Cruz Jiménez et al. EURASIP Journal on Advances in Signal Processing (2017) 2017:31

DOI 10.1186/513634-017-0466-z

EURASIP Journal on Advances
in Signal Processing

RESEARCH Open Access

Theoretical lower bounds for parallel

@ CrossMark

pipelined shift-and-add constant
multiplications with n-input arithmetic

operators

Miriam Guadalupe Cruz Jiménez'", Uwe Meyer Baese” and Gordana Jovanovic Dolecek!

Abstract

New theoretical lower bounds for the number of operators needed in fixed-point constant multiplication blocks are
presented. The multipliers are constructed with the shift-and-add approach, where every arithmetic operation is
pipelined, and with the generalization that n-input pipelined additions/subtractions are allowed, along with pure
pipelining registers. These lower bounds, tighter than the state-of-the-art theoretical limits, are particularly useful in
early design stages for a quick assessment in the hardware utilization of low-cost constant multiplication blocks
implemented in the newest families of field programmable gate array (FPGA) integrated circuits.

Keywords: SCM, MCM, FPGA, Multiplication, Lower bound

1 Introduction

Multiplication with constants is a regular operation in
digital signal processing (DSP) systems. In hardware, a
multiplication is demanding in terms of area and power
consumption. However, the single constant multiplica-
tion (SCM) and multiple constant multiplication (MCM)
operations can be implemented by using only shifts, ad-
ditions, and subtractions, with the last two being usually
referred in general form as additions [1]. The SCM case
is when an input is multiplied by a constant coefficient
(Fig. 1a), and the MCM operation is when an input is
multiplied by a set of constant coefficients (Fig. 1b) [2].
Theoretical lower bounds for the number of adders and
for the number of depth levels, i.e., the maximum num-
ber of serially connected adders (also known as the crit-
ical path), in SCM, MCM, and other constant
multiplication blocks that are constructed with two-
input adders under the shift-and-add scheme have been
presented in [3]. Tighter lower bounds, as well as a new
bound, namely, the one for the number of extra adders
required to preserve the lowest number of depth levels,
were presented in [4] for the SCM case. Nevertheless,

* Correspondence: miriam.gcj@gmail.com
'Department of Electronics, Institute INAOE, Tonantzintla, Puebla, México
Full list of author information is available at the end of the article

@ Springer Open

there are no theoretical lower bounds for the case of con-
stant multiplication blocks that include multiple input ad-
ditions/subtractions and pipeline registers in the involved
arithmetic operations. However, this type of operations
has become very important mainly when the pipelined
constant multiplication blocks are implemented in the in-
creasingly demanded field programmable gate array
(FPGA) platforms. This is due to the fact that logic blocks
of FPGAs include memory elements, and thus, pipelining
results in low extra cost [5—12]. Currently, the use of
three-input adders has started to gain importance, since
the logic blocks of the newest families of FPGAs are bigger
and allow to fit more complex adders using nearly the
same amount of hardware resources [10-12].

Particularly, in the last two decades, many efficient
high-level synthesis algorithms have been introduced for
the multiplierless design of constant multiplication
blocks. The common cost function to be minimized in
these algorithms is given by the number of arithmetic
operations (additions and subtractions) needed to imple-
ment the multiplications. Nevertheless, the critical path
has the main negative impact in the speed and power
consumption [13-18]. Therefore, substantial research
activity has been carried out currently targeting both,
application-specific integrated circuits (ASICs) [19-21]

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13634-017-0466-z&domain=pdf
mailto:miriam.gcj@gmail.com
http://creativecommons.org/licenses/by/4.0/

Cruz Jiménez et al. EURASIP Journal on Advances in Signal Processing (2017) 2017:31

Input X
Input X p u|
c :\ Co c *°°° CN-1,
v \4 v
Y=cX Yy Y, Yy
(a) (b)
Fig. 1 Block diagram a SCM and b MCM

and FPGAs [5-10, 22-25], where the minimization of
the number of arithmetic operations subject to a mini-
mum number of depth levels is the ultimate goal.

