − sin θk
− cosφk cos θk − sinφk
− sinφk cos θk cosφk

sin θk 0

⎤

⎥⎥
⎥⎥⎥⎥
⎦

︸ ︷︷ ︸
V (θk ,φk)

[
cos γk
sin γkeIηk

]

︸ ︷︷ ︸
P(γk ,ηk)

(2)

and η ∈ [−π ,π) are, respectively, the auxiliary polariza-
tion and phrase difference angles of the kth source.
For the general case of K narrow-band sources imping-

ing on the array, the six-component vector measurements
of lth vector-sensor is given by [4]

Y l(t) =
[
el(t)
hl(t)

]
=

K∑

k=1
gl(θk ,φk , γk , ηk)Sk(t) + N l(t)

(3)

where el(t) = [
elx(t) ely(t) elz(t)

]Tand hl(t) = [hlx(t)
hly(t) hlz(t)

]T ((·)T denoting the vector transpose) are,
respectively, the three-component electric-field and
magnetic-field measurement vectors of the lth vector-
sensor, N l is the additive complex noise, and Sk(t) is the
complex envelope (including amplitude and phase [4]) of
the kth source, i.e.,

Sk(t) = |Sk(t)| eIϕk (4)

where | · | is the amplitude of a complex number and ϕk is
the kth source’s random carrier phase.
Let Y (t), S(t), and N(t) be the column vectors describ-

ing the entire array’s received signals, source incident
signals, and noise, respectively, i.e.,

Y (t) =
[
YT
1 (t) YT

2 (t) · · · YT
M(t)

]T

S(t) =
[
ST1 (t) ST2 (t) · · · STM(t)

]T

N(t) =
[
NT

1 (t) NT
2 (t) · · · NT

M(t)
]T

The measurements of an electromagnetic vector-sensor
array can thus be expressed as [4]

Y (t) =
K∑

k=1
q(θk ,φk) ⊗ V (θk ,φk)P(γk , ηk)Sk(t) + N(t)

= AS(t) + N(t)
(5)

where ⊗ is the Kronecker product and A is the 6M × K
matrix,

A = [a1,a2, · · · ,aK ] (6)

with ak = q (θk ,φk) ⊗ V (θk ,φk)P (γk , ηk),
q (θk ,φk) = [

q1 (θk ,φk) , q2 (θk ,φk) , · · · , qM (θk ,φk)
]T .

The matrix A is generally assumed to be of full rank.
It defines a K-dimensional signal subspace in a 6M-
dimensional space [6].
From (5), it can be seen that q(θk ,φk) depends on both

the direction angles of the kth source and the locations
of the vector-sensors. It has an effect of spatial and tem-
poral sampling of the kth source’s signals [3]. V (θk ,φk)
depends only on the direction angles. It contains the
source’s direction information resulting from the spatial
collocation of the vector-sensor’s six constituent anten-
nas. P(θk ,φk) only relies on the polarization angles. It
records the polarization information of the kth source.
Thus, it is explicit that an electromagnetic vector-sensor
array records more source information than the scalar-
sensor one [2], because a scalar-sensor array only samples
the source signals spatially and temporally [3].
When the source signals S(t) and noise N(t) are two

independent stochastic processes, the spectral matrix
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Ry(t) of (5) is given by [2, 5, 6]

Ry(t) = E
{
Y (t)YH(t)

}

= AE
{
S(t)SH(t)

}
AH + E

{
N(t)NH(t)

} (7)

where E{·} is the mathematical expectation operator and
(·)H is the conjugate transpose of a complexmatrix/vector.
Since the six measurements of each vector-sensor are

concatenated into a 6M × 1 long vector, (5) is also called
as the long vector model (LV-MODEL) of an electro-
magnetic vector-sensor array in [11, 13]. As (5) shares
the same form as the measurement model of a scalar-
sensor array [2, 3], the traditional MUSIC estimator for
scalar-sensor array processing can directly applied to the
vector-sensor case except for the fact that a 4D search
over the parameters (θk ,φk , γk , ηk) is needed. This vector-
sensor version of the MUSIC estimator is often called as
the long vector MUSIC (LV-MUSIC) estimator [11, 13].

2.2 Biquaternion beamspace and its measurement model
For large arrays (i.e., a large M), the implementation
of the signal subspace based algorithms require an
O((6M)3) eigendecomposition [10]. To achieve a sig-
nificant reduction in computation time, an efficacious
way is to project the original data into a lower dimen-
sion beamspace via a transformation matrix [8–10]. The
parameter estimations are then carried out on the lower
dimension beamspace data. The known transformation
matrices, such as the spatio-polarizational [5] and stan-
dard Fourier [10] ones, are the complex ones. Unlike the
traditional beamspace techniques, a quaternion transfor-
mation matrix is here used to project the original array
data into our biquaternion beamspace. The measurement
model in our biquaternion beamspace is defined as

Z(t) = TY (t) = TAS(t) + TN(t) (8)

where T ∈ H
J×6M(K < J < 6M) is a quaternion

matrix with orthogonal rows. That is TT� = IJ , where
� denotes the transpose-conjugate of a quaternion matrix
as defined in [11] and IJ the J × J identity matrix. Mean-
while, the transformation matrix T in (8) plays the role
as a beamformer to project the original array data Y (t) to
our biquaternion beamspace. As Y (t) is a complex vec-
tor in the LV-MODEL, Z(t) ∈ H

J×1
c is a biquaternion

vector [13]. Correspondingly, the spectral matrix of the
biquaternion beamspace output is given by

Rz(t) = E

{
Z(t)Z†(t)

}

= TAE
{
S(t)SH(t)

}
AHT� + TE

{
N(t)NH(t)

}
T�

(9)

where † is the transpose-conjugate of a biquaternion
matrix/vector [13, 21].

Compare (7) with (9), one can see that the transfor-
mation matrix T in (9) offers us additional degrees of
freedom to handle the spectral matrix Rz(t). In the next
two sections, we aim at utilizing the additional freedom to
achieve the three goals simultaneously, i.e., reducing the
memory spaces and computation efforts, separating the
sources’ direction and polarization parameter searches,
and improving the robustness of the MUSIC-like estima-
tor to coherent corrupting noise.

3 The biquaternion beamspaceMUSIC estimator
Before addressing how to determine the transformation
matrix T in (9) for our three goals, let us first give the
biquaternion beamspace MUSIC (BB-MUSIC) estimator.

3.1 BB-MUSIC estimator
Suppose that TE

{
N(t)N(t)H

}
T� = σ 2IJ .

σ 2 is the observation noise power of the lth vector-
sensor.
In this way, (9) can be rewritten as

Rz(t) = TAE
{
S (t) SH (t)

}
AHT� + σ 2IJ (10)

Similar to the scalar-sensor case, we need to constrain
that E

{
S (t) SH (t)

}
is a nonsingular matrix and TA is

full rank in order to develop the MUSIC-like estima-
tor. Using the biquaternion matrix eigen-decomposition
(EVD) techniques as given in [13] or [20]2, the EVD of the
Hermitian biquaternion matrix Rz(t) can be obtained as

Rz(t) = EsDsE†
s + EnDnE†

n (11)

where Es ∈ H
2M×2K
C

and En ∈ H
2M×(4M−2K)
C

are, respec-
tively, eigenvectors corresponding to the signal and noise
subspaces, Ds ∈ R

2K×2K and Dn ∈ R
(4M−2K)×(4M−2K)

are two diagonal matrices whose diagonal elements are,
respectively, the eigenvalues associated with Es and En.
Projecting Tak on the noise subspace, we have3

(Tak)†En = 04M−2K , (k = 1, 2, · · ·K) (12)

where 04M−2K is a 4M − 2K dimensional row vector with
all zero elements. The BB-MUSIC estimator consists of
finding the set of parameters 
k = (θk ,φk , γk , ηk) so that
the following function is maximized:

FBB (
k) = 1
∥∥(Tak)†En

∥∥2
= 1

S
{
(Tak)†EnE†

n (Tak)
}

(13)

where ‖ · ‖ denotes the norm of a biquaternion vector
as given in [13] and S{·} denotes the operator taking the
scalar part of a biquaternion matrix. Let �(θk ,φk) =
Tq(θk ,φk) ⊗ V (θk ,φk), (13) can be rewritten as

FBB (
k) = 1
PH (γk , ηk)� (θk ,φk)P (γk , ηk)

(14)
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where

�(θk ,φk) = S

{
[� (θk ,φk)]†EnE†

n [� (θk ,φk)]
}

(15)

P(γk , ηk) can refer to (2). It can be seen that (15) depends
only on the direction angular parameters of the sources.
It is understood that the prerequisite of the traditional

subspace estimation algorithms, such as MUSIC [2, 3],
and ESPRIT [6, 23], is that the additive noise N(t) ∈
C
6M×1 in (7) is a complex Gaussian distributed random

vector with a covariance matrix

E
{
N(t)NH (t)

} = σ 2I6M (16)

It means that their noise components are required to
be noncoherent with one another. For the BB-MUSIC
estimator, such a prerequisite becomes as follows:

TE
{
N(t)NH(t)

}
T� = σ 2I2M (17)

which is the basic assumption of our BB-MUSIC esti-
mator as given at the very beginning of this subsection.
Moreover, if (17) has to be satisfied while (16) holds, one
should, obviously, let TT� = I2M. Namely, the rows of T
are orthogonal to each other. This is also the reason why
our biquaternion beamspace (8) requires TT� = I2M. In
the next subsection, we will show that, if the transforma-
tion matrix T is chosen or constructed properly, (17) may
still hold even if E

{
N(t)NH(t)

}
in (16) is not a diagonal

matrix. It implies that the developed BB-MUSIC may be
applied to some coherent corrupting noise cases.

3.2 Robustness to coherent noise components
Before rendering our analyses, let us first introduce a
mapping. Define t = [i j k] , where i, j and k denote
three quaternion imaginary units respectively. Thus t is
a quaternion vector. Let a 3 × 3 real/complex matrix
R given by

R =
⎡

⎢
⎣

r 〈1, 1〉 r 〈1, 2〉 r 〈1, 3〉
r 〈2, 1〉 r 〈2, 2〉 r 〈2, 3〉
r 〈3, 1〉 r 〈3, 2〉 r 〈3, 3〉

⎤

⎥
⎦ (18)

By the operation rules of the biquaternion algebra, we
can define the mapping as follows:

Rb = tRt�

= (r 〈1, 1〉 + r 〈2, 2〉 + r 〈3, 3〉)
+ (r 〈2, 3〉 − r 〈3, 2〉) i+ (r 〈3, 1〉 − r 〈1, 3〉) j
+ (r 〈1, 2〉 − r 〈2, 1〉) k

(19)

The mapping of (19) transforms a 3 × 3 real or complex
matrix R into a quaternion or biquaternion number Rb.
When R is a symmetric matrix, i.e., R = RT ,Rb is a real
number equaling to (r 〈1, 1〉 + r 〈2, 2〉 + r 〈3, 3〉). When R
is a general complex or real matrix, Rb is a biquaternion
or quaternion number. Moreover, if R is the covariance
matrix of a three dimensional random noise vector, R

will be mapped into a real number equaling to the sum
of the three variance items of R, while the covariance
items are canceled out by (19). From this point, the map-
ping in (19) can naturally whiten the coherence among a
three-component random noise vector.
Rewrite the noise covariance matrix Rn =

E
{
N(t)NH(t)

} ∈ R
6M×6M in (7) as the following

blockwise partition form

Rn =
⎡

⎢
⎣

Rn(1, 1) · · · Rn(1, 2M)
...

...
Rn(2M, 1) · · · Rn(2M, 2M)

⎤

⎥
⎦ (20)

where each block entry is a 3×3matrix. Rn(2l − 1, 2l − 1)
and Rn(2l, 2l)(l = 1, · · · ,M) are, respectively, the
noise covariance matrices (symmetrical matrices) of the
electric-field antennas (short dipoles [1, 6]) and the
magnetic-field antennas (small loops [1, 6]) of the lth
vector-sensor. Rn(m, n)(m 	= n) is the noise covariance
matrix of the short dipoles and small loops of a vector-
sensor or different vector-sensors.
Let T be a 2M× 6M quaternion matrix with the follow-

ing form

T = 1√
3
IM ⊗

[
t 0
0 t

]
(21)

From (9), it is known that the noise covariance matrix
Rn of the biquaternion beamspace can be rewritten as

Rbn = TRnT

=
⎡

⎢
⎣

Rbn(1, 1) · · · Rbn(1, 2M)
...

...
Rbn(2M, 1) · · · Rbn(2M, 2M)

⎤

⎥
⎦ ∈ H

2M×2M

(22)

where

Rbn〈m, n〉 = 1
3
tRn〈m, n〉t� ∈ H (23)

is a quaternion number. Based on (19), one can conclude
that

1. The noise variance sums of three short dipoles or
small loops are represented by
Rbn〈m, n〉 = 1

3 tRn〈m, n〉t� ∈ R, in which their
covariance items are canceled out.

2. Rbn〈m, n〉 = 1
3 tRn〈m, n〉t� ∈ HC(m 	= n) describes

the noise coherence among the short dipoles and
small loops of the same vector-sensor or that among
the different vector-sensors. The three quaternion
imaginary parts of (19) carry out three subtraction
operations for the covariance items (positive real
numbers) of Rn〈m, n〉 . These operations can weaken
the noise coherence because the difference of two
positive numbers is smaller than either of them.
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Thus, when the transformation matrix is chosen as
(21), the noise coherence among the electric-field or
magnetic-field components of a vector-sensor can be
totally whitened, while the noise coherence among other
components is weaken (or partially decorrelated). As a
result, our BB-MUSIC estimator can be extended to the
coherent noise cases satisfying the following assumptions:

A1. the noise components of the different vector-sensors
in an array are noncoherent one another.

A2. a vector-sensor’s electric-field noise is noncoherent
with its magnetic-field noise.

A3. the electric-field noise of a vector-sensor is allowed
be coherent or noncoherent, and so is the
magnetic-field noise.

With the above analytical results, it can be seen that the
BB-MUSIC estimator will outperform the traditional long
vector type estimators under the condition of coherent
corrupting noise.
It should be mentioned that there are many different

transformation matrices yielding the equivalent results as
(19). In order to explain such a point, let us change the
transformation matrix in (21) into the following forms as

T = 1√
3
IM ⊗

[
ta 0
0 tb

]
(24)

in which ta and tb are 1 × 3 quaternion vectors, whose
three entries are unit quaternions orthogonal to each
other, such as ta = 1/

√
3[i j k] and tb = 1/

√
3[k j i]

or ta = 1/
√
3[i j k] and tb = √

2/6[
√
3(i + j)

√
2(i −

j + k) (i − j + k)]. If one takes ta = 1/
√
3[i j k] and

tb = 1/
√
3[0 0 0], it can be seen that the BQ-MUSIC is a

special case of our biquaternion beamspace model by tak-
ing the transformation matrix as (24). In a general way, let
ta =[e1 e2 e3] , tb =[e4 e5 e6], where e1, e2, e3 and e4, e5, e6
are any two unit quaternion orthogonal vectors, respec-
tively. Thus, ta and tb can be changed into more general
forms as ta =[e1 e2 e3]= Ua

[
i j k

]T and tb = [e4 e5 e6]=
Ub

[
i j k

]T , where Ua and Ub are any 3 × 3 real orthog-
onal matrix. By directly calculation, one can easily verify
that (19) is still hold for these chosen ta and tb. The differ-
ences are that the last three terms in (19) will be changed
with the different T in (24). Even so, our BB-MUSIC esti-
mator can still work correctly under the assumptions A1,
A2 and A3.
As a side note, it should be pointed out the fact that the

mapping of (19) can also reduce the memory spaces of R
in (18). Obviously, R needs 9 or 18 memory units to store
a 3 × 3 real or complex matrix, whereas 4 or 8 memory
units are enough for storing Rb. As a result, when tak-
ing the entire array into consideration, (9) indicates that
32M2 memory units are required to restore , while 72M2

memory units are required to restore Ry(t) .

The point is not new because Miron et al. in [13]
have given such results by the calculation rules of
biquaternions. Furthermore, it should be noticed that our
biquaternion beamspace also helps to reduce the com-
putation complexity of the EVD for the MUSIC like
estimators. It has been understood that the EVD of a
M × M complexmatrix requires O(M3) multiplications
[10]. It implies that the multiplications for the EVD of
Ry(t) are O((6M)3). By contrast, the multiplications for
the EVD of Rz(t) are O((4M)3). This is because the EVD
of the 2M × 2M biquaternion matrix are obtained via
the EVD of its complex representation matrix with a size
4M × 4M [20].

4 Direction finding and polarization estimation in
biquaternion beamspace

In this Section, two distinct versions of the BB-MUSIC
estimator based on the different transformation matrix in
(24) are reported. One is developed to estimate the source
direction angles without any prior polarization informa-
tion. Another is built to use a 2D search to find the source
direction angles first and then polarization ones.

4.1 Decoupling polarization angles from direction finding
Unlike the self-initiating MUSIC estimator in [5] decou-
pling the polarization estimation from direction finding
via the spatio-polarizational beamforming, we approach
to that by the transformation matrix as given in (24).
If the transformation matrix in (24) satisfies ta = tb =

[e1 e2 e3], we have

T = 1√
3
IM ⊗

[
e1 e2 e3 0 0 0
0 0 0 e1 e2 e3

]
(25)

Thus, we have the following theorem for decoupling the
polarization estimation from the direction finding:

Theorem 1 Whenγ 	= π/4 and η 	= ±π/2, (Tak)†En =
04M−2K is equivalent to

(
q (θk ,φk) ⊗

[
1
uk

])†

En = 04M−2K , (k = 1, 2, · · ·K)

(26)

where uk = cosφk cos θki + sinφk cos θkj +
sin θkk, (k = 1, 2, . . . ,K)

Proof See Appendix 1.

From Theorem 1, it can be seen that (26) is nothing to
do with the polarization parameters (γk , ηk) because both
q(θk ,φk) and uk only depend on the direction angular
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parameters (θk ,φk) of the sources. Thus, the expression,

FDOA−BB (θk ,φk) = 1
∥∥∥∥
∥

(
q (θk ,φk) ⊗

[
1
uk

])†

En

∥∥∥∥
∥

2

(27)

can first be used to find the directions angles of the
sources with polarization parameters γk 	= π/4 and ηk 	=
±π/2. After that, one substitutes γk = π/4 and ηk =
±π/2 into (14) and then use it to search the directions
angles of the sources with the two polarization states. In
this way, the traditional 4D search in the MUSIC methods
is reduced to three 2D searches for our estimators (27) and
(14). As (27) can only find the direction of arrival (DOA)
of the sources, we call it as the DOA-BB-MUSIC estimator
for the latter discussion convenience.
Although the transformation matrix of (25) enables us

to decouple the polarization parameters from the source
direction finding, the following Theorem 2 tells us that
the estimates of the polarization parameters cannot be
handled via the transform matrix as (25).

Theorem 2 If the transformation matrix of the
biquaternion beamspace is taken as (25), �(θk ,φk) in (15)
will be changed into

� (θk ,φk) =
[
a −bI
bI a

]
(28)

where a and b are two real numbers depending only on
(θk ,φk). Moreover, the larger 4M − 2K, the smaller |b/a|.
Inserting (28) into (14), the BB-MUSIC spectrum can be
rewritten as

FBB (
k) = 1

a
(
1 + b

a sin 2γk sin ηk
) (29)

Proof See Appendix 2.

It can be seen that, although the shape of the spectrum
defined by FBB(
k) changes with a, b, and sin 2γk sin ηk ,
the extrema of (29) for polarization parameters are only
taken at fix locations with | sin 2γk sin ηk| = 1, i.e.,
(γ = π/4, η = ±π/2). It indicates that (29) cannot be
used to find the polarization parameters when the trans-
formation matrix is taken as (25).
As a matter of fact, the key point why (25) is incapable

of estimating the polarization parameters is the form of
�(θk ,φk) in (28) making the extrema of (29) fall away
them. To develop an estimator capable of doing the direc-
tion finding and polarization estimation both, the trans-
formation matrix different from (25) should be chosen to
break the form of�(θk ,φk) in (28).We will investigate this
topic in the next subsection.

4.2 Direction finding and polarization estimation
To maintain the polarization information in the BB-
MUSIC spectrum, let us consider the transformation
matrices in (24) satisfying ta 	= tb and introduce a new
quaternion beamspace matrix Tp :

Tp = 1√
3
IM ⊗

[
e1 e2 e3 0 0 0
0 0 0 e4 e5 e6

]
(30)

One can very easily verify that Tp is a quaternion matrix
with orthogonal rows and can make (19) hold. Using (30),
the BB-MUSIC spectrum in (14) is changed into

F (
k)=1/(a�1 cos γk
2+ a�2 sin γk

2+a�12 sin 2γk cos ηk

− b�12 sin 2γk sin ηk)

(31)

Proof Reduction details:

See Appendix 3.
One can easy find from (31) that the polarization param-

eters cannot be decoupled. However, a 4D search can help
for the direction finding and polarization angle estima-
tions. In other words, the polarization parameters estima-
tion is achievable via introducing the new biquaternion
beamspace matrix Tp. As the 4D search is time consum-
ing and computation prohibitive, we next discuss how
to decouple the polarization estimations of (31) from its
direction finding.
Equation (12) can be rewritten as
(
Tpak

)†En = 04M−2K , (k = 1, 2, · · ·K) (32)

and then (32) can be changed into

F (
k) = 1
PH (γk , ηk) �p (θk ,φk)P (γk , ηk)

(33)

where �p(θk ,φk) = S
{
[�(θk ,φk)]† EnE†

n [�(θk ,φk)]
}
.

To maximize (33) over 
k , we can first fix the direc-
tion (θk ,φk) and maximize (33) over polarization angles
(γk , ηk). In this way, the 4D search over 
k is reduced to a
2D search over (θk ,φk) . This idea was first used by Ferrara
and Parks in [24] for direction finding via diversely polar-
ized antennas. Thus, the polarization decoupled spectrum
of (33) is

F(θk ,φk) =
{

max
γk ,ηk

1
PH (γk , ηk) �p (θk ,φk)P (γk , ηk)

}

(34)

Since PH(γk , ηk)P(γk , ηk) = 1 and �(θk ,φk) is a com-
plex Hermitian matrix, according to the Rayleigh’s princi-
ple [25], we obtain

max
γk ,ηk

1
PH (γk ,ηk)�p(θk ,φk)P(γk ,ηk)

= 1
λmin{�p(θk ,φk)} (35)
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where λmin
{
�p(θk ,φk)

}
denotes the operator taking the

smallest eigenvalue of the matrix �p (θk ,φk). From (35), it
can be seen that our the BB-MUSIC spectrum for DOA
estimation is

FDOA (θk ,φk) = 1
λmin

{
�p (θk ,φk)

} (36)

Once the direction angular (θk ,φk) is found by the 2D
search of (36), one can further substitute (θk ,φk) into (33),
perform a 2D search to find the polarization parame-
ters belonging to the sources with direction parameters
(θk ,φk).
Of course, when the DOA has been obtained, one can

do polarization estimation with the LV-MUSIC. However,
while 72M2 memory units are required to restore Ry(t) in
(7), it also increase the computation efforts of the eigen-
decomposition of the data covariance matrix.
In summary, when choosing the transformation matrix

in (24) with ta 	= tb, we can first perform a 2D search
of (36) to estimate the direction angles of the sources,
then estimate the corresponding polarization parame-
ters. To avoid confusion, we nominate this method as
DOA and polarization estimation BB-MUSIC (DOA-P-
BB-MUSIC) estimator. Correspondingly, the techniques
used in (36) can also be applied to the traditional LV-
MUSIC estimator. We will terms this new version LV-
MUSIC estimator as DOA-LV-MUSIC because it can be
used to estimate the DOA of the sources without any
polarization information.

5 Construction of biquaternion beamspace
matrix

In Section 3, we have known that there are an infinite
number of biquaternion beamspace matrices making (19)
satisfied. When choosing the transformation matrix T as
(25), the noise coherence among the electric field com-
ponents or magnetic field ones can be eliminated. How-
ever, the noise coherence between the electric-field and
magnetic-field components of each vector-sensor cannot
be whitened. Thus, it is desirable to find an appropriate
transformation matrix Tp as (30) which can whiten all of
the coherent noise in each vector-sensor.
Assuming that the eigenvalues of the signal and

noise in (11) are, respectively, λ1, λ2, · · · λ2K and
λ2K+1, λ2K+2, · · · λ4M with λ1 � λ2 � · · · � λ4M, it
is well known that, if the noise in a vector array is a
additive white noise, the eigenvalues of the noise sub-
space of an ideal data covariance matrix are equal, i.e.
λ2K+1 = λ2K+2 = · · · = λ4M. However, an ideal data
covariance matrix with the infinite data for an applica-
tion is unpractical. If the additional degrees of freedom
offered to us by the quaternion transformation matrix
can be employed to make the eigenvalues of the noise

subspace as equal as possible, all of the coherent noise
of vector-sensor reduced may be expected. Mathemati-
cally, it can be formulated as the following optimization
problem

min var(λ2K+1, λ2K+2, · · · λ4M)

s.t. TpTp
� = I2M

(37)

where var(·) means to get the variance of the
λ2K+1, λ2K+2, · · · λ4M. The idea of (37) is that we try to
find a biquaternion transformation matrix Tp which can
make the noise eigenvalue changes of the transformed
covariance matrix be as small as possible. It must be
emphasized that the derivation of matrix Tp does not
use any prior knowledge of noise. Nevertheless, extra
computation cost must be paid.
Using the fmincon function, taking the active-set algo-

rithm, in Matlab optimization toolbox, (37) can be solved.
Once the biquaternion beamspace matrix Tp is got,
the DOA parameters and polarization estimations can
be obtained by using the same method as DOA-P-
BB-MUSIC algorithm. These procedures are named as
DOA-PB-BB-MUSIC algorithm. Refer to (3.4) in [4], the
Cramer-Rao bound (CRB) of the DOA-PB-BB-MUSIC
algorithm in the presence of the coherent corrupting noise
is given as

CRB(
)=σ 2

2L

{
Re

[
btr

((
1 ⊗ Ubq

)�
(
Dbq

†�cbqDbq
)bT)]}−1

(38)

Proof See Appendix 4.

6 Simulation results
The performances of the three newly proposed estima-
tors are evaluated in this section. Since both DOA-BB-
MUSIC and DOA-P-BB-MUSIC estimators are capable
of decoupling the polarization estimation from the direc-
tion finding, their direction finding performances will be
compared with two other polarization decoupled esti-
mators, namely the DOA-LV-MUSIC and ESPRIT [23].
Besides, the polarization estimation performances of
DOA-P-BB-MUSIC will also be compared with the
ESPRIT estimator in [23].
In all the following simulations, a linear uniform

array with all vector-sensors along the x-axis with 0.5-
wavelength inter-element spacing is chosen.
To evaluate the performances of direction find-

ings and polarization estimations, we define the
composite root-mean-square (RMS) errors of the
direction and polarization angles for the K sources as
{[

K∑

k=1

(
�θ2k +�φ2

k
)
]

/(2K)

}1
2

and
{[

K∑

k=1

(
�γ 2

k +�η2k
)
]

/(2K)

}1
2

,
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respectively, where �θk ,�φk ,�γk and �ηk are,
respectively, the estimation errors of θk ,φk , γk and ηk .
First, we test the direction finding performances of

the proposed estimators. We consider an array of 15
vector-sensors and 4 uncorrelated narrow-band incident
sources4 with the following simulation parameters:

φ1 = 4.5rad, θ1 = −0.8rad, γ1 = 0.7rad, η1 = 0.3rad
φ2 = 3rad, θ2 = −0.1rad, γ2 = 0.1rad, η2 = −1.5rad
φ3 = 3.8rad, θ3 = 0.4rad, γ3 = π/4rad, η3 = π/2rad
φ4 = 1.5rad, θ4 = 0.7rad, γ4 = π/4rad, η4 = −π/2rad

Noncoherent noise is injected with an SNR = 10 dB,
and 1000 snapshots are used. Among the four sources,
the polarization angles of the first and second ones sat-
isfy the requirements of Theorem 1, while those of the
third and fourth sources do not satisfy the ones. Since the
LV-MUSIC estimator requires to perform a 4D search, we
just fix its polarization parameters to γ4 and η4 to per-
form a 2D search, while the other estimators perform 2D
searches directly because they are capable of decoupling
the polarization estimations from the direction finding.
From Fig. 1a, it can be seen that the LV-MUSIC estima-
tor can only correctly find the fourth sources, because
we fix the polarization parameters to the fourth sources
and perform a 2D search. In Fig. 1b and c, one can find

that both the DOA-LV-MUSIC and DOA-P-BB-MUSIC
successfully find the fourth sources via 2D searches over
the direction angles. For the DOA-BB-MUSIC estimator,
we first employ a 2D search with (27) to find the direc-
tion angles of the first and second source because their
polarization angles satisfy the requirements of Theorem
1. Its estimate results are shown in Fig. 1d. Then, as
depicted in Fig. 1e and f, respectively, we use another
two 2D searches to estimate the direction angles of the
third and fourth sources by inserting γ = π/4 and
η = ±π/2 into (14). As it can be seen in Fig. 1e, except
for the highest peak generated by the third source, two
lower peaks of the first and second sources also emerge.
Similar phenomenon also accompanies with the fourth
source as given in Fig. 1f. This is due to the fact that (29)
depends slightly on (γk , ηk) when |b/a| is small. More-
over, the smaller |b/a|, the higher possibility as we can
see the first and second sources in Fig. 1e and f. If all
sources’ directions and polarization angles are different
from each other5, this phenomenon will not induce any
ambiguities by simply adding the spectrums of Fig. 1d–f
together, as shown in Fig. 1g. Using the QQ-MUSIC esti-
mator, the peak of the fourth source is lower than the
others, as shown in Fig. 1h. The above results confirm
the analytical correctness of our DOA-BB-MUSIC and
DOA-P-BB-MUSIC estimators.

Fig. 1 Direction finding with four sources in the presence of noncoherent noise: a direction finding using the LV-MUSIC estimator when
γ = π/4, η = −π/2, b direction finding using the DOA-LV-MUSIC estimator, c direction finding using the DOA-P-BB-MUSIC estimator, d direction
finding using the DOA-BB-MUSIC estimator when γ 	= π/4, η 	= −π/2, e direction finding using the DOA-BB-MUSIC estimator when
γ = π/4, η = −π/2, f direction finding using the DOA- BB-MUSIC estimator when γ = π/4, η = −π/2, g the sum of the spectrums in d–f, and
h direction finding using the QQ-MUSIC estimator
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The second part of the simulation will verify the validity
of the DOA-PB-BB-MUSIC algorithm, and then com-
pares the results with the DOA-LV-MUSIC and DOA-
BB-MUSIC respectively. We consider an array of seven
vector-sensors and two uncorrelated narrow-band inci-
dent sources with the following simulation parameters:

φ1 = 2.8rad, θ1 = 0.1rad, γ1 = 0.7rad, η1 = 0.3rad
φ2 = 2.4rad, θ2 = 0.6rad, γ2 = 0.1rad, η2 = −1.5rad

Assume that the noises of the vector-sensors are
uncorrelated, while the noises among the three electric
and magnetic antennas in a vector sensor are correlated.
With an SNR = −15 dB and 2000 snapshots is used, the
simulation results are shown in Fig. 2.
It can easy find from Fig. 2 that the correlated noise

in each vector sensor has relatively greater effect on the
performances of DOA-LV-MUSIC and DOA-BB-MUSIC
algorithms when the SNR is lower. The performance of
the DOA-PB-BB-MUSIC algorithm is greatly improved
since the constructed beamspace has whitened the
coherent noise.
The third simulation tests robustness of the direction

finding performances of the estimators to corrupting
noise. Two sources with {φ1 = 2.8rad, θ1 = 0.1rad, γ1 =
0.7rad, η1 = 0.3rad} and {φ2 = 2.4rad, θ2 = 0.6rad, γ2 =
0.1rad, η2 = −1.5rad} are taken. The number of vector-
sensors in the array is 7. For each point on Fig. 3, the sim-
ulations with 300 independent Monte Carlo experiments
are run. Figure 3a plots the composite RMS errors of the
direction finding versus the different SNRs in the presence
of noncoherent noise. Figure 3b illustrates the behaviors
of the different estimators in the presence of coherent
noise. When the corrupting noise is noncoherent, the
performances of the DOA-LV-MUSIC are the best while
the DOA-BB-MUSIC and ESPRIT estimators are better
than the DOA-PB-BB-MUSIC one as shown in Fig. 3a.
However, in the coherent noise case, the performances of
the DOA-BB-MUSIC and DOA-PB-BB-MUSIC are much
better than those of the DOA-LV-MUSIC and ESPRIT
ones as depicted in Fig. 3b. Seeing from the y-axes of Fig. 3,

one can find that the performances of the DOA-PB-BB-
MUSIC yield almost same performances in both coherent
and noncoherent corrupting noise situations. As a con-
trast, the composite RMS errors of the DOA-LV-MUSIC
in the coherent case is almost 10 times larger than those
in the noncoherent case with low SNRs, while the RMS
errors of the ESPRIT in the coherent case is five times
larger than those in the noncoherent case with low SNRs.
As a result, the performances of the DOA-LV-MUSIC
and ESPRIT are strongly degraded by the coherent noise.
To evaluate the performances of the DOA-LV-MUSIC
and ESPRIT after the correlation of noise is whiten, we
assume that the noise covariance matrix can be estimated
and then is used to whiten the received signal covariance
matrix as done in [26]. It is understood by means of the
method in [26] that it is impossible for one to completely
whitened the correlated noise due to the estimation errors
of the noise covariance matrix. Thus, it is assumed that
the noise correlation has dropped to one tenth of the
original after whitening. Figure 3c illustrates the perfor-
mances of the ESPRIT and standard MUSIC estimators
after whitening the coherent noise and the DOA-PB-BB-
MUSIC estimator in the presence of coherent noise. Even
so, it can be seen that the performances of the DOA-PB-
BB-MUSIC estimator is still better than the ESPRIT and
standard MUSIC estimators. It also verifies that our esti-
mators are more robust to coherent corrupting noise than
the known ones.
Using the DOA-PB-BB-MUSIC estimator, we will next

test its robustness to the polarization parameters. The
same array and source configuration as the second simu-
lation is taken into consideration.
Since the DOA-BB-MUSIC and QQ-MUSIC estimators

cannot estimate the polarization angles, we only calculate
the composite RMS errors of the polarization estimations
of the DOA-PB-BB-MUSIC and ESPRIT estimators with
different SNRs under both the noncoherent and coherent
noise conditions.
Based on the direction finding results in the second sim-

ulation in each Monte Carlo run, the algorithm via (36) is
used to estimate the polarization parameters. From Fig. 4a

Fig. 2 Direction finding with two sources in the presence of coherent noise: a DOA-LV-MUSIC, b DOA-BB-MUSIC, and c DOA-PB-BB-MUSIC
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Fig. 3 The composite RMS estimation errors of direction finding versus SNR: a The composite RMS estimation errors of direction finding in presence
of noncoherent noise, and b The composite RMS estimation errors of direction finding in presence of coherent noise, and c The composite RMS
estimation errors of direction finding after whitening the coherent noise

and b, we find that the performances of the ESPRIT esti-
mators in the coherent case are obviously degraded. It can
also be seen that its composite RMS errors in Fig. 4b, are
almost 4 times larger than those in Fig. 4a. Contrastively,
the composite RMS errors of our DOA-PB-BB-MUSIC
estimator are almost the same for both cases, illustrating
the robustness of our estimator to corrupting coherent
noise again.

7 Conclusions
In this paper, we have illustrated the methods of elec-
tromagnetic vector-sensor array signal processing in our
biquaternion beamspace. In our biquaternion beamspace,
the memory spaces for storing the data covariance matrix
and the computation efforts for performing its EVD
are reduced. Techniques for choosing the transforma-
tion matrix matrices to blindly whiten the coherence
of the electric and magnetic noise in a vector-sensor
have been given. These techniques ensure that our BB-
MUSIC estimator can be extended to a certain coherent

noise case and is more robust to general coherent noise
cases. Three enhanced versions of BB-MUSIC estima-
tor are also presented. The three estimators are capa-
ble of decoupling polarization estimation from direction
finding. In addition, we did not solve the optimization
problem (37) in theory, instead we use the numerical
solution. The optimal solution will be considered in our
future work.
As an alternative way for vector-sensor array pro-

cessing, by choosing proper transformation matrix, the
biquaternion beamspace theory presented here may be
applied to other cases, such as enhancing the signals from
favored directions and block interferences from other
directions. These topics will also be the focus of our
future work.

Endnotes
1 In order not to confuse the imaginary unit of a complex

number with the three imaginary units of a quaternion,
we use the notations in [13] that I is the imaginary unit

Fig. 4 The composite RMS estimation errors of polarization estimation versus SNR: a the composite RMS estimation errors of polarization estimation
in presence of noncoherent noise and b the composite RMS estimation errors of polarization estimation in presence of coherent noise
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of a complex number while i, j and k denote the three
imaginary units of a quaternion.

2 In [13], the EVD of a biquaternion matrix is obtained
from the EVD of its quaternion adjoint matrix. Alter-
natively, the EVD of a biquaternion matrix can also
be achieved by the EVD of its complex representation
matrix [20].

3 This can be get directly from the EVD of the quater-
nion adjoint matrix of Rz(t) [22] and the Q-MUSIC
estimator in [11], or the EVD of the complex repre-
sentation matrix of Rz(t) and the traditional MUSIC
estimator [2, 3].

4 The third and fourth sources are well known as the left-
circularly polarization and right-circularly polarization
sources respectively.

5 If there are some sources happen to have same
direction angles but different polarization angles, the
polarization decoupled MUSIC like estimators may fail to
discriminate these sources because only a 2D search over
(θk ,φk) is performed.

Appendix 1: Proof of Theorem 1
Since

vk1 = tav1 = − sinφke1 + cosφke2
vk2 = tav2 = − cosφk sin θke1 − sinφk sin θke2+ cos θke3,

we have

uk =vk1vk2=sin θke1e2−sinφkcos θke1e3+cosφkcosθke2e3

and

vk1vk1=sinφk
2e1e1+cosφk

2e2e2−sinφkcosφk(e1e2+e2e1) ,

where e1, e2, e3 are unit quaternions orthogonal to one
another. Since e1e2 + e2e1 = 0 and e1e1 = e2e2 = e3e3 =
−1/3, vk1vk1 = −1/3. Similarly we can also get vk2vk2 =
−1/3.
In the same manner, we have

vk2vk1 = −vk1vk2.

As a result, the following equations can be deduced:

ukuk = vk1vk2vk1vk2 = vk1 (−vk1vk2) vk2 = −1/9
ukvk1 = vk1vk2vk1 = (−vk2vk1) vk1 = 1/3vk2
ukvk2 = vk1vk2vk2 = −1/3vk1

From (12) we know

(Tak)†En = 04M−2K , (k = 1, 2, · · ·K)

where

Tak = IM ⊗
[
ta 0
0 tb

]
(q(θk ,φk) ⊗ V (θk ,φk)P(γk , ηk))

= q (θk ,φk) ⊗
[
vk1 −vk2
vk2 vk1

]
P (γk , ηk)

= q (θk ,φk) ⊗
[

1
3uk

] (
vk1 cos γk − vk2 sin γkeIηk

)

Let W = q (θk ,φk) ⊗
[
1
3uk

]
,�k = W †En, ρk =

(
vk1 cos γk − vk2 sin γkeIηk

)†, and then insert them into
(12), we have ρk�k = 04M−2K .
Since

ρk
†ρk =(

vk1cos γk−vk2sinγkeIηk
)(
vk1cos γk−vk2sin γkeIηk

)†

= 1/3 − Iuk sin 2γk sin ηk ,

we have

(1/3 + Iuk sin 2γk sin ηk) ρk
†ρk = 1

9
(1−(sin 2γk sin ηk)

2).

so

(1/3 + Iuk sin 2γk sin ηk) ρk
†ρk�k = 1

9
(1 − (sin 2γk sin ηk)

2)�k = 04M−2N .

When γk 	= π/4, ηk 	= ±π/2, we get � = 04M−sK .
That is:

(
q (θk ,φk) ⊗

[
1
3uk

])†

En = 04M−2K , (k = 1, 2, · · ·K)

Appendix 2: Proof of Theorem 2
Let

� (θk ,φk) = IM ⊗
[
ta 0
0 tb

]
(q (θk ,φk) ⊗ V (θk ,φk)) .

We have

� (θk ,φk) = IM ⊗
[
ta 0
0 tb

]
(q (θk ,φk) ⊗ V (θk ,φk))

= IMq (θk ,φk) ⊗
([

ta 0
0 tb

]
V (θk ,φk)

)

= (q (θk ,φk) ⊗ I2)
[
vk1 −vk2
vk2 vk1

]
.

If Q(θk ,φk) = q(θk ,φk) ⊗ I2, then �(θk ,φk) can be
rewritten as

� (θk ,φk) = Q (θk ,φk)

[
vk1 −vk2
vk2 vk1

]

From (15), it has known that, if �k =
[� (θk ,φk)]†EnE†

n [� (θk ,φk)], one has � (θk ,φk) =
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S {�k}, where
�k =[� (θk ,φk)]†EnE†

n [� (θk ,φk)]

=
[
vk1 −vk2
vk2 vk1

]†
Q(θk ,φk)

†EnE†
nQ (θk ,φk)

[
vk1 −vk2
vk2 vk1

]
.

(39)

Let X = QH (θk ,φk)EnE†
nQ (θk ,φk). Based on X ∈ H

2×2
C

and X = X†,X can be expressed as follows:

X =
[
x10 + Ix1q xH30 + x†3q
x30 + x3q x20 + Ix2q

]

(40)

where x10 and x20 are real numbers, x30 is a complex
number, x1q and x2q are pure quaternions, x3q is a pure
biquaternion. Insert (40) into (39), we have

�k =
[ vk1 −vk2
vk2 vk1

]†
X
[ vk1 −vk2
vk2 vk1

]

=[vk1−vk2]†
[
1
3uk

]†[ x10 + Ix1q xH30 + x†3q
x30 + x3q x20 + Ix2q

][
1
3uk

]
[vk1 − vk2] .

(41)

Since vk1, vk2 and uk are pure quaternions, we can get
vk1† = vk1� = −vk1 , vk2† = vk2� = −vk2 and uk† =
uk� = −uk . In this way, (39) can be rewritten as:

�k =
[−vk1
vk2

] (
x10 + x20 + Ix1q − 3x30uk + 3xH30uk

−3ukx3q + 3x†3quk − I9ukx2quk
)
[vk1 − vk2] .

(42)

Let �k =
[

�k11 �k12
�k21 �k22

]
, then �(θk ,φk) = S{�k} =

[
S(�k11) S(�k12)
S(�k21) S(�k22)

]
. Notice that as far as any two arbi-

trary pure quaternions q1 and q2 are concerned, we know
S
{
q1q2q1

} = S
{
q2q1q2

} = 0, where S(·) stands for tak-
ing the scalar part of the biquaternion. In other words,
q1q2q1 and q2q1q2 are pure quaternions. Since all of
vk1, vk2,uk , x1q and x2q are pure quaternions, ukx2quk is
also a pure quaternion. When qb1 = vk2x3qvk1 and qb2 =
vk1x3q†vk2 , we can get

S (�k11) = 1/3x10 + 1/3x20 − S (qb1) − S (qb2) .

It can be seen that qb1† = vk1†x†3qvk2† = vk1x†3qvk2 =
qb2. As a result, one has S(qb1) = S(qb2)∗. That is S(qb1)+
S(qb2) ∈ R. Since both x10 and x20 are real numbers, we
have S (�k11) = 1/3x10+1/3x20− (S (qb1) + S (qb2)) ∈ R

and then let S(�k11) = a.
Similarly, since S (qb3) + S (qb4) = −2S

(
vk2x3q1vk1

)
, it

can be deduced that

S (qb3) + S (qb4) = − (S (qb1) + S (qb2))

Therefore S (�k22) = S (�k11) = a.

From (42), we have

�k12 = x10vk1vk2 + Ivk1x1qvk2 − 1/3x30 + 1/3xH30
+ vk2x3qvk2 − vk1x†3qvk1 + x20vk1vk2 − Ivk2x2qvk1.

Thus, we can know S (�k12) = 1/3(x30 − xH30) +
S
(
Ivk1x1qvk2

) + S
(
Ivk2x2qvk1

)
. Apparently �k12 is a pure

imaginary number. In this way, we can make �k12 = −bI,
where b is a real number.
Similarly let S (�k12) = 1/3x30 − 1/3xH30 +

S
(
Ivk2x1qvk1

) + S
(
Ivk1x2qvk2

) = bI, so we can get

�(θk ,φk) = S{�k} =
[
S(�k11) S(�k12)
S(�k21) S(�k22)

]
=
[
a −bI
bI a

]
.

Appendix 3
According to (40), �k can be changed into

�k =
[ tav1 −tav2
tbv2 tbv1

]†
X
[ tav1 −tav2
tbv2 tbv1

]

=
[
tav1 −tav2
tbv2 tbv1

]† [ x10 + Ix1q xH30 + x†3q
x30 + x3q x20 + Ix2q

] [
tav1 −tav2
tbv2 tbv1

]

(43)

Suppose that vk1 = tav1, vk2 = −tav2, vk3 = tav2, vk4 =
tav1, all of vk1, vk2, vk3, vk4 are pure biquaternions. One can
get

�k11 = − (vk1x10vk1 + Ivk1x1qvk1 + vk3x30vk1
+ vk3x3qvk1 + vk1xH30vk3 + vk1x†3qvk3
+ vk3x20vk3 + Ivk3x2qvk3)

and

S (�k11) = 1/3x10 + 1/3x20 −
(
x30 + xH30

)
S (vk1vk3)

−
(
S
(
vk3x3qvk1

)+ S

(
vk1x†3qvk3

))

Since S
(
vk3x3qvk1

)+S

(
vk1x†3qvk3

)
is real, S (�k11) ∈ R.

Thus, we can let S (�k11) = a�1 ∈ R. Similarly,

S (�k22) = 1/3x10 + 1/3x20 −
(
x30 + xH30

)
S (vk2vk4)

−
(
S
(
vk4x3qvk2

)+ S

(
vk2x†3qvk4

))
∈ R.

Additionally, S (�k12) can be written as

S (�k12) = − IS
(
vk1x1qvk2

)− IS
(
vk3x2qvk4

)

− x30S (vk3vk2) − xH30S (vk1vk4)

− S
(
vk3x3qvk2

)− S

(
vk1x†3qvk4

)
.
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Since S(�k12) is a complex number, one can let
S(�k12) = a�12 + Ib�12. It is easy to find out that

S (�k21) = − IS
(
vk2x1qvk1

)− IS
(
vk4x2qvk3

)

− x30S (vk4vk1) − xH30S (vk2vk3)

− S
(
vk4x3qvk1

)− S

(
vk2x†3qvk3

)

Due to (S (�k12))
∗ = S (�k21) and taking S(�k21) =

a�12 − Ib�12, we have

� (θk ,φk) = S {�k} =
[

a�1 a�12 + Ib�12
a�12 − Ib�12 a�2

]

(44)

it can be seen that the a�1, a�2, a�12 and b�12 in (44) are
only related to DOA parameters. Insert (44) into (14), and
we have

F (
k) =1/(a�1 cos γk
2 + a�2 sin γk

2

+ a�12 sin 2γk cos ηk − b�12 sin 2γk sin ηk)

Appendix 4
Refer to (3.4) in [4], the CRB on the covariance matrix of
any (locally) unbiased estimator of the vector sensor array
in the presence of the noncoherent corrupting noise is

CRB(
)lv = σ 2

2L

{
Re

[
btr

(
(1 ⊗ U) � (

DH�cD
)bT)]}−1

(45)

where

U = Ps
(
AHAPs + σ 2I

)−1AHAPs (46)

�c = EnlvEnlv
H (47)

D =
[
D(1)
1 · · ·D(1)

q1 · · ·D(n)
1 · · ·D(n)

qn

]
(48)

D(k)
l = ∂ak

∂

(k)
l

(49)

where Ps is a matrix of the signal power, L denotes
snapshots, Enlv are the eigenvectors corresponding to the
noise subspaces in the LV-MODEL. We use a orthogo-
nal quaternion transformation matrix T to project the
original array data into the biquaternion beamspace, So
one has

Abq = TA (50)

En = TEnlv (51)

Since the coherent noise of the six constituent anten-
nas in each vector-sensor has been whitened by thematrix

T , the CRB of the DOA-PB-BB-MUSIC algorithm in the
presence of the coherent corrupting noise can be given by

CRB(
)= σ 2

2L

{
Re
[
btr

((
1⊗Ubq

)� (
Dbq

†�cbqDbq
)bT)]}−1

(52)

where

Ubq = Ps(Abq
†AbqPs + σ 2I)−1Abq

†AbqPs (53)

�cbq = EnEn
† (54)

Dbq = TD (55)

Inserting (50), and (51) into (53), (54), and (55) respec-
tively, one has

Ubq = Ps
(
AHT�TAPs + σ 2I

)−1AHT�TAPs (56)

Dbq
†�cbqDbq = DHT�TEnlvEnlv

HT�TD (57)

If the matrix T satisfies T�T = I, CRB(
) = CRB(
)lv.

Funding
This work was supported in part by the NSF of China under Grant 61571131,
11604055.

Authors’ contributions
DL and JQZ conceived and designed the study. DL, FX, and JFJ performed the
experiments. DL and JQZ wrote the paper. DL, FX, JFJ, and JQZ reviewed and
edited the manuscript. All authors read and approved the manuscript.

