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Abstract

Though the high-order superdirectivity theory proposed in recent years is attractive, it is hard to implement in
practice due to its poor robustness to small random array errors. Hence, in this paper, we present two robust designs
of high-order superdirectivity for circular arrays with gain and phase errors. Firstly, we study on the sensitivity function
of the high-order superdirectivity and give an alternative solution for a robust superdirective beamformer based on
sensitivity function constraint. This method could achieve an arbitrary compromise between directivity and
robustness, so it is more flexible and applicable than the existing higher-order truncation method. Although it does
not improve on computational complexity or performance with respect to the second-order cone programming
obviously, it could lay the foundation for the following robust design method. Then, considering the fact that different
eigenbeams correspond to different eigenvalues, we study the method of diagonal loading with variable factors in
detail, and further improve the performance of the former sensitivity function constrained method by loading variable
factors to different eigenbeams, which results in better performance and greater flexibility in making a compromise.
We also show that this proposed loading variable factors method can achieve an equivalent result to the higher-order
truncation method by setting proper factors. Simulation results demonstrate the robustness and effectiveness of the
above two methods, especially the performance improvement of the loading variable factors method.

Keywords: High-order superdirectivity, Circular arrays, Array errors, Sensitivity function constraint, Diagonal loading,
Loading variable factors

1 Introduction
Beamforming, which is a well-known approach to detect
and enhance the desired signal while suppressing noise
and interference with a sensor array, has been widely used
in many applications [1, 2]. Among the performance mea-
sures of a beamfomer, directivity describes the ability to
suppress noise from all directions without affecting the
desired signal from one principal direction.
As an optimal design in terms of directivity, superdirec-

tivity [3–5] has attracted tremendous research in different
disciplines such as radar [6, 7], sonar [8–12], audio engi-
neering [13–16], and wireless communication [17, 18],
etc. It is said that a superdirective array with relatively
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small size can provide much higher directivity than a con-
ventional array does. In [19] and [20], it was proved that
the maximum directivity factor (DF) of an M-sensor lin-
ear array can reachM2 at its endfire direction. It was also
proved that the maximum DF of a spherical array is N2

with N being the mode number [21].
Compared to the widely used uniform linear array, uni-

form circular array (UCA) has more compact structure
and could form uniform beams over 360◦ azimuthal direc-
tions. So the superdirectivity of UCA has also attracted
considerable attention [8–12, 18]. In [8] and [10], modal
beamforming theory was used to analyse the superdirec-
tivity of UCA, but it is not accurate enough due to the
inevitable errors caused by spatial sampling and series
truncation. Ma recently established a new theory of high-
order superdirectivity for UCA [11]. It is based on eigen-
decomposition of the circulant noise covariance matrix
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and can provide an analytical and closed-form superdi-
rective solution. So it is more accurate and attractive than
the modal theory. Then, Wang made some extensions to
this high-order superdirectivity theory. He extended it to a
general superdirectivitymodel suitable for arbitrary arrays
based on Gram-Schmidt mode-beam decomposition and
synthesis [22]. Later, he also provided the analytical opti-
mal solutions for the high-order superdirectivity of circu-
lar arrays mounted on a rigid sphere and an infinite rigid
cylinder [23].
Although theoretical superdirectivity seems to be very

attractive, it is hard to be applied in real-world systems
[5, 16, 24]. This is mainly because superdirectivity is very
sensitive to the unavoidable random errors of practical
arrays, such as sensor gain and phase errors, sensor posi-
tion perturbations, mutual coupling between sensors, etc.
Small deviations can severely degrade the performance of
superdirectivity, which may be even worse than that of the
conventional beamforming. Thus, robust design meth-
ods are eagerly needed to implement superdirectivity in
practice.
Diagonal loading method [25] is very useful to improve

the robustness, but the problem is that it is not clear
how to choose the optimal loading factor. Yan presented
a robust supergain beamforming via second-order cone
programming (SOCP) [9], and Zhou provided a new
superdirective beamforming method to jointly improve
array efficiency and robustness for HF circular arrays [18].
But neither of them has provided the robust design solu-
tion for the attractive high-order superdirectivity theory.
Ma advised to improve the robustness by truncating the
sensitive higher-order eigenbeams, i.e., the higher-order
truncation (HOT)method [11]. However, this method can
only truncate the eigenbeams by a step of certain inte-
gral order, so it is not flexible and may be limited in
many applications. Wang modified the weighting vector
and simplified the diagonal matrix of eigenvalues by virtue
of the symmetry properties, then they gave the solution
in constraints of both sensitivity function (SF) and side-
lobe level by the SOCP [12]. But loading variable factors
to different eigenbeams still needs deeper investigation.
Wang also discussed the robust design methods for the
general superdirectivity model [22] and for the high-order
superdirectivity of circular arrays mounted on rigid baf-
fles [23]. Both of them have only used the reduced-rank
technique, which is the same with the above HOTmethod
in principle.
In this paper, the robustness of each eigenbeam is inves-

tigated in detail for the high-order superdirectivity theory
of UCA. Taking SF as the robustness parameter, we firstly
give an alternative solution to a constrained superdirective
beamformer (CSB) by adding a constraint to SF accord-
ing to the errors, which is denoted as the CSB method.
Although it does not make obvious improvements on

computational complexity or performance with respect to
SOCP, the CSB method could lay the foundation for a fur-
ther robust design. Precisely, based on the CSB method
and considering that different eigenbeams correspond to
different eigenvalues, we present a new design of loading
variable factors (LVF) to different eigenbeams, which is
named as the LVFmethod and results in improved perfor-
mance. It will also be shown that this LVF method could
easily achieve an equivalent result to the existing HOT
method by setting proper factors.
The remainder of this paper is organised as follows.

Firstly, some theory basis of high-order superdirectiv-
ity for UCA is given in Sections 2 and 3. Specifically,
the theory of high-order superdirectivity is described in
Section 2, and its robustness is discussed in Section 3.
The interested readers are referred to [11, 12] for further
details. Then, Section 4 presents the two robust design
methods. The performances of the proposed methods are
demonstrated by simulation results in Section 5. Finally,
the conclusions are summarized in Section 6.

2 High-order superdirectivity theory
Consider an M-sensor UCA with radius r lying on the
xy-plane, as shown in Fig. 1. Assuming a unit magni-
tude plane wave impinging from direction (φ, θ), where
φ and θ are the azimuth and elevation angles, respec-
tively. The pressure received by the mth sensor at
(r cosφm, r sinφm, 0) can be expressed as

pm(φ, θ) = ejkr sin θ cos(φm−φ), (1)

where k = 2π/λ is the wavenumber with λ being the
wavelength. Then, the array response vector of the UCA
will be

a(φ, θ) =
[
ejkr sin θ cos(φ0−φ),

ejkr sin θ cos(φ1−φ), . . . , ejkr sin θ cos(φM−1−φ)
]T∈C

M,1.
(2)

Suppose the weighting vector and the present steer-
ing direction being denoted by w ∈ C

M,1 and (φ0, θ0),
respectively, the beam pattern (BP) will be

B(φ, θ) = wH (φ0, θ0) a(φ, θ). (3)

It is known that solving the optimum weighting vector
for themaximumDF is equivalent tomaximizing the array
gain G in an isotropic noise field [2, 11], i.e.,

wopt = argmax
w

∣∣wHa (φ0, θ0)
∣∣2

wHρρρnw
, (4)

where ρρρn is the normalized noise covariance matrix in
an isotropic noise field. ρρρn is a circulant matrix and its
mth eigenvalue and eigenvector are formulated as λm =∑M−1

l=0 ρlejlφm and vm = 1√
M

[
1, ejφm , . . . , ej(M−1)φm

]T ∈
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Fig. 1 Geometric model of anM-sensor uniform circular array

C
M,1, respectively [26], where ρl = sinc(k�dl) denotes

the lth element of the first row of ρρρn with �dl being the
sensor spacing between sensor 0 and sensor l [27]. It is
easy to validate that λm = λM−m and vm = v∗

M−m.
By using the above property of the circulant symmet-

ric matrix ρρρn and expressing Am(φ, θ) = vHma(φ, θ), the
closed-form solutions of the optimal weighting vector,
the maximum DF and the BP for superdirectivity can be
obtained as [11, 12]

wopt = ζ

(M−1∑
m=0

1
λm

vmvHm

)
a (φ0, θ0) , (5)

DFmax = Gmax =
M/2∑
m=0

εm
λm

|Am (φ0, θ0)|2 =
M/2∑
m=0

Dm, (6)

B(φ, θ) = ζ

M/2∑
m=0

εm
λm

Re
{
A∗
m (φ0, θ0)Am (φ, θ)