On the other hand, even though ASICs still provides
higher performance and low power consumption, the in-
creased development time and manufacturing cost
which comes with smaller CMOS transistor technologies
have opened a large market for FPGAs. The FPGA tech-
nology provides the signal processing engineers with the
ability to construct a custom data path that is tailored to
the application at hand [26, 27]. FPGAs offer the flexibil-
ity of instruction set digital signal processors, while pro-
viding the processing power and flexibility of an ASIC,
and enable significant design cycle compression and
time-to-market advantages, an important consideration
in an economic climate with ever-decreasing market
windows and short product life cycles [28, 29].

The novelty of this paper is to introduce the theoret-
ical lower bounds for the number of operations
necessary to implement pipelined single constant multi-
plication (PSCM) and pipelined multiple constant multi-
plication (PMCM) blocks that are constructed with the
shift-and-add scheme. For the derivation of these
bounds, we consider that either an n-input (where # is
an integer) pipelined addition/subtraction or a single
pipeline register have the same cost. As mentioned earl-
ier, recently, this assumption fits particularly well for
cases where # is set equal to 3 and the target platforms
for implementation are the newest FPGAs from the two
most dominant manufacturers, Xilinx and Altera. How-
ever, it is worth highlighting that n=2 is still under
common use in many applications. This contribution is
important because the optimality of different algorithms
that reduce the number of operations in PSCM and
PMCM blocks can be tested using appropriate theoret-
ical lower bounds. Additionally, these bounds can be
useful to develop new algorithms.

The paper is organized as follows. In the next section,
definitions and methods needed to address the proposal
are given. Section 3 presents the new theoretical lower
bounds along with theorems and proofs to support the

Page 2 of 13

derivation of these bounds. Comparisons with previous
theoretical lower bounds from [3] and [4] are provided
in Section 4. Finally, conclusions are given in Section 5.

2 Definitions of terms

The constant multiplications referred here are expressed
in fixed-point arithmetic because implementations in
this number representation have higher speed and lower
cost, thus being usually employed in DSP algorithms [1—
25, 30-40]. Only integer, positive, odd constants are
considered since this is a useful simplification that does
not affect the formulation of constant multiplication
problems. In this sense, a constant can be expressed
simply in binary form, as follows:

B-1)
Cc = Zbizl, (1)
i=0

where b,€{0, 1} is the i-th bit and B is the word length
[31]. We can express a product of a variable input X by
a constant ¢ with the shift-and-add approach using the
binary representation of that constant to dictate the
multiplier structure. For example, the product 47X, with
47 =2°4+23422 421420 (i.e., a binary string “101111”),
needs four additions and has a critical path of three ad-
ditions, as show in Fig. 2. The implementation cost of a
shift-and-add constant multiplier is the number of arith-
metic operations since products by powers of two are
implemented as hardwired shifts with no practical cost.
It is worth to highlight that additions and subtractions
require practically equal amount of resources in hard-
ware implementation. Hence, signed digit (SD) represen-
tations of a constant can reduce the aforementioned
implementation cost because they employ negative

X

Critical
Path

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
—f—

Y=47X

Fig. 2 Implementation structure of the product 47X with constant

47 expressed in binary using n =2 input adders
- J

Cruz Jiménez et al. EURASIP Journal on Advances in Signal Processing (2017) 2017:31

digits, which represent subtractions. An SD representa-
tion of a constant is given in the form,

B-1)
Cc = ZdiZ‘ , (2)
i=0

where d;€{~1, 0, 1}, with “~1” usually expressed as 1[32].
Among them, the canonical signed digit (CSD) represen-
tation is convenient since its number of non-zero digits
is the minimum number of signed digits (MNSD) [3]. Be-
sides, each non-zero digit is followed by at least one
zero, which makes the representation unique. The CSD
form of a constant can be found from binary by itera-
tively substituting every string of k digits “1” (say,
“1111”) with a string of k-1 digits “0” between a “1”
and a “~1” (the string 1111 becomes “10001”). In this
case, the product 47X, with 47 = 26-2%_2° (e, a CSD
string “1010001”), needs two subtractions and has two
operations in its critical path, as shown in Fig. 3.

In a constant multiplication block, the A-operation
[30] represents two-input addition or subtraction along
with shifts, and it is defined as

Aglur,) = |20uy + (-1)722u5 27, 3)

where /1 20 and [, > 0 are left shifts, r> 0 is a right shift,
sy is a binary value, ie., s5€{0,1}, g is the set of parame-
ters (so-called the configuration) of the A-operation, i.e.,
q=1{l, Iy 1, so}, and u; and u, are odd integers. For
three-input adders the A-operation is [10]

Ag(ur,uz, us) = |2y + (-1)22"2uy + (-1)"25u3[27,

(4)

where [;>0, [,>0, and /3>0 are left shifts, r>0 is a
right shift, s, and s3 are binary values, g = {l1, l5, I3, 52, 3,
r} is the configuration of the A-operation, and uy, u,,

S

- mm e

260 24 \2°
Critical R
Path

Y=47X

Fig. 3 Implementation structure of the product 47X with constant
47 expressed in CSD using two input adders

Page 3 of 13

and u3 are odd integers. Generalizing to n-inputs, the A-
operation is expressed as

n
Aq(ul, cery u,,) = 2llul + Z (_I)Sizliui 247 (5)
i=2

where [, >0,..., [,,>0 are left shifts, »>0 is a right shift,
S$2,..., S, are binary values, g ={ly, ..., [,,, So, ..., S,,, 1} is the
configuration of the A-operation, and uy,..., u,, are odd
integers.

An array of interconnected A-operations forms a SCM
or a MCM block. The MCM is built upon SCM because
the latter is the simplest case. The SCM array is repre-
sented using directed acyclic graphs (DAGs) with the
following characteristics [33-36]:

e The output of each A-operation is called
fundamental.

e For a graph with m A-operations, there are m + 1
vertices and m fundamentals.

e Each vertex has an in-degree n, except for the input
vertex which has in-degree zero.

e A vertex with in-degree » corresponds to an n-input
A-operation.

e Each vertex has out-degree larger than or equal to
one except for the output vertex which has out-
degree zero.

e The constant resulting from the last A-operation is
output fundamental (OF). The constants resulting
from previous A-operations are non-output
fundamentals (NOFs).

In the MCM case, there are several OFs.

The DAG representation is the most useful for saving
arithmetic operations because it allows to exploit struc-
tures to interconnect A-operations that cannot be seen
in the CSD representation. This expands the opportunity
to optimize the constant multiplication blocks. For ex-
ample, the product 45X, with 45 =2°-2*-2%+2° (ie, a
CSD string “1010101”), needs three 2-input additions
and has a critical path of two additions, as show in
Fig. 4a. However, by using the DAG approach, the multi-
plication 45X requires two 2-input additions and has a
critical path of two additions. In this case, it is possible
to factorize the constant in two factors, namely, 5 and 9,
as shown in Fig. 4b.

It is important to mention that a multiplicative graph
is the graph obtained by cascading subgraphs, and the
union point between two cascaded subgraphs in a multi-
plicative graph is called articulation point [37]. This is il-
lustrated in Fig. 5a. A particular case is the completely
multiplicative graph, where each cascaded subgraph is
composed by one A-operation, as shown in Fig. 5b [4].
The graph presented in Fig. 4b is an example of a

Cruz Jiménez et al. EURASIP Journal on Advances in Signal Processing (2017) 2017:31

Page 4 of 13

(a)

Fig. 4 Structure of the product 45X a constant 45 expressed in CSD and b constant 45 in graph representation using two input adders

X
2)7
Subgraph for v
Critical constant 5 E Critical
Path 23 1 Path
Subgraph for :
constant 9 N
Y=45X

(b)

J

completely multiplicative graph with 2-input A-opera-
tions. Other graphs without articulation points are re-
ferred as non-multiplicative graphs [37]. A cascaded
interconnection of a completely multiplicative graph
with a non-multiplicative graph is called generalized
graph, see Fig. 5c.

The speed of a design is restricted by the critical path.
The pipelining technique allows the reduction of a crit-
ical path introducing registers along the data path [38].
In FPGA implementations, the constant multiplications
involving shifts-and-add operations can be made fully
pipelined with a low extra cost. Pipelining has a small
overhead due to the fact that the logic blocks in FPGAs
include memory elements, which are otherwise unused
[39, 40]. For example, Table 1 shows the amount of logic
elements used to implement the multiplier 45X (for an
8-bit input) in an Altera Cyclone IV EP4CE115F29C7
FPGA. We observe that only three extra logic elements
are needed in the pipelined implementation, which rep-
resents an increase of 9.7% in resources utilization com-
pared with the non-pipelined case. Nevertheless, the
frequency of operation is increased by 31.7%.

Due to the aforementioned observation, the imple-
mentation cost will be accounted by the number of reg-
istered operations (R-operations), i.e., either an addition-

register pair or a single register, needed to implement
constant multiplications. Two R-operations with the
same cost are illustrated in a simplified way in Fig. 6.
Hence, the PSCM problem consists in finding the pipe-
lined array of A-operations that form a single-constant
multiplier using the minimum number of R-operations.
Similarly, the PMCM problem consists in finding the
pipelined array of A-operations that form a multiple-
constant multiplier using the minimum number of R-
operations.

To calculate the lower bounds for the number of R-
operations required to implement PSCM and PMCM
blocks, we need the following information from a
constant:

1) Its MNSD, denoted by S. We will also refer to this
number in a more informal manner as “the number
of non-zero digits”.

2) Its number of prime factors (it does not matter if

these prime factors are repeated). This number is
denoted by Q.

3 Proposed lower bounds
In the following, we state, in Subsection 3.1, Theorems 1
to 8 to derive the lower bounds of R-operations in

Graph 1

Articulation
point

Graph 2

(b) ©)

Fig. 5 a multiplicative graph, b completely multiplicative graph, and ¢ generalized graph

Non—multiplicaliveé
subgraph

Cruz Jiménez et al. EURASIP Journal on Advances in Signal Processing (2017) 2017:31

Table 1 Synthesis results of pipelined and non-pipelined
implementations of a 45X multiplier in the Altera Cyclone IV
EP4CE115F29C7 FPGA

Pipelined Total logic

Maximum frequency Area X Time

elements (LE) of operation (MHz) cost metric (LE/MHz)
No 31 28547 0.1086
Yes 34 376.08 0.0904

PSCM and, in Subsection 3.2, Theorems 9 and 10 for
PMCM, along with their corresponding proofs. The
pipelining operation, which has not been alluded in the
previous works [3] and [4], is explicitly included in the
proposed lower bounds through the R-operations.

3.1 PSCM case

Whenever a constant ¢ is mentioned in the theorems of
this sub-section (Theorems 1 to 8), we consider that the
MNSD of that constant is S and its number of prime
factors is Q.

Theorem 1 provides the upper limit of non-zero digits
that can be generated by any graph with a given number
of depth levels, regardless of its number of R-operations.
From this, we can know the minimum number of depth
levels that a graph must have to implement a constant
with a given S.

Theorems 2 and 3 prove the properties of the com-
pletely multiplicative graphs, namely, generating the
upper limit of non-zero digits mentioned in Theorem 1
with the minimum possible number of R-operations.
From them, we have that the completely multiplicative
graph is a solution with the lower bound for the number
of R-operations. However, as it is known, this graph has
articulation points, and every articulation point repre-
sents the union between two cascaded subgraphs, i.e.,
the product of two smaller constants. Therefore, The-
orem 4 uses Q to identify what constants can be imple-
mented with the completely multiplicative graph (for
example, prime constants cannot be factorized into
smaller constants; thus, they cannot be implemented by
a completely multiplicative graph).

Theorem 5 identifies the minimum number of R-oper-
ations needed in any non-multiplicative graph with a
given number of depth levels, and Theorem 6 proves
that non-multiplicative graphs can generate the upper

Page 5 of 13

limit of non-zero digits mentioned in Theorem 1 with
its minimum number of R-operations. Then, Theorem 7
establish the lower bound for the number of R-opera-
tions needed to implement a prime constant (Q = 1).

Finally, Theorem 8 completes the information of The-
orems 4 and 7, namely, the lower bound of R-operations
needed to implement non-prime constants that have
fewer number of factors than the number of subgraphs
used in a completely multiplicative graph.

3.1.0.1 Theorem 1 A graph with p depth levels can pro-
vide at most n” non-zero digits for a constant.

3.1.0.2 Proof The proof is given by induction (see proof
of Theorem 6.9 in [39] for the case of 2-input A-
operations):

1) The base case corresponds to the first depth level,
where a n-input A-operation can form a constant
with at most # non-zero digits. This is true since the
input of any graph has one non-zero digit [3, 4, 39].

2) As inductive step, we assume that, in the p-th level,
there are #” non-zero digits at most. In the (p + 1)-
th level, an A-operation can form a constant whose
number of non-zero digits is the sum of the num-
bers of non-zero digits at every input of that A-oper-
ation. This is at most # times the maximum number
of non-zero digits available in the previous level, i.e.,
nxn’ =n’**! non-zero digits.

Since assuming that the theorem is true for p implies
that the theorem is also true for p + 1, and since the base
case is also true, the proof is complete. An adder, regard-
less of its number of inputs, cannot generate more non-
zero digits than the sum of the numbers of non-zero
digits in every one of its inputs. Thus, the MNSD can
be, at most, n-plicate if the inputs of the n-input adder
placed in any depth level come from the immediately
previous depth level. m

3.1.0.3 Theorem 2 A completely multiplicative graph
with p A-operations can generate n* non-zero digits.

X

Fig. 6 R-operations with the same cost

V=X £ Xo% ... £ X))z X

Cruz Jiménez et al. EURASIP Journal on Advances in Signal Processing (2017) 2017:31

3.1.0.4 Proof This proof is an straightforward extension
of the proof of Theorem 6.8 in [39], which corresponds
to completely multiplicative graphs with 2-input A-oper-
ations. As stated earlier, the input of a graph has one
non-zero digit. In the completely multiplicative graph,
there are at most # non-zero digits after the A-operation
placed at the 1st depth level. Cascading an A-operation
to that output yields at most n x n non-zero digits, and
so on. The number of non-zero digits at the depth level
p is at most the n-tuple of the number of non-zero digits
of a fundamental at the (p - 1)-th depth level. Conse-
quently, the maximum number of non-zero digits at the
p-th depth level is #”. m

3.1.0.5 Theorem 3 A completely multiplicative graph
with p depth levels needs only p R-operations.

3.1.0.6 Proof The completely multiplicative graph with
p depth levels has p A-operations, and every A-operation
forms a subgraph. Pipelining between two subgraphs
needs only one register, according to [38], because the
pipelining occurs on the articulation point. This results
in every A-operation being followed by a register. Since
an A-operation followed by a register is considered an
R-operation, there are only p R-operations in total. This
is illustrated in Fig. 7. m

3.1.0.7 Theorem 4 A constant with (W’ '+1)<S<n’
and Q > p needs at least p R-operations.

3.1.0.8 Proof From Theorem 2, we have that a constant
with (7’ ' +1) < S<n” non-zero digits can be imple-
mented with at least p depth levels, which implies at
least p A-operations. From Theorem 3, we have that a
completely multiplicative graph can generate those
values for S with only p R-operations. The completely

Highest MNSD: n°= 1

Depth level: 1 Highest MNSD: n'

Depth level: 2 Highest MNSD: n*

Depth level: 3 Highest MNSD: n’

Fig. 7 The pipelined completely multiplicative graph achieves n”
non-zero digits with the minimum number of n-input R-operations,
p, and the minimum number of depth levels, p

Page 6 of 13

multiplicative graph with p R-operations consists of p
cascaded subgraphs; thus, a constant implemented with
that graph must have at least p prime factors. Since Q >
p holds, the completely multiplicative graph can be
employed to implement that constant using p R-opera-
tions. m

3.1.0.9 Theorem 5 A non-multiplicative graph with p
depth levels needs at least (2p — 1) R-operations.

3.1.0.10 Proof According to Theorem 3, if a graph with
p depth levels has only p R-operations in total, it must
be a pipelined completely multiplicative graph. Accord-
ing to Theorem 2, that graph can generate the max-
imum possible number of non-zero digits, namely, .
To make non-multiplicative that optimal graph, the (p -
1) articulation points must be eliminated. From [38], it
is known that at least one additional R-operation must
be added for every eliminated articulation point. There-
fore, at least (2p — 1) R-operations are required, i.e., the
original p minimum number of R-operations in the form
of addition-delay pairs plus the additional (p — 1) R-oper-
ations in the form of pure delays. Figure 8 shows an ex-
ample with p=3. m

3.1.0.11 Theorem 6 A non-multiplicative graph with p
depth levels and (2p - 1) R-operations can generate n’
non-zero digits.

3.1.0.12 Proof Consider a graph with p depth levels
formