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Abstract

than that of other state-of-the-art algorithms.

In mono-polarized synthetic aperture radar (SAR) imagery, g? distribution often is assumed as the universal model
to characterize a large number of targets, which is indexed by three parameters: the number of looks, the scale
parameter, and the roughness parameter. The latter is closely related to the number of elementary backscatters in
each pixel, and it is the reason why so many researchers focus on it. Although many efforts have been paid on
providing many estimates, numerical problems often exist in dependable estimation, such as ‘outlier' and small
samples and so on. Thus, a robust estimation scheme of two unknown parameters in Q? distribution based on
random weighting method is proposed in this paper where the relationship between moments and parameters are
utilized. Experimental results on SAR computational simulations data and real SAR images show that the particular
scheme outperforms alternative forms of bias reduction mechanisms, and we can obtain more accurate estimation

Keywords: Synthetic aperture radar (SAR), Random weighting method, Parameter estimation, Robust

1 Introduction

In order to interpret synthetic aperture radar (SAR)
images, the statistical modeling often be employed. In
fact, the multiplicative model using G family of distri-
butions often is utilized to describe the speckled data,
which is characterized by three parameters: the num-
ber of looks, the scale parameter, and the roughness
parameter. By this distribution, it is able to describe
rough and extremely rough areas, which is better
than other distributions [1, 2]. Under the G model,
regions with different degree of roughness can be
characterized by the parameters, thus, the accuracy of
the estimation of these parameters becomes very
important.

Several kinds of approaches for estimating roughness
parameters with different number of looks have been
proposed. For example, Gambini et al. gave an analogy
estimator based on moments of order 1/2 and 1 [3, 4].
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Vasconcellos et al. proposed an analytic change for
improving performance with respect to bias and mean-
squared error, and the bias in the estimation of the
roughness parameter of the G distribution by maximum
likelihood (ML) was quantified [5]. In fact, the process-
ing and understanding of SAR image is the problem of
small samples, for instance, image filtering where with a
few observations within a window a new value is com-
puted. The parameter estimation with small samples is
subjected to many problems, mainly including bias, large
variance, and sensitivity to deviations from the hypothe-
sized model. On the one hand, G? distribution is heavy-
tailed distributions. Hence, dealing with SAR data is
essentially difficult because samples from the tail of the
distribution will have a strong influence on parameter
estimation, and bias will be introduced if we decline the
weights of them [6]. Therefore, a common issue in all
the aforementioned estimation procedures, including
ML, and those based on fractional moments and log-
cumulants [7] is the need of iterative algorithms for
which there is no granted convergence to global solu-
tions. Frery et al. [8] and Pianto and Cribari-Neto [9]
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proposed techniques to aim at alleviating such issue at
the cost of additional computational load.

Random weighting, proposed by Zheng (1987) [10],
is an emerging computational method in statistics,
and has been used to solve different problems [11].
The random weighting method has following advan-
tages: (1) it is sample in computation; (2) it does not
require the previous knowledge on the distribution,
and the estimation results are unbiased; (3) the esti-
mation error of the random weighting method is
smaller than that of Bootstrap in the case of small
samples; (4) it is independent and identically distrib-
uted, and robust; (5) statistic determined by the ran-
dom weighting method has the density function, so it
is particularly suitable for the problem described in
the density function. This paper is to develop a ro-
bust estimation method of combining analogy with
random weighting method for the G? model, which
has the good properties of unbiased, the small mean-
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squared error and its ability to resist contamination.
Even in small samples and low computational cost, its
performance is still very robust.

The paper is organized as follows: Section II presents
the random weighting estimation for parameters of G
distribution. In Section III, we will present and discuss
the main numerical results. Finally, Conclusions and
future work are presented in Section IV.

Random weighting estimation for G9 distribution

1.1 The G) model

The multiplicative statistical model is extensively used in
SAR image data analyses. Depending on this model, the
data are described by a random variable X, which can be
viewed as the product of the independent random vari-
ables U and V, that is X=U -V, where U models the
properties of the imaged area (backscatter), and V
models the multiplicative noise (speckle) introduced by
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Fig. 1 Sample mean of estimates under uncontaminated data. The black line is the true parameter
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the use of coherent illumination, which degrades the
image quality. In this manner, speckle noise (V) in inten-
sity L-looks format follows a gamma distribution, de-
noted by G%(a,y,L), whose probability density is given
by

L'Ir(L-a)  &f!
yer (LI (-a) (y + Lx)*™

The backscatter (U) exhibits different degrees of
homogeneity and can be modeled using the inverse

gamma distribution, denoted by U ~I'(a,y), whose
probability density is

x>0

fxx) =

(1)

y >0

(2)

Then X=U -V follows a G)(a,y,L) distribution [12],
whose probability density is

'r(l-a) !
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where - a >0 is the roughness parameter, y >0 is the
scale parameter and L > 1 is the number of looks [1].
The r-order moments are given by
' [(—a-r)[(L+7r)
E(X") = (—) _ 4
X L I'(-a)'(L) )

The GY distribution is very attractive for modeling data
with speckle noise, due to its mathematical tractability
and ability to describe information from most types of
areas, for given o« <—1 and L. These densities are pre-
sented in semi-logarithmic scale, showing that they have
heavy (linear) tails with respect to the Gaussian distribu-
tion which displays quadratic behavior. It is noticeable
that the larger values of a, the larger the variances have;
in fact, the variance is not finite when a > - 1.

1.2 The random weighting estimator of parameter

Fylx) = - — x>0 (3) Let X, ..., X,, be independently and identically distributed
yeI'(L)I(-a) (y + Lx) random variables with distribution X ~g?(a, y,L), a<-1/2,
p
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y>0and L known. X, = n ' 3% X, and X, = w1 30,
X! are the mean of samples and rth sample moment,
respectively, then the random weighting estimation of the
X, and X, can be defined as

Hy =Y &X; (5)
i=1
and
H, =Y "&X; (6)
i=1

where ¢, ..., €, are independent and identically dis-
tributed random variable with distribution function of
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By formula (4), we can know that

£{v) - () TR0 oy

N I'(—a-D)I'(L+1)
EX) = () rCaro o7t ®)

Replacing the population moments by their sample
counterparts, and the parameters by the corresponding
estimators, we arrive at the following system of two
equations:

random variable & =#-2, where 7 is from gamma X, = (Z) w,_& >1 (9)
distribution function G(4, 2), i.e., the density function of L r(-a)r(r)
nisI'(4) =% (2x)° exp{-2x}{x > 0}, I(A) is the indica- L
tor function of set A4, and Xj, ..., X,, and &, ..., &, are e (Z>2F(—a—(1/2))F(L+ (1/2)) e 1/2 (10)
mutually independent. "L r(-a)rL)
[ L=1,alpha=-1.5 ] | L=1,alpha=-3 I [ L=1,alpha=-5
At ] Af A} r
52| - -]
] « ]
£ 3 i ‘E-s-w- £ 3
@ ? @
S 4l | g4 =" -
& a s
w5 1 w5t 1 w5t
6! 5} ry
9 25 49 81121 1000 9 25 49 81121 1000 9 25 49 81121 1000
[ L=3,alpha=-1.5 | I L=3alpha=-3 | [ L=3,alpha=-5 |
-1t 1 -t 1 -1t —Tme |
v | 5 | | = —o—ANA
22 272 22 —— ML
E 3l | E 3l | E3 LCum
g | 24, | g '
[=% [+% [=%
-5t T 5 1 &5
9 25 4981121 1000 9 25 49 81121 1000 9 25 49 81121 1000
\ L=8,alpha=-1.5 | | L=8,alpha=-3 | [ L=8,alpha=-5 |
A ! Af ! Af ——
- 2l f V/’{‘ - 2l - Il
% 2 // % 2 % 2
'g 3 " 1 §-3- g 3t
H 4 — " | 6 4} 8 4t
® ] ®
g g o &
3 5t § 5 5 -5}
6 6t 6t
9 25 49 81121 1000 9 25 49 81121 1000 9 25 49 81121 1000
Fig. 7 Sample mean of estimates, case 3 with k=2 and & =0.005




Wang et al. EURASIP Journal on Advances in Signal Processing (2017) 2017:22

which lead to the following equation that can be solved
numerically in order to obtain an estimator for a:

X I(-a)[(L)L (7(%1)21" *(~a)r*(L)L
I'(-a-1)I'(L+1) I*(-a-1/2)I*(L+ (1/2))

By formulas (5) and (6), X, )Ti in (11) is replaced by its
random weighting estimation H,, H?, respectively. We
have

H,I(-&)[(L)L (Hi)ZT *(-a)r*(L)L
I'(-a-0)I(L+1) I?(-a-1/2)I%(L+ (1/2))

(12)

Therefore, the random weighting estimator a* for a
can be obtained via solving equation (12). By substi-
tuting the value of @* into formula (9), we can obtain
random weighting estimator y*.
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2 Performance evaluations

In this section, the random weighting estimation of
GY distribution parameters is comprehensively evalu-
ated on SAR computational simulations data and real
SAR images.

2.1 Simulations data and analysis
The results of double bounce in SAR system is that a
high return value exists in some pixels. The presence
of such outliers may provoke big errors in the estima-
tion. Since robustness is the ability to perform well
when the data obey the assumed model and to not
provide completely useless results when the observa-
tions do not exactly follow it, moreover, estimators in
SAR signal and image processing are always used in
various robustness algorithms, thus, the robustness is
of highest importance.