} =
M/2∑
m=0

Bm,

(7)

where ζ = [
aH (φ0, θ0)ρρρ−1

n a (φ0, θ0)
]−1 is the normalizing

coefficient and

εm =
{
1 m = 0,M/2
2 m = 1, 2, . . . ,M/2 − 1. (8)

Thus, the maximumDF and the optimal BP for superdi-
rectivity of a UCA are decomposed into the sum of the
eigenbeams’ DFs Dm and the sum of the eigenbeams Bm
(m = 0, 1, . . . ,M/2), respectively. Based on these solu-
tions, a complete theory of high-order superdirectivity for

UCA has been established. More details of this theory can
be found in [11].

3 Analysis of robustness
Robustness, which measures the beamformer’s sensitivity
to random errors, is a very crucial point in superdirec-
tivity theory. So it is essential to discuss the robustness
of the high-order superdirectivity before our methods are
presented.

3.1 Robustness measurement
In [11], the eigenvalue λm has been used as the robustness
parameter, but no detailed discussions are given. While
Wang utilizes the SF to measure the robustness of high-
order superdirectivity, since it is directly related to the
sum of the variances of array errors and it could provide
more information than eigenvalue [12]. We will also take
the SF as the robustness measurement in the following
discussions. Specifically, the larger the SF is, the poorer
the robustness becomes.
The SF of the optimal superdirective beamformer is

given by [12]

Tsf = ∥∥wopt
∥∥2 =

M/2∑
m=0

ζ 2 εm
λ2m

|Am (φ0, θ0)|2 =
M/2∑
m=0

Tm. (9)

It is observed that the SF can also be decomposed into
the sum of eigenbeams’ SFs Tm, just as the maximum DF
in (6) and the optimal BP in (7). So we have got both
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the DF Dm and the SF Tm of each eigenbeam, which are
inversely proportional to λm and λ2m, respectively.
Figure 2 depicts the DFs Dm and the SFs Tm of var-

ious eigenbeams of a 16-sensor UCA both in decibels
versus kr. It is seen that, for smaller kr, the higher the
eigenbeam’s order is, the larger its DF is, yet the much
larger its SF becomes. As kr increases, both the DF and
the SF decrease, the superdirective beamformer degrades
to the conventional beamformer (CBF). Some related
details of the DF and the SF of each eigenbeam are
referred to [12].

3.2 An example
Providing an 8-sensor UCA with kr = 1 and (φ0, θ0) =
(π/2,π/2), the actual gain gm and phase ϕm of the mth
sensor are chosen according to

gm = 1 + √
12σgβm, ϕm = √

12σϕηm, (10)

a

b

Fig. 2 Directivity factors and sensitivity functions of eigenbeams of a
16-sensor UCA both in decibels versus kr. a Directivity factors
10 lg(Dm). b Sensitivity functions 10 lg(Tm)

where βm and ηm are i.i.d. random variables in the uniform
distribution over [−0.5, 0.5], σg = 0.01 and σϕ = 1◦ are
the standard deviations of gm and ϕm, respectively.
The eigenbeams and their synthesized BPs are shown

in Fig. 3. For an ideal array without errors, the higher the
eigenbeam’s order is, the larger its DF or gain is. While for
this practical array with errors, some of its higher-order
eigenbeams (m = 3, 4) are distorted obviously, which
results in performance degradation of the synthesized BP
as seen in Fig. 3f. This example validates the fact that,
although the higher-order eigenbeam has higher gains, its
robustness is very poor.
A useful way to improve the robustness is the HOT

method presented in [11]. However, this method can only
truncate the eigenbeams by a step of certain integral order,
i.e. the adjustability between the SF and the DF is not
flexible. So it may be limited in many applications.

4 Proposed algorithms
In this section, we first develop a method of design-
ing the robust high-order superdirectivity based on the
SF constraint. This design can be transformed into an
extended diagonal loading problem, whose loading fac-
tor is directly related to the SF constraint and can be
solved by the existing numerical methods. Compared to
the HOT method, it can achieve an arbitrary compromise
between the superdirective beamformer and the conven-
tional one. Then, although [12] has shown the concept
of loading variable factors, it needs study in detail. So,
based on the aforementioned high-order superdirectiv-
ity theory, we investigate the method of loading variable
factors to different eigenbeams, which could result in
better performance and be more flexible to make a com-
promise. Moreover, we will also see that an equivalent
result to the HOT method could be achieved by setting
proper factors.

4.1 The CSBmethod
Considering that the SF of a superdirective beamformer is
undesirably high at low frequencies, we would add a con-
straint on the SF to make the superdirective beamformer
more robust. Denoting the maximum acceptable SF by δ0,
the CSB will be

wcsb = argmin
w

wHρρρnw,

subject to wHa(φ0, θ0) = 1, Tsf = ‖w‖2 ≤ δ0.
(11)

The above equation can also be solved by the SOCP [9].
But considering the fact that this paper focuses on the
investigation of loading variable factors to eigenbeams, we
provide an alternative solution using a numerical method
as follows.
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a b

c d

e f

Fig. 3 The 0th- to 4th-order eigenbeams and their synthesized beam patterns for an 8-sensor ideal UCA (blue dashed line) and an 8-sensor practical
UCA (red solid line) with kr = 1 and (φ0, θ0) = (π/2,π/2). am=0. bm=1. cm=2. dm=3. em=4. f Synthesized

The constraint factor δ0 is usually set by designers
according to the practical array errors. This could be done
by computer simulations or ad hoc experiments simply
and efficiently. Specifically, the larger the array errors are,
the smaller δ0 should be, thus the more robust the CSB
is, yet the smaller the DF is. It is noted that δ0 has a
lower bound of 1/M which corresponds to the CBF that
is optimal in terms of robustness. In addition, δ0 should
be smaller than or equal to the optimal superdirective
beamformer’s SF Tsf in (9), otherwise the added constraint

will be disabled. So the bound of the constraint factor is
given by

1
M

≤ δ0 ≤ aH(φ0, θ0)ρρρ−2
n a(φ0, θ0)[

aH (φ0, θ0)ρρρ−1
n a (φ0, θ0)

]−2 . (12)

Under the condition of (12), the SF constraint Tsf =‖
w ‖2≤ δ0 is enabled and the solution of (11) satisfies ‖
w ‖2= δ0, then the CSB in (11) can be written as
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wcsb = argmin
w

wHρρρnw,

subject to wHa (φ0, θ0) = 1, Tsf = ‖w‖2 = δ0.
(13)

The solution of (13) can be obtained with the method of
Lagrange multipliers [28], and is given by

wcsb = (ρρρn + γ I)−1 a (φ0, θ0)
aH (φ0, θ0) (ρρρn + γ I)−1 a (φ0, θ0)

, (14)

where γ is a real-valued Lagrange multiplier with γ ≥ 0
and (ρρρn + γ I) being positive definite, and I ∈ R

M,M is
a unit matrix. The factor γ can be calculated by the fol-
lowing expression which links γ to the preset constraint
factor δ0 directly,

‖wcsb‖2 = aH (φ0, θ0) (ρρρn + γ I)−2 a (φ0, θ0)[
aH (φ0, θ0) (ρρρn + γ I)−1 a (φ0, θ0)

]2 = δ0.

(15)

It is seen from (14) that this design of the CSB belongs to
the class of diagonal loading approaches essentially. The
main difference between the CSB method and the tradi-
tional loading samplematrix inversion (LSMI)method lies
in that, it’s not clear how to choose the diagonal loading
factor of the LSMI method, but the loading factor of our
CSBmethod can be decided by the constraint factor δ0 via
Eq. (15).
Under the condition of (12), the middle term in

(15) is a monotonically decreasing function of γ

[28]. Denote this function by f (γ ), then f (0) =
aH(φ0, θ0)ρρρ−2

n a(φ0, θ0)/
[
aH(φ0, θ0)ρρρ−1

n a(φ0, θ0)
]−2 and

lim
γ→+∞ f (γ ) = 1/M just correspond to the upper bound

and the lower bound of δ0, respectively. Thus, Eq. (15) has
a unique nonnegative solution γ̂ . Considering that (15) is
a nonlinear equation, its solution γ̂ can be obtained effi-
ciently by numerical methods such as a Newton’s iterative
method.
Next, the upper bound of γ̂ is worth discussing to avoid

the trivial solution [28]. Sorting the eigenvalues {λm}M−1
m=0

of ρρρn in descending order λ̄0 ≥ λ̄1 ≥ . . . ≥ λ̄M−1, denot-
ing � = diag(λ̄0, λ̄1, . . . , λ̄M−1) and the corresponding
eigenvectors U =[ v̄0, v̄1, . . . , v̄M−1], we can rewrite the
matrix ρρρn as

ρρρn = U�UH. (16)

Substituting (16) into (15) and utilizing the relationship
(ρρρn + γ̂ I)−1 = U(� + γ̂ I)−1UH, we will obtain

(
UHa (φ0, θ0)

)H (
� + γ̂ I

)−2 (
UHa(φ0, θ0)

)
[(
UHa(φ0, θ0)

)H (
� + γ̂ I

)−1 (
UHa(φ0, θ0)

)]2 = δ0. (17)

Representing the column vector UHa(φ0, θ0) by z and
letting zm denote the mth element of z, (17) can be
expanded in element notation

M−1∑
m=0

|zm|2
(λ̄m+γ̂ )

2

[M−1∑
m=0

|zm|2
(λ̄m+γ̂ )

]2 = δ0. (18)

By replacing λ̄m in the numerator and the denomina-
tor of (18) with λ̄M−1 and λ̄0, respectively, we can get an
inequality

δ0 ≤
‖z‖2

(λ̄M−1+γ̂ )
2

‖z‖4
(λ̄0+γ̂ )

2

=
‖a(φ0,θ0)‖2
(λ̄M−1+γ̂ )

2

‖a(φ0,θ0)‖4
(λ̄0+γ̂ )

2

=
(
λ̄0 + γ̂

)2

M
(
λ̄M−1 + γ̂

)2 , (19)

so the bound of γ̂ together with γ̂ ≥ 0 is given by

0 ≤ γ̂ ≤ λ̄0 − λ̄M−1
√
Mδ0√

Mδ0 − 1
. (20)

Finally, summarizing the above design algorithm of the
CSB as follows:

1) Perform eigen-decomposition on the normalized
noise covariance matrix ρρρn.

2) Set a proper value for the constraint factor δ0 accord-
ing to array errors. If (12) is satisfied, solve (18) for γ̂

by a Newton’s iterative method under the condition
of (20); otherwise, set γ̂ = 0.

3) Substitute the γ̂ obtained from Step 2 into (14) or

wcsb = U (� + γ I)−1UHa(φ0, θ0)
aH(φ0, θ0)U (� + γ I)−1UHa(φ0, θ0)

(21)

to calculate the desired weighting vector of the CSB.

It is noteworthy that both the SOCP and the CSB meth-
ods require a complexity of O

(
M3) [9, 28] and they can

achieve the similar performance. But the CSB method
could lay the foundation for the following LVF method
and also facilitate the sequent comparison and analysis, so
it is more suitable for the robust high-order superdirectiv-
ity in this paper.

4.2 The LVF method
The above method achieves compromise between the DF
and the SF by loading the same factor γ̂ to all the eigen-
values. Considering that the eigenvalues of high-order
superdirectivity vary within a very wide range, e.g., the
maximum eigenvalue λ̄0 = 5.703 and theminimum eigen-
value λ̄4 = (4.025e − 5) of an 8-sensor UCA with kr = 1,
we would expect that loading variable factors to differ-
ent eigenvalues which correspond to different eigenbeams
will improve the above method to some extent.
Denoting the different loading factors by

{
γ̂m

}M−1
m=0 and

using the original eigenvalues λm instead of the sorted
ones λ̄m for convenience, we can modify (21) as
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wlvf = U�̂−1UHa(φ0, θ0)
aH(φ0, θ0)U�̂−1UHa(φ0, θ0)

, (22)

where �̂ = diag
(
λ0 + γ̂0, λ1 + γ̂1, . . . , λM−1 + γ̂M−1

)
.

These loading factors can be decided independently
according to the eigenbeams’ robustness. Proper choosing
of each loading factor will achieve a better compromise
between the DF and the SF of a superdirective beam-
former.
Further, from Eqs. (6), (7), and (9), we can see that for

a very small eigenvalue λm which corresponds to a high-
order eigenbeam, its inverse 1/λm is infinitely large, so
that even small array errors may be greatly amplified. In
this case, robustness is the main factor and we do not
expect an accurate approximation of 1/λm, so a larger
loading factor γ̂ 2/λm is more proper than γ̂ . While for
a large eigenvalue λm, its eigenbeam is so robust against
array errors that there is no need to load any factor. And it
can be easily seen that

(
λm + γ̂ 2/λm

)
is closer to λm than(

λm + γ̂
)
with an increasing eigenvalue. Thus a loading

factor which varies with its eigenvalue seems to be more
reasonable than a fixed one.
Specifically, we propose to relate the mth loading fac-

tor γ̂m with its corresponding eigenvalues λm and the
aforementioned solution γ̂ , i.e.,

γ̂m = γ̂ 2

λm
, m = 0, 1, . . . ,M − 1. (23)

The matrix ρρρn will become Rn = (ρρρn + �VL), where
�VL = diag

(
γ̂0, γ̂1, . . . , γ̂M−1

)
. Together with the modi-

fied matrix Gn = (
ρρρn + γ̂ I

)
in the above CSB method,

the three matrices ρρρn, Gn and Rn have the same eigen-
vectors and different eigenvalues λm,

(
λm + γ̂

)
and(

λm + γ̂ 2/λm
)
, respectively. The performances of these

two methods will be demonstrated in Section 5 by simu-
lation results.
It should be noted that Eq. (23) is mainly taken as one

example to show the potential improved performance of
the LVF method. The analytical optimal solution for vari-
able factors

{
γ̂m

}M−1
m=0 still needs more investigation, and it

would be one of our main future research tracks.
Before closing this section, we will show the relationship

between this LVF method and the aforementioned HOT
method. From (6) and (9), the DF and the SF of the mth-
order eigenbeam with a variable loading factor γ̂m can be
respectively expressed as

D̂m = εm |Am(φ0, θ0)|2
λm + γ̂m

(24)

and

T̂m = ζ 2 εm |Am(φ0, θ0)|2(
λm + γ̂m

)2 , (25)

wherem = 0, 1, . . . ,M/2. Only (M/2 + 1) loading factors
are considered since λm = λM−m.
In (24) and (25), two special values for γ̂m are worth dis-

cussing. One is γ̂m = +∞, then the DF D̂m and the SF
T̂m both equal 0, which means the mth-order eigenbeam
is not available, or i.e., truncated. The other is γ̂m = 0,
thus the DF D̂m and the SF T̂m keep unchanged with their
counterparts in the high-order superdirectivity theory, so
that the mth-order eigenbeam will be reserved. In con-
clusion, the result of the HOT method, which can also be
implemented by setting γ̂m = 0 to the lower-order eigen-
beams and γ̂m = +∞ to the higher-order eigenbeams, is
contained in our LVF method.

5 Simulation results
In this section, some simulation results are presented
to illustrate the performances of the proposed methods.
Firstly, the design of the CSB is shown with several dif-
ferent SF constraint factors. Then, the performances of
the CSB method and the LVF method are compared by a
design example. At last, the relationship between the LVF
method and the HOT method is shown and discussed.
Without loss of generality, the present steering direction
is set as (φ0, θ0) = (π/2,π/2) in the following simulations.

5.1 Simulations of the CSBmethod
Consider a 16-sensor UCA with kr ranging from 1 to 15,
the SF constraint factor δ0 is set as 80, 60, 40, 20, and 0
dB, respectively. The total DF (or its logarithmic form the
directivity index (DI), which is defined as DI = 10 lg(DF)

(dB)) and SF of the CSB are depicted in Fig. 4. The con-
ventional and ideal superdirective results are added for
comparison, where the conventional result is obtained by
using the weighting vector w = a(φ0, θ0)/M, and the
ideal superdirective result is obtained by using the optimal
weighting vector in (5). Some relevant conclusions can be
made as follows.
It is shown from Fig. 4 that, for the ideal superdi-

rective beamformer, its DF decreases and its SF drops
more quickly as kr increases, it will finally degrade to
the conventional beamformer since the normalized noise
covariance matrix ρρρn tends to a unit matrix. These results
have just validated the fact that superdirectivity can only
be achieved for small kr [13].
In Fig. 4b, the SF of the proposed CSB is seen to

be constrained less than or equal to the SF constraint
factor δ0, while the corresponding DF decreases to a
certain extent, as shown in Fig. 4a. The smaller the
SF constraint factor δ0 is, the more robust the CSB
becomes, but the smaller the DF is. It is validated that
the CSB method could make a flexible compromise
between the superdirective beamformer and the conven-
tional one, thus it is more useful to practical circular arrays
with errors.
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a

b

Fig. 4 Total directivity index and sensitivity function of the CSB versus
kr with various constraint factors. a Directivity index. b Sensitivity
function

It should be noted that, if (12) is satisfied, the constraint
factor δ0 is effective and equal to the SF of the CSB; but
when δ0 is larger than the SF of superdirectivity as kr
increases, it will be ineffective, then the CSB is equivalent
to the superdirective beamformer, as shown in Fig. 4.

5.2 Comparisons of the CSB and LVF methods
To compare the performances of the CSB and LVF meth-
ods, we set δ0 = 20 dB and M = 12. The loading factors
γ̂ and {γ̂m}M−1

m=0 are, respectively, computed by (18) and
(23). The total DI (or DF in decibel) and SF are shown
in Fig. 5.
It is seen from Fig. 5b that, for small kr, the SF of the

CSB is constrained to be δ0 while the SF of the LVF is
variable and lower than δ0 at most points. Meanwhile,
the DFs of the LVF and the CSB remain almost the same
level, as shown in Fig. 5a. As kr increases, both the CSB
and LVF methods become the superdirective beamformer
and tend to the conventional one finally. These results

a

b

Fig. 5 Total directivity index (or directivity factor in decibel) and
sensitivity function of the CSB and the LVF versus kr for a 12-sensor
UCA. a Directivity index. b Sensitivity function

show that the LVF method could achieve a more flexible
compromise than the CSB method between superdirec-
tivity and robustness. Moreover, the LVF method is some-
what more robust for most small kr.
Next, we add some random gain and phase errors to

the 12-sensor array with kr = 1.5 according to (10) with
σg = 0.01 and σϕ = 1◦, and examine the eigenbeams and
synthesized BPs of four cases (superdirectivity of the prac-
tical array with errors, superdirectivity of the ideal array
without errors, CSB design with array errors, and LVF
design with array errors).
Figure 6 shows the 2nd- to 6th-order eigenbeams of the

above four cases. The 0th- and 1st-order eigenbeams are
not given here since they are robust enough. Figure 6f is
a magnification of a portion of Fig. 6e. It can be seen that
the lower-order eigenbeams of the four cases are almost
consistent. As the order increases, the three cases with
array errors deviate from the ideal case. Especially, the
5th- and 6th-order eigenbeams of the practical array are
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a b

c d

e f

Fig. 6 The 2nd- to 6th-order eigenbeams of four cases (practical array , ideal array, LVF design and CSB design) for a 12-sensor array with kr = 1.5 in
the presence of array gain and phase errors. am=2. bm=3. cm=4. dm=5. em=6. fMagnification of a portion of e

seriously distorted due to their poor robustness, while
these two eigenbeams of the CSB and LVF methods are
significantly reduced, especially the LVF case. That is why
the robustness could be improved by using the CSB and
LVF methods.
Figure 7 depicts the total BPs of the four cases. Again,

Fig. 7b is a magnification of a portion of Fig. 7a with the
CBF for comparison. The superdirective BP of the practi-
cal array with gain and phase errors (labelled as “practical”
in Fig. 7a), which is synthesized using all practical eigen-
beams from order 0 to order 6, is shown to be extremely

distorted. But the BPs of the two proposed methods CSB
and LVF are greatly improved. They also achieve higher
DFs and narrower mainlobe widths than the CBF does.
Although their DFs are smaller than the ideal case, they
are more robust and more proper for a practical circular
array with gain and phase errors. From Fig. 7b, we can
also obtain that the mainlobe of the LVF method is very
approximate to the one of the CSB method. But the side-
lobe levels of the CSB and LVF methods are about −5.6
and −6.66 dB, respectively, i.e., the LVF method has an
improvement of 1.06 dB in terms of sidelobel level than
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a b

Fig. 7 Comparison of total beam patterns with gain and phase errors for a 12-sensor UCA, kr = 1.5. a Total beam patterns without including CBF. b
Magnification of a portion of a with CBF

the CSB method. In addition, the BP of the LVF method is
more symmetrical and its shape is closer to the ideal BP,
which means that the LVF method is more robust to gain
and phase errors than the CSB method.
To compare the performance of the two methods fur-

ther, we change the simulation conditions with M = 16,
kr = 1.65 and δ0 = 30 dB. The levels of gain and phase
errors keep unchanged. The simulation results of the total
BPs are shown in Fig. 8. We can see that the performance
of the BP of the LVF method outperforms that of the
CSB method obviously. Although its mainlobe is some-
what widened, the sidelobe level and the shape of the BP
of the LVF method are much improved, while the BP of
the CSB method is relatively poor in performance.
At last, comparing the results of Figs. 7b and 8a, we can

