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Abstract

For future 3D TV broadcasting systems and navigation applications, it is necessary to have accurate stereo matching
which could precisely estimate depth map from two distanced cameras. In this paper, we first suggest a trinary
cross color (TCC) census transform, which can help to achieve accurate disparity raw matching cost with low
computational cost. The two-pass cost aggregation (TPCA) is formed to compute the aggregation cost, then the
disparity map can be obtained by a range winner-take-all (RWTA) process and a white hole filling procedure. To
further enhance the accuracy performance, a range left-right checking (RLRC) method is proposed to classify the
results as correct, mismatched, or occluded pixels. Then, the image-based refinements for the mismatched and
occluded pixels are proposed to refine the classified errors. Finally, the image-based cross voting and a median filter
are employed to complete the fine depth estimation. Experimental results show that the proposed semi-global
stereo matching system achieves considerably accurate disparity maps with reasonable computation cost.

Keywords: TCC census transform, Cost aggregation, Range winner-take-all, Image-based refinements

1 Introduction

The measure of the distance of the scene for robotic
systems [1, 2], self-directed vehicles [3], or 3D video
broadcasting systems [4, 5] is an important research
topic in computer vision. For 3D video broadcasting, a
small number of selected views, which include the color
texture frames and gray depth maps, are coded by the
3D-HEVC coders [6, 7]. In the receivers, the 3D TV set
decodes all texture frames and depth maps with the 3D-
HEVC decoder and use a depth image-based rendering
(DIBR) system to generate more virtual views for naked-
eye multi-view 3D displays [8, 9]. In case that the users
possess the naked-eye multi-view 3D displays, the side-
by-side or top-and-bottom stereo packing formats
should further involve not only real-time stereo match-
ing to estimate the depth information but also these
displays which also need the depth image-based render-
ing (DIBR) process to produce the multi-view synthe-
sized videos. Due to the high computation of stereo
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matching, a simple and accurate stereo matching algo-
rithm is needed for multi-view 3D displays. Physically,
the depth map could be measured by various sensors,
such as laser or infrared radar by using the concept of
time-of-flight to obtain accurate depth information but
with disadvantages of low resolution and high cost. With
multiple cameras [10, 11], the stereo vision technologies
[12-14] to extract the depth information become a low-
price and high-resolution approach. With horizontally
placed cameras, the distance estimation of each pixel,
called stereo matching, searches the best correspondence
of the same scene point in two different viewing images
[15, 16]. The horizontal displacement of the paired
pixels in two viewing images is called the disparity. If the
parameters of capturing cameras are known, the dispar-
ity map can be easily transformed to distance (depth)
information.

Stereo matching, which is an active research topic in
computer vision, could estimate a dense disparity map
from a pair of images if their inherent ambiguities can
be properly resolved. How to accurately estimate the
disparity map under different scene conditions, such as
smooth regions, discontinuities, and occluded areas, is
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the most difficult problem. A survey of stereo matching
was conducted by Scharstein and Szeliski [17]. Two
well-known global stereo matching approaches, belief
propagation [18] and graph cut [19], can produce high-
quality disparity maps but require very high computa-
tional complexity. Therefore, several semi-global or local
stereo methods are generally proposed to achieve
efficient implementation [20-23]. However, these semi-
global local stereo matching methods still cannot totally
solve ambiguity problems, which could come from
census transform [21, 22, 24] and local support windows
[23]. There are still three main problems need to be
solved to improve the precisions for the semi-global
stereo matching methods. The determinations of size
and shape of local support window should adaptively in-
clude more reliable pixels. The sensitivity of intensity in
the census transform should be reduced in flat regions
that small variations could introduce salt-and-pepper
noise in matching cost. Besides, the regular refinement
after left-right consistency check cannot unravel the
occlusion problems.

To achieve high-precision stereo matching, we
propose a semi-global stereo matching system with the
trinary cross color (TCC) census transform to reduce
sensitivity in smooth region, the two-pass cost aggrega-
tion (TPCA) to obtain stable cost, the range winner-
take-all (RWTA) to select the robust depth, and the
range left-right check (RLRC) to keep the reliable depth.
Finally, the triple image-based refinements are also used
to further improve the performances. The TPCA com-
bines data term and smooth term together in order to
achieve accurate disparity maps in smooth areas and
precise object boundaries. The data term is based on the
proposed TCC census, which makes raw matching have
a better performance than the AD census but with less
computation time. A modified RLRC and triple image-
based refinements further achieve high-accuracy per-
formance. In this paper, we propose a semi-global stereo
matching system based on several techniques, including
the TCC census, TPCA, RWTA, and RLRC methods as
well as image-based refinements to achieve high-
precision depth estimation. The rest of this paper is
organized as follows. In Section 2, we first define the
stereo matching notations and give a brief overview of
the proposed stereo matching system. The details of the
framework are described in Section 3. Experimental
results to demonstrate the effectiveness of the proposed
algorithms are shown in Section 4. Finally, we conclude
this paper in Section 5.

2 Local census stereo matching methods

Stereo matching is an active research topic in computer
vision. It is one of the important 3D vision methods to
recover a dense disparity map from paired images once
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the inherent ambiguities are properly solved. If the dis-
parity map is generated by simple algorithms, it usually
has many discontinuities and occluded areas. If the
high-quality disparity map could be produced by com-
plex algorithms [17, 18], the computation time is usually
extremely high. Therefore, how to generate the high-
quality disparity map with low computing time becomes
an important task in 3D vision systems. Figure 1 shows
the flow diagram of typical local stereo matching algo-
rithms. In order to reduce the ambiguity problems, local
stereo methods commonly aggregate the matching costs
of the neighboring pixels in a selected local support win-
dow. The local support window should adapt its shape
and size to collect the pixels with the same depth. To
decrease the sensitivity of intensity, the census transform
[21, 22, 25], which relies on the relative ordering of
intensities, successfully characterizes the patch structure
and achieves good matching property for accurate
disparity estimation near depth discontinuities.

With the rectified left and right Wx H color images,
with pixels I’ (x,y) and I’(x,y), as the inputs of the sys-
tem. For simplicity, let p = (x, y) indicate the spatial loca-
tion of the pixel; the left and right images can be simply
denoted as I.(p) and I’(p), respectively. For stereo
matching, the disparity d should be estimated such that
I'(x,y) and I'(x+d,y) become the stereo matched
paired pixels, which are also respectively denoted as Ii
(p) = IX((x.5)) and I(p,d) = I'((x +d,)) for simpli-
city. For all Wx H pixels, we need to compute all the
W x H disparity values, which are formed as the Wx H
disparity map.

To get good raw matching cost, the census transform
[22], which converts the intensity as the binarized differ-
ences of neighboring pixels, is defined as

Left Ima%e I'(xy) Right Imalge 1. (xy)

Raw Matching Cost

|
Cost Aggregation

|

Winner-takes-all

!

Refinement

l

Disparity Map

Fig. 1 Flow diagram of typical non-global stereo matching algorithms
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Be(p) = enp) S0P 1(@)), 1)

where ® denotes a bitwise catenation operator, and the
auxiliary function is defined as

£U(p) 1(q)) = {0 Jif 1g) <1(p) @)

1 ,otherwise.

where p and g, respectively, denote the positions of the
central and surrounding pixels in a selected window
N(p), while I(p) and I(q) represent their corresponding
intensities of the pixels. The census transform is robust
to radiometric distortions and achieves good overall per-
formance in cost representation. However, the census is
very sensitive in the flat region that makes the salt-and-
pepper noise in matching cost. Besides, the census is ob-
tained from square windows, which could overlay the
occlusion areas and expand the boundaries of objects.

3 The proposed stereo matching system

In this paper, for an accurate disparity map generation,
we propose a semi-global stereo matching system as
shown in Fig. 2. In the proposed system, the matching
cost is first computed by the proposed trinary cross
color (TCC) census transform, which could attain a reli-
able measure of pixel dissimilarity. However, the noise
generated by raw matching cost still exists though it has
been decreased largely by the TCC census transform. To
achieve accuracy disparity estimation, we then compute
horizontal and vertical smooth terms in pixel-wise fash-
ions to reduce the noise, which could be corrected by
the reliable texture edges. Smooth items are mostly used
in global stereo matching algorithms, but we combine
them with the local stereo matching method such that
the proposed algorithm could be treated as a semi-
global stereo matching method. After smooth terms
computation, we test several census patterns to compute
cost aggregation to obtain primary stereo matching.
When the different aggregation costs for all possible
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disparities are obtained, we finally use a range winner-
takes-all (WTA) to acquire the disparity map. The dis-
parity map, which still contains many errors, should be
further enhanced by the triple image-based refinements
stage. In order to identify inconsistent and occluded
pixels, we first use the range left-right check (RLRC) to
detect them. Once the erroneous pixels are detected, we
use color-based voting in the square window to correct
them. The voting operation runs iteratively to increase
the robustness. Since some artifacts still exist in both left
and right disparity maps, we further propose multi-step
disparity refinement scheme to achieve the final robust
disparity map. With formulation expressions, the details
of the key processing units will be described in the
following subsections.

3.1 Trinary cross color (TCC) census

With the same bitwise concatenation operation as
stated in (1), the trinary function 2-bit format is first
proposed as

01, if I(q)>I(p)+p
§U(p),I(q)) = { 10, if I(q) <I(p)-p (3)

00, otherwise

to overcome difficulties in finding the correct correspon-
dences in flat areas. In (3), p is a selected threshold for
reducing the noisy effect and should be proportional to
I(p). Figure 3 shows how trinary census works well
under noise environments. In the smooth regions, the
neighboring pixels show the same intensity should have
zero census bits as shown in Fig. 3a. Under noisy envir-
onment, the original binary census transform yields very
different encoded bits as shown in Fig. 3b, while the
trinary census transform produces more consistent
encoded bits with only one error as shown in Fig. 3c.
Hence, the trinary census transform is more robust to
errors than the original one.

Left Image
TEE Smooth Terms Windowing Cost | | Range
Census Computation Aggregation WTA ‘
S e ... TCCCensus StercoMatching l ,,,,,,,,,,,
I Disparity
i Map
Discontinuities
Final Refinement
e | Final Range Left Pre-
Dl:/};:;;ty 7| Refinement Right Check | refinement
. Occlusion
| Refinement
_____________________________________________________________ Triple Image-based Refinements !
Fig. 2 Framework of the proposed stereo matching system
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With trinary census transform, Fig. 4 illustrates four
possible patterns. Figure 4a, b has 3x3 and 15x 15
square patterns, respectively. Large square windows
with more computation generally achieve more
reliable results but more likely to be affected by the
occlusion area (gray color area) than the smaller ones.
To achieve better matching cost and alleviate dis-
torted problem near occultation regions, the rhombus
window in Fig. 4c could be used. To further increase
the accuracy, the cross-square pattern as shown in
Fig. 4d, which covers similar spatial information, is
less exposed to the occlusion area as rhombus one.
TCC census transform is used to improve the per-
formance of the traditional census matching cost. The

entire TCC census transform includes the uses of the
trinary census and cross-square pattern. The trinary
census could increase the fault-tolerance in flat re-
gions, where the census is very sensitive and makes
salt-and-pepper noise in matching cost while the
cross-square pattern requires fewer reference points
than the large square window and rhombus window,
but with higher correctness. In simulations, the TCC
census transform, which uses trinary census with the
cross-square pattern is suggested to compute the raw
matching cost hereafter.

The color information with R, G, and B channels is
the most primitive information that we can obtain dir-
ectly from images; the color similarity Al (p, d) between

(a)

(b)

(©

Fig. 4 Four general census patterns. a Regular 3 x 3. b Regular 15 x 15. ¢ Rhombus. d Cross-square
.

(d)
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the pixel at p in the left image I’ (p), and the pixel at p
with disparity d of the right image I’(p, d), can be repre-
sented as

Alc(pa d) = maxce{R,G,B} |[é(P)_[Z(p7 d))| (4')

where ¢ is the color channel index of the images. The
color similarity stated in (4) is insufficient in the raw
stereo matching cost for smoothness areas where the
census is sensitive. Thus, we use color similarity to
detect if we need to use the TCC census cost, which is
computed by Hamming distance between TCC census
transforms of the pixel at p in the left image, I’ (p) and
the pixel at p with disparity 4 in the right image, I’.(p, d)
. Thus, the proposed trinary cross color (TCC) census
transform cost after normalization is defined as

Z Hamming (Bch(p) Bic(p.d))

{RG.B}

Creclpd) =

— JAL(p,d) < Ty
1, otherwise
(5)

where B)..(p) and By (p,d) are the bit strings of the
TCC census transforms of the pixel p in the left and
right images, respectively. d is the disparity with respect
to the pixel p, T is a threshold to limit the TCC cost,
and M is the number of bits in the census window. As
shown in Fig. 4d, for example, M =16 (pixels) x 2 (bits/
pixel) = 32.

3.2 Smooth processes and cost aggregation

To achieve the semi-global fashion, we first propose to
add the smoothness items in row and column directions
according to the characteristics of results of initial dis-
parity data items to form a new tectonic energy function
model. Then, two levels that improved cross-based cost
aggregation based on adaptive support weight are per-
formed to improve the accuracy of disparity map. The
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smooth terms in the row and column directions could
reduce the overall matching error rates, and the modi-
fied two-pass cross-based adaptive support weight cost
aggregation produces a robust rough disparity maps.

3.2.1 Smooth term computations
The horizontal and vertical direction smooth terms are
used to overcome the matching cost errors caused by
TCC census raw matching cost.

Figure 5 shows the three-dimensional cost space in
horizontal x and vertical y of the image versus disparity
d search range. For semi-global disparity estimation, the
aim of this disparity space model is first to find the pos-
ition of minimum disparity cost in horizontal direction
from x =1 to x = W by using horizontal iterative smooth
term. As shown in Fig. 5, starting at horizontal x = 1, we
could find the minimum raw matching cost Ctcc posi-
tions from vertical y =1to y=H. The initial horizontal
smooth term at x =1 is set as

Cfmooth((lay)vd) = CTCC((lay)ad); yE[l,H]. (6)

For the horizontal smooth terms at x € [2, W], we can
iteratively compute them as

Cl oot (%,9),d) = Crec((%,9),d) + A-CZ 0 ((x,9),d)
(7)

for x€[2, W],y [1,H], where the horizontal disparity
penalty is given by

Cc

smooth

((x’y)7d) = dmax—arg n‘;lianmooth((x—l,y),d)
(8)

and A is the smooth term parameter; if the value of A is
increased, the occlusion and wrong disparity areas
shrink apparently between them, and vice versa.
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Fig. 5 The diagram of solution using horizontal smooth term
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To perform vertical smooth computation, the process
will be similar to that of the horizontal smooth compu-
tation. However, instead of the TCC census cost, the
smooth horizontal cost is used. Initially, for y =1, the
vertical smooth term is set as

CZmooth((x’ 1)’ d) = Cfmooth((x’ 1)7 d) ; xE[l, W] (9)

for the rest of vertical smooth terms for y € [2, H], the it-
erative computation can be given by

C:mooth((x7 y)7 d) = C?mooth((x7 y)7 d) + A'ervnooth((x’ y)7 d)
(10)

for x € [1, W], y € [2, H], where the vertical disparity pen-
alty term is expressed as,

er;ooth((‘%y)’d) = dmax—arg n}}n C:mooth((xvy_l)vd) .

(11)

After horizontal and vertical smooth processes, the
noises of the disparity map with the TCC census cost
can be reduced obviously. Thus, instead of the original
TCC census cost Crcc(p, d), the smooth result CY_ .
(p,d) will be used for stereo matching.

3.2.2 Two-pass cost aggregation

The adaptive cross cost aggregation is used for deter-
mination of the rough depth map. The cross window
with four arms for pixel p is constructed by considering
two measures to find the endpoint pixels of left, right,
up, and down arms. The color similarity Al.(p) in RGB
space is defined as

Ale(p) = max (|I(p)-1(p,)])

ce{R,G,B}

(12)

and the spatial distance AL(p) is given by

Als(p) = |p-pil (13)

where p is the central pixel for cross-based window gen-
eration and [, is the color intensity of the pixel, where ¢
denotes the R, G, or B color index. In (12) and (13),
i€[1,L], L is the maximum arm length of the cross win-
dow. We set the span of left arm r; as an example. The
computation of r; can be formulated as follows:

ol 0 | L

ie[1,r]

r = (14)

where p;=(x—1i,y) and S(p, p;) are indicators by gaging
color similarity and spatial distance between the pixel p,
and p; as
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1, Al(p)sti & Aly(p)<Ly

S(p.p) = {0, otherwise (15)

where 1, and L; with k={1, 2} are the kth level color
similarity threshold and spatial distance threshold, re-
spectively, where L; < L, and 77 > 75. After the cross arm
construction, the support region for pixel p is developed
by merging the horizontal arms of all pixels lying on the
vertical arms of p (g for example) as shown in Fig. 6.
The proposed two-pass decision cross window allows a
more flexible control on the arm length. A larger L,
contains more pixels for smooth regions but with a stric-
ter 7, to guarantee that the arm contains the very similar
color regions.

After the construction of cross window, an adaptive
support weight function is used for the cost aggregation
of pixel p with disparity d as

Z (‘)(p7 q) C:mooth 7d)
Cag(p7 d) _ q<Crossp
> olp.q)

qeCrossp

(16)

o(p.q) = exp(-lp-ql/y,) (17)
where Cross, denotes the detected cross window around
p pixel and y; is the parameter. If y; is increased, C,, will
be increased accordingly. In other words, C,, will be
weaken if the distance between g and p pixels is larger
in the cross window.

e N
l'l
g H()
h; P h;

vy

Fig. 6 Two-pass cross window generation in the 1st level region

(red color) uses a smaller distance threshold, L1 and a large color

similarity threshold 11 and uses a larger L2 and a smaller 12 in the

2nd level region (blue color)

- J
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Fig. 7 Example for mismatched areas refinement

3.2.3 Improved WTA for disparity estimation

To estimate disparity map, winner-takes-all (WTA) is
then utilized to select the disparity value with the
minimum cost evaluated in (17). Since there might
exist more than one disparity sharing the same mini-
mum cost for some cases. In smooth regions, the
pixels in this case are almost the same that some dis-
parity levels have the same minimum cost. Thus, the
traditional WTA cannot achieve a good result in this
case. On the contrary, in the repetitive texture areas,
there could have same minimum cost in several loca-
tions. In order to solve this problem, the WTA pro-
cedure should first find all WTA candidates in the
increasing ordered as

ds(p) = {d| arg r;llncag(p,d)} ={dy,dy, ds...dn,}
(18)

where dy, denotes the candidates of disparity d and
Ngis the number of disparity levels sharing the same
minimum cost. The suggested initial WTA becomes

Table 1 The parameters used in the proposed system

Stereo methods Block Parameters

TCC census 15% 15 p=2,T;=20

TPCA 35%35 {1, To Ly, Ly v =120,8,17,35, 1},
Refinement 25 % 25 {r3, T, L} ={15, 20, 35},
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dy, ifN; =1
dl? ide:2and |d2—d1|:1
W) =44, i Ny = 3and |ds—dy| = 2

255, otherwise.

(19)

If one {d}, two {d, d + 1}, or three consecutive {d - 1, d,
d+1} disparity levels share with the same minimum
cost, the WTA result d(p) = d will be directly adopted in
the estimation. However, for N, >3 or non-consecutive
disparities with the same minimum cost, we set the pixel
at p as an unstable depth as d =255, which is called as
the white hole. In order to fill the white hole, we use
cross-based window voting to estimate the disparity as

d(p) = dyore(p) = arg maxdeDHp(d)

where H,,(d) is the histogram of the known stable depths
in the cross window around p, which was obtained from
the first cost aggregation. The depth with the highest
histogram bin with the value is selected as the most de-
sirable disparity to fill the white hole.

(20)

3.3 Triple image-based disparity refinements

In order to acquire accurate disparity, we have to detect
occluded and mismatched areas and refine them first.
The pixels in the reference disparity map must have
good correspondence to the pixels in the target disparity
map. Otherwise, they must be occluded or mismatched.

3.3.1 Occlusion and discontinuities refinement

Let d)(x,y) and d,(x,y) be the disparity values in the left
and right maps, respectively. The left-right check (LRC)
is always used to detect the correct correspondence of
the disparities in the left and right depth maps. If the
LRC finds dix,y) = d(x — d)(x,7),y), the correct corres-
pondence is detected such that the corresponding
disparities will be kept. If the LRC detects d(x,y) = d,(x
- d(x,7),y), we should set the correspondence disparity
to be erroneous. To further classify the error pixel as an
occluded or mismatched pixel, we further suggest a

range LRC as
{dz(P% di(p) = d:(p, di(p)) & |Li(p)-1,(p,d1)| < 6
dilp) = § 255, di(p) = d,(p,di(p) + o) &|lilp)-1;(p, dilp) + 0)| < &>

0, otherwise

(21)

to detect it for — dy < o< d, with dy > 1, where 255 and 0
denote the mismatched and occluded pixels, respect-
ively. In (21), if the left pixel disparity is equal to the
pixel disparity with the disparity shift in the right image,
these two paired pixels are treated as the correct corres-
pondence. Thus, we keep the original result. If the left
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Fig. 8 Results of the proposed algorithms for Teddy and Cones scenes. a Color image. b Error map. ¢ Rough disparity map. d Pre-refinement. e
Multi-step refinement. f Final disparity map

\

pixel disparity finds a matched disparity with a shift of When the occluded and mismatched areas are
disparity plus a range of — dyp < o <d, in the right image, detected, we use different methods based on the corre-
the erroneous pixel will be marked as mismatched pixel  sponding color image to refine them. For the occluded
with 255. If the pixel cannot find the matched pixel pixel, we adopt the lowest stable disparity around it for
either with the disparity shift or with a range of disparity  the refinement since it most likely comes from the back-
shift, we set this pixel as an occluded pixel with 0. ground. The refinement is

(b)

Fig. 9 Results of the estimated disparity maps of a color images achieved by b census-based semi-global, ¢ cross-based local, d combined cost-
based local, e belief propagation-based global, and f proposed stereo matching methods. Top to bottom: Teddy, Cones, Venus, Tsukuba
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Table 2 Characteristics of Middlebury 2014 stereo datasets

Characteristic

Datasets

Normal Adirondark, Motorcycle, Piano,
Pipes, Playroom, Playtable, Recycle,
Shelves, and Teddy

Light Artl, MotorcycleE, and PianolL

Large disparity Jadeplant and Vintage

Angle moving PlaytableP

dl(p) = min{dl(x_lvy)adl(x7y_1)7dl(x + lay)adl(x’y + 1)}7

if Ij(x,y)e{li(x~1,y), Li(x,y-1), Li(x + 1,y), Li(x,y + 1)}
(22)

where d(x,y) is the occluded pixel if its four surround-
ing pixels have reliable disparities. With iterative refine-
ments, the occluded pixels (black holes) will be
successfully refined with the background. For the mis-
matched pixels (white holes), we use the window voting
based on the corresponding color image for the largest
proportion stable pixels selection as

d(p) = dyote(p) = arg maxHy (d) (23)
where HyAd) is the histogram of the stable and color-
matched depths around p in the Kx K voting window
W, where the color-matched pixel is defined as

Clp,) = {17 Al (p;)<73

0, otherwise (24)

with the color similarity as
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Ale(p;) = max (|I(p)-Le(p;)])

ce{R,G,B}

(25)

and 73 is a color similarity threshold, for example, the
circled area in Fig. 7 shows the similar color space for
the correct pixel voting.

3.3.2 Final disparity map refinement

There are still some noises and wrong disparities in the
disparity map. We use the cross-based window voting
for the disparity with the maximum number in this area
to refine them. The cross window is constructed with
the same method in section B, and the disparity of stable
pixels with maximum number in this area is selected to
replace it. Finally, a 3 x 3 median filter is used to obtain
the smoothness disparity map.

4 Experimental results

The experimental evaluation of the proposed stereo
matching system is performed by using Middlebury
datasets [26]. In Section 4.1, we first show the disparity
maps achieved by the proposed methods stage by stage
to analyze the improvement in each step. In Section 4.2,
we then compare the proposed stereo matching system
to the other well-known methods. The disparity maps,
which are generated by the proposed and compared
methods, will be exhibited.

4.1 Performance evaluation of the proposed algorithm

We use the 2001 and 2003 datasets suggested in the
Middlebury for evaluation of the main algorithms in the
proposed stereo matching system. For Middlebury data-
sets, the dimensions of images Tsukuba, Venus, Teddy,
and Cones are 384 x 288, 434 x 383, 453 x 375, and

Left
Image

Right
Image

Fig. 10 Different characteristics of a light, b large disparity, and ¢ angle moving conditions in Middlebury 2015 stereo datasets
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450 x 375 with the disparity level of 15, 19, 59, and 59,
respectively. We applied the proposed algorithms step
by step to calculate the disparity results. We chose the
experiment’s parameters empirically and kept them con-
stant as shown in Table 1. After simulations, Fig. 7
shows the color images, ground truth of error maps,
rough disparity maps, pre-refinement, multi-step refine-
ment, and final disparity maps.

With TCC census matching cost computation, which
considers the trinary of the differences of three color
components in a cross window, we use the TPCA to
achieve rough disparity images as shown in Fig. 8c for
both Teddy and Cones scenes. We learnt that the TPCA
greatly helps to achieve considerable good results. Then,
the RWTA algorithm further improves the initial rough
disparity maps by detecting the white holes. To fill the
white holes, the cross-based window voting method is
used by referring to the color image, and the results after
pre-refinement are shown in Fig. 8d. However, there are
still some ambiguous regions in the disparity maps to
make them not accurate enough due to occlusion
regions that occurred and discontinuities that mis-
matched. The occlusion areas could be corrected by the
background disparities, while discontinuities that mis-
matched should be corrected by the most similar pixels
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around it. Therefore, we further use cross-based window
voting for the disparity with the maximum occurrence
to refine them as shown in Fig. 8e. Finally, the median
filter is used to obtain the smoothness disparity maps as
exhibited in Fig. 8f. The proposed stereo matching
system achieves considerable good performance in depth
estimation.

4.2 Performance comparisons

In this subsection, we compare the proposed system to
four related methods, which are census-based semi-
global stereo matching [21], cross-based local stereo
matching [15], combined cost-based local stereo match-
ing [27], and belief propagation-based global stereo
matching [18]. In Fig. 9, the results show that the pro-
posed method yields competitive results comparing to
these four methods. By observing Fig. 9b, f, the disparity
maps produced by the census-based and the proposed
semi-global stereo matching methods are very close.
However, in Fig. 9b, the occlusion regions still show un-
solved results near some object boundaries. Moreover,
there also have some chaotic results near strong edges in
complex texture areas. It is evident that the proposed
system achieves more accurate performance in these
areas. From Fig. 9c, f, we find that the results obtained

Fig. 11 Results in Middlebury 2015 stereo datasets. a Color image. b Ground truth. ¢ Estimated disparity map
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Table 3 Rank and analyzed performances of the proposed system with normal, light, large disparity, and angle moving conditions

Performances RMS disparity error Average absolute error (Avgerr) 99% error quantile (A99)
Datasets RMS Rank Avgerr. Rank Avgerr. Rank
Normal
Adirondark 16.7 13 6.4 12 97.6 15
Motorcycle 19.8 11 5.7 15 121.0 9
Piano 9.5 4 5.1 1 399 3
Pipes 327 15 12.6 13 153.0 15
Playroom 14.7 3 70 8 65.5 3
Playtable 19.0 3 10.1 5 63.7 2
Recycle 103 9 49 15 40.0 4
Shelves 211 12 10.6 " 914 15
Teddy 7.81 7 4.1 15 350 4
Average 16.8 8 74 1 785 7
Light
ArtL 47.8 20 311 23 154.0 17
Motorcyclek 788 23 557 23 206.0 19
PianoL 616 22 354 21 193.0 23
Large disparity
Jadeplant 1120 19 514 19 4440 21
Vintage 30.8 10 14.0 9 96.9 6
Angle moving
PlaytableP 122 12 70 16 48.1 6
Average 572 17 325 18 190.3 15

by the proposed system are better than those achieved
by the cross-based local stereo matching method. With
the proposed system, most disparity values in occlusion
regions near the object edges are correctly retrieved.
From Fig. 9d, f, the disparity maps generated by the
cross-based local stereo matching method have many in-
accurate areas in foreground objects; inaccurate areas
are often produced by the cost aggregation step of the
local-based method in the smooth areas of the color
image. On the other hand, from Fig. e, f, the disparity
maps generated by the belief propagation-based global
stereo matching method are more correct in the object.
However, computational time and computational com-
plexity of global-based methods are too higher compared
with those of the other methods, which are not condu-
cive to hardware implementation and real-time comput-
ing system.

Table 2 shows the characteristic of Middlebury 2014
stereo datasets. Middlebury has used these datasets for

Table 4 Execution times of the proposed and other stereo
matching methods

Methods [21] [15]  [27] [18]
854628 247 35165 162756

Proposed method
298.18

Execution time(s)

the ranks of different stereo matching methods in 2015.
There are 15 pairs of stereo matching datasets: nine nor-
mal stereo datasets, three stereo datasets with different
light conditions, two large disparity (more than 150) ste-
reo datasets, and one angle moving stereo dataset, as
shown in Fig. 10.

Figure 11 shows the disparity maps estimated by the
proposed stereo matching system, and Table 3 exhibits
the rank and analyzed performances of root mean
square (RMS) disparity error, the rank and analysis of
average absolute error (Avgerr.) and disparity error, and
the rank and analysis of 99% error quantile (A99) of the
proposed stereo matching system. The proposed system
achieves more accurate results comparing to other local
stereo matching methods, especially in the normal stereo
datasets. However, this is not ideal in light, large dispar-
ity, and angle moving stereo datasets, while other
methods are as the same processing properties in these
datasets.

In summary, the proposed stereo matching method
achieves better disparity estimation quality than the
methods proposed in [15, 18, 21] and [27] in Middlebury
datasets, especially in the normal stereo datasets. For
non-ideal conditions in light, large disparity, and angle
moving stereo datasets, the proposed and the other
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Fig. 12 Results of the estimated disparity map quality metric. a Horizontal disparit. b Vertical disparity
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methods have the same tendency in these datasets.
Table 4 shows the total execution times required by the
proposed and other stereo matching methods. In gen-
eral, the filter window sizes used by the local-based ste-
reo matching methods are usually smaller than those
used in the global and semi-global-based stereo match-
ing methods. Thus, the execution times of local-based
methods are less than those of the global- and semi-
global-based methods.

In cross-based local stereo matching [15], the simula-
tion results shown in Fig. 9¢, f exhibit that the proposed
method is better than the cross-based local stereo
matching method. The proposed method correctly re-
trieves the most disparity values in occlusion regions
near the object edges; on the other hand, the proposed
method acquires a less execution time and achieves
higher performance than the existed semi-global stereo
matching methods. The proposed stereo matching sys-
tem is about 28 times faster than the census-based semi-
global methods, where the experiments are carried on
an Intel Core i7-4770 CPU computer with a 12-GB
RAM and tested on the Matlab platform (Version
R2013a). It is noted that the computation time can be
further improved with graphics processing units (GPU)
parallel computation. The histograms of horizontal dis-
parity and vertical disparity are shown in Fig. 12. In
order to obtain an objective evaluation of the estimated
disparity map quality, the estimated disparity map qual-
ity metric suggested in [28] is used for comparisons. Fig-
ure 12a shows that the estimated disparities of the
proposed method have smaller disparities in the left half
of the histogram, representing less visual fatigue. Fig-
ure 12b exhibits that the estimated disparities of the pro-
posed method focus on the central region of the
histogram which means less visual fatigue. The proposed
method with the trinary cross color (TCC) census trans-
form reduces the sensitivity in smooth regions and that
with the two-pass cost aggregation (TPCA) obtains the
stable cost. Thus, in the proposed method, the disparity
values of the smooth regions can be correctly calculated

and successfully limited to a narrow range without caus-
ing the noise and large occlusion regions.

5 Conclusions

In this paper, a semi-global stereo matching system
based on improved TCC census cost, TPCA, and triple
image-based refinements is proposed. The TPCA com-
bines data term and smooth term together in order to
achieve accurate disparity maps in smooth areas and
precise object boundaries. The data term is based on the
proposed trinary cross color (TCC) census, which makes
raw matching have a better performance than the AD
census but with less computation time. The TPCA
method with the smooth term iteratively removes the
noise caused by TCC census raw matching. The cross-
based cost aggregation with two-pass and adaptive sup-
port weights is performed to make accurate results in
the same color areas. A modified range left-right check
(RLRC) and multi-step refinements further achieve high-
accuracy performance. The detection of the occluded
and mismatched pixels helps us to apply the correspond-
ing method to refine them. Several extended experimen-
tal results based on multiple stereo pairs prove the
efficiency of the proposed approach compared to the
related corresponding method with respect to disparity
estimation problems. Two steps of disparity estimation
and disparity map refinement increase computational
cost mainly caused by cost aggregation in multiple loops.
However, the proposed TCC census, TPCA, and triple
image-based refinements help to achieve more accurate
disparity map estimation in comparison with other re-
lated methods. For real-time applications, the GPU or
VLSI implementation of the system should be further
studied. In addition, the improvement of the subpixel
level accuracy of depth estimation could be also investi-
gated to attain better virtual view syntheses and possibly
be used for the free-view 3D video generation.
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