In order to assess the behavior of the proposed estima-
tors, computational simulations have been performed to
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Fig. 9 Real SAR image and the regions used to estimate
the parameters

verify random weighting (RW) estimation of parameters
a and y. Let 0<e <1, CeR,. In these simulation studies,
we consider uncontaminated data and three contami-
nated models, where samples {X, ..., X} are identically
distributed random variables with one of uncontamin-
ated and three contaminated models. The three patterns
of the contamination are defined as follows:

Case 1: (1—8)9?(0.’1, y1,L)+ eg?(ag, Y2, L)
Case 2 : (1-€)GY (a1, y,,L) + eC

Case 3 : (1-€)GY (a1, y1, L) + &Gy (a1, 10y, L)

The sample lengths are 9, 25, 49, 81, 121, and 1000,
respectively. The parameter « is evaluated by using dif-
ferent real values such as a ={-1.5, -3, — 5}, which are
used on behalf of areas with intense and moderate tex-
ture. As compared, we simulate the analogy estimator
(ANA) [7], maximum likelihood (ML) [8], log-
cumulant (LCum) [7] and 1/2-moment (Mom12) [1].

Table 1 Estimations of the a parameter using the samples
shown in Fig. 9

Color  Size  Gpw Gana G Qrcum Quiom12
Blue 25 —3.0821 —5.2631 -3.1776 —2.8362 —2.0477
Red 30 —4.2572 —6.9932 —5.6990 —3.0953 —2.0067
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Table 2 Estimations of the y parameter using the samples
shown in Fig. 9

Color Size Vrw Vana Ve Picum P iom12
Blue 25 2.0821 4.2631 21776 28362 1.0477
Red 30 3.2572 5.9932 46990 2.0953 1.0067

Figures 1, 2, 3, 4, 5, 6, 7, and 8 show a graphical compari-
son of the mean and variance estimation values for param-
eter a after testing 1000 times under uncontaminated data
with cases 1, 2, and 3, respectively.

From Figs. 1 and 2, we can observe that only three
methods of five estimators are very close to the true
value in mean, namely, @y, dana and dry, and the far-
thest estimators from the true value are d;cun and
Apromiz> When a =-5. In most cases, all methods have
very similar mean-squared error in the lager sample
data, thus, we cannot decide which one is the best. How-
ever, our proposed method is better than other four
methods especially when L =3 and L =8.

Figures 3 and 4 show the influence of the perturb-
ation in contaminated cases. As expected, it is more
obvious. With the increase of the number of sample,
the proposed estimation is further away from the
contamination, and the mean-squared errors of dprw
is smaller than that of @ana, ML, @LCum> @Momiz fOr
L =3, 8. But all methods do not have clear distinction
for L =1 except that arw is at least very competitive
in the case of a=-3.

From Figs. 5 and 6, our proposed estimator is approxi-
mately close to the true mean value, and its mean-
square error is smaller than that of other methods,
except for L=1 and a=-3. dgrw produces the closest
estimates to the true value with reduced mean-squared
error from Figs. 7 and 8.

2.2 Real SAR image and analysis

In order to further prove the performance of our
proposed method, practical experiments have been
conducted to estimate a and y parameters in G
(a,y,L), which is employed to model the real SAR
image by random weighting. In these experiments,
SAR data from a three-look intensity format SAR
image are used. Figure 9 shows the regions used for
estimating parameter. Tables 1 and 2 show the re-
sults of estimating @ and y parameters for each rect-
angular region. Figure 10 shows the histogram and
the line of the estimated probability density function
by each estimation method for each rectangular re-
gion. The Kolmogorov—Smirnov test (KS test) is then
performed between X from the image and Y for the
null hypothesis Hy, “both samples come from the
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same distribution”, and the complementary alterna-
tive hypothesis. Table 3 shows the sample p values. It
is observed that the null hypothesis is not rejected
with a significance level of 5% in any of the cases.
The results justify that the model is adequate for the
data, and the performance of our proposed method
is better than the others.

3 Conclusions

A new estimator for the roughness parameter of the
c¢=100 distribution based on the random weighing
method is proposed. Moreover, three models of con-
tamination inspired in real situations are defined to
assess the impact of outliers in the performance of
the estimators. By the experiments and analysis under
the contamination, we can observe that: (1) do not
consider the intensity of the contamination, the big-
ger the number of looks, the smaller the percentage
of no convergence. (2) Under the contamination
cases, the convergence with the increase of the level
of contamination or with the reduction of a. In
conclusion, our proposed method is much closer to
the real mean value, and its mean-squared error is
lower than that of other methods in the case of small
samples.

Table 3 Sample p values of the K-S test with samples from the

image in Fig. 9

p value
Color Qrw G am Qicum Gtom12
Blue 0.5298 03722 0.3649 0.2621 0.1541
Red 0.7375 05315 0.1969 0.1290 0.1052
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