find that the DF achieved by the LVFmethod is better than
that of the CSB method in Fig. 8a, while it is somewhat
worse in Fig. 7b. The main reason lies in that the BPs of

the two methods are distorted in varying degrees by array
errors. In Fig. 7b, the SF constraint factor δ0 is 20 dB, so
both the BPs of the two methods are relatively less dis-
torted. The DF of the LVF method is a little worse than
that of the CSB method, but the LVF method is shown to
be more robust. This is reasonable because the DF and the
SF are a pair of tradeoffs theoretically. While in Fig. 8a,
δ0 is increased to 30 dB and the array errors play a main
role in this case. The two BPs are distorted more seriously,
especially the CSB method. So the DF of the LVF method
is better because its BP is less affected by array errors than
that of the CSB method.

5.3 The LVF method versus the HOTmethod
In the last simulation, we will illustrate the relationship
between our LVF method and the existing HOT method.
Reconsider a 12-sensor UCA, and set the loading fac-

tors γ̂m as +∞ for m = 5, 6, 7, and 0 for the others,

ba

Fig. 8 Comparison of total beam patterns with gain and phase errors for a 16-sensor UCA with kr = 1.65, δ0 = 30 dB. a Polar coordinates figure. b
Normalized beam patterns
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respectively. Actually, this is equivalent to loading +∞
to the 5th- and 6th-order eigenbeams and loading 0 to
the 0th- to 4th-order ones since λm = λM−m. On the
other hand, truncate the 5th- and 6th-order eigenbeams
directly using the HOT method. The corresponding total
DI (or DF in decibel) and SF are shown in Fig. 9a and
b, respectively. It can be seen that both of the DFs and
SFs of the two methods match well with each other. So
our LVF method could obtain an equivalent result to the
HOTmethod by properly setting 0 and+∞ to the loading
factors.
Then, under the condition of the aforementioned array

errors with kr = 1.5, we design the HOT method by
synthesizing the 0th- to 5th-order eigenbeams and the
0th- to 4th-order eigenbeams, respectively, and design
the LVF method by setting δ0 = 20 dB. The BPs of
the three cases are shown in Fig. 9c. It is seen that
the LVF method has the similar BP to the HOT(0∼4)
method. Although its mainlobe width is about 7◦ broader
than that of the HOT(0∼5) method, its sidelobe level
(about −6.66 dB) is very much improved since the BP
of the HOT(0∼5) method is severely distorted and use-
less. Further, we increase the constraint factor of the
LVF method to δ0 = 23 dB in Fig. 9d. Compared with
the HOT(0∼4) method, the mainlobe width of the LVF

method is reduced by about 2.5◦, but its sidelobe level
is increased by about 0.5 dB. Moreover, the LVF method
is still much more robust than the HOT(0∼5) method.
These results show the fact that the LVF method could
adjust the compromise between directivity and robustness
more flexibly.
Thus, our LVF method could fill the gap between differ-

ent eigenbeams truncations of the HOT method, and it is
more flexible to make a compromise and has the potential
to provide better performance in the robust design of
high-order superdirectivity.

6 Conclusions
In conclusion, we make a detailed study of the variable
loading method for improving the robustness of high-
order superdirectivity for circular arrays. Since higher-
order eigenbeams are very sensitive to array gain and
phase errors, the theoretical superdirectivity is hardly
implemented in practice. To solve this problem, we
present two robust design methods in this paper. Firstly,
by adding a constraint to the SF, a more robust CSB is
produced which can achieve a compromise between the
superdirective beamformer and the conventional one, in
terms of directivity and robustness. Further, a more flexi-
ble LVF method is proposed by loading variable factors to

a b

c d

Fig. 9 Comparison of the loading variable factors method and the higher-order truncation method. a Total directivity index and b total sensitivity
function 10 lg(Tsf) of the three beamformers. Beam patterns of the HOT method and the LVF method with c δ0 = 20 dB, and d δ0 = 23 dB
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different eigenbeams, and it has better performance than
the CSB method at most frequencies. We also prove that
the LVF method contains the results of the existing HOT
method and could outperform it. Simulation results have
demonstrated that the robustness of high-order superdi-
rectivity to gain and phase errors is obviously improved
by the proposed methods. The effects of other factors on
high-order superdirectivity, such as mutual coupling and
array efficiency, still needmore investigation, and it would
be our another main future research track.
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