Authors’ information
Dan Li received the the M.S. and Ph.D. degrees in electronic engineering from
Fudan University, Shanghai, China, in 2006 and 2013, respectively. He is
currently a lecturer at the Department of Electronic Engineering, Fudan
University. His research interests include array signal processing and
biquaternion with applications in signal processing and image processing.
Feng Xu received the Ph.D. degree in electronic engineering from Fudan
University, Shanghai, China, in 2010. He is currently an Electronic Engineer at
the Department of Electronic Engineering, Fudan University. His research
interests include array signal processing and biquaternion with applications in
signal processing and image processing.
Jing Fei Jiang received the B.Sc. degree and M.Sc. degrees in electronic
engineering from Fudan University, Shanghai, China, in 2008 and 2011,
respectively. His research interests include array signal processing and
geometric algebra with applications in signal processing and image
processing.
Jian Qiu Zhang received the B.Sc. degree from East of China Institute of
Engineering, Nanjing, in 1982, and the M.S. and Ph.D. degrees from Harbin
Institute of Technology (HIT), Harbin, China, in 1992 and 1996, respectively. He
is currently a Professor with the Department of Electronic Engineering, Fudan
University, Shanghai, China. From 1999 to 2002, he was a Senior Research
Fellow at the School of Engineering, University of Greenwich, Chatham
Maritime, UK In 1998, he was a Visiting Research Scientist at the Institute of
Intelligent Power Electronics, Helsinki University of Technology, Espoo,
Finland. He was an Associate Professor from 1995 to 1997 and a Lecturer from
1989 to 1994 with the Department of Electrical Engineering, HIT. During 1982
to 1987, he was an Assistant Electronic Engineer at the 544th Factory, Hunan,
China. His main research interests are signal processing and its application for
advanced sensors, intelligent instrumentation systems and control, and
communications.



Li et al. EURASIP Journal on Advances in Signal Processing  (2017) 2017:16 Page 15 of 15

Competing interests
The authors declare that they have no competing interests.

Received: 24 August 2016 Accepted: 6 February 2017

References
1. JF Bull, Field probe for measuring vector components of an

electromagnetic field, 5300885 (1994)
2. H Krim, M Viberg, Two decades of array signal processing research: the

parametric approach. IEEE Signal Proc. Mag. 13(4), 67–94 (1996)
3. P Stocia, R Moses, Introduction to Spectral Analysis, 2nd edn. (Upper Saddle

River NJ: Prentice-Hall, New Jersey, 2004)
4. A Nehorai, E Paldi, Vector-sensor array processing for electromagnetic

source localization. IEEE Trans. Sig. Process. 42(2), 376–398 (1994)
5. KT Wong, MD Zoltowski, Self-initiating music-based direction finding and

polarization estimation in spatio-polarizational beamspace. IEEE Trans.
Antennas Propag. 48(8), 1235–1245 (2000)

6. J Li, Direction and polarization estimation using arrays with small loops
and short dipoles. IEEE Trans. Antennas Propag. 41(3), 379–387 (1993)

7. B Hochwald, A Nehorai, Polarimetric modeling and parameter estimation
with applications to remote sensing. IEEE Trans. Sig. Process. 43(8),
1923–1935 (1995)

8. XL Xu, KM Buckley, in International Conference on Acoustics, Speech, and
Signal Processing. Statistical performance comparison of music in
element-space and beam-space, vol. 4, (1989), pp. 2124–2127

9. HB Lee, M Wengrovitz, Resolution threshold of beamspace music for two
closely spaced emitters. IEEE Trans. Acoust. Speech Sig. Process. 38(9),
1545–1559 (1990)

10. G Xu, SD Silverstein, RH Roy, T Kailath, Beamspace esprit. IEEE Trans. Sig.
Process. 42(2), 349–356 (1994)

11. S Miron, N Le Bihan, JI Mars, Quaternion-music for vector-sensor array
processing. IEEE Trans. Sig. Process. 54(4), 1218–1229 (2006)

12. Z Kunlei, S Wang, F Wang, H Jianguo, Parameter estimation of
vector-sensor array in colored noise with quaternion-music. Congr. Image
Sig. Process. 5, 483–487 (2008)

13. N Le Bihan, S Miron, JI Mars, Music algorithm for vector-sensors array
using biquaternions. IEEE Trans. Sig. Process. 55(9), 4523–4533 (2007)

14. N Le Bihan, S Miron, JI Mars, High resolution vector-sensor array
processing based on biquaternions. IEEE Int. Conf. Acoust. Speech Sig.
Process. 4, 1077–1080 (2006)

15. XF Gong, ZW Liu, YG Yu, Direction finding via biquaternion matrix
diagonalization with vector-sensors. Sig. Process. 91(4), 821–831 (2011)

16. XF Gong, ZW Liu, YG Yu, Quad-quaternion music for doa estimation using
electromagnetic vector sensors. EURASIP J. Advances Sig. Process.
2008(1), 1–14 (2008)

17. JF Jiang, JQ Zhang, Geometric algebra of euclidean 3-space for
electromagnetic vector-sensor array processing, part i: Modeling. IEEE
Trans. Antennas Propag. 58(12), 3961–3973 (2010)

18. X Gou, Z Liu, Y Yu, X Gong, Capon beamformer for acoustic vector sensor
arrays using biquaternions. Int. Conf. Aware. Sci. Technol, 28–31 (2011)

19. X Gou, Z Liu, Y Yu, X Gong, Biquaternion capon beamformer using
four-component vector-sensor arrays. Int. J. Sens. Netw. 19(3/4), 171–180
(2015)

20. Y Tian, Matrix theory over the complex quaternion algebra (2000). arXiv
preprint math/0004005

21. S Said, N Le Bihan, SJ Sangwine, Fast complexified quaternion fourier
transform. IEEE Trans. Sig. Process. 56(4), 1522–1531 (2008)

22. F Zhang, Quaternions and matrices of quaternions. Linear Algebra Appl.
251, 21–57 (1997)

23. KT Wong, MD Zoltowski, Closed-form direction finding and polarization
estimation with arbitrarily spaced electromagnetic vector-sensors at
unknown locations. IEEE Trans. Antennas Propag. 48(5), 671–681 (2000)

24. JE Ferrara, T Parks, Direction finding with an array of antennas having
diverse polarizations. IEEE Trans. Antennas Propag. 31(2), 231–236 (1983)

25. G Strang, Linear Algebra and Its Applications, 3rd edn. (New York
Academic, New York, 1976)

26. PC Hansen, SH Jensen, Prewhitening for rank-deficient noise in subspace
methods for noise reduction. IEEE Trans. Sig. Process. 53(10), 3718–3726
(2005)

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com


	Abstract
	Keywords

	Introduction
	Biquaternion beamspace and its measurement model
	The long vector model
	Biquaternion beamspace and its measurement model

	The biquaternion beamspace MUSIC estimator
	BB-MUSIC estimator
	Robustness to coherent noise components

	Direction finding and polarization estimation in biquaternion beamspace
	Decoupling polarization angles from direction finding
	Direction finding and polarization estimation

	Construction of biquaternion beamspace matrix
	Simulation results
	Conclusions
	Appendix 1
	Appendix 2
	Appendix 3
	Appendix 4
	Funding
	Authors' contributions
	Authors' information
	Competing interests
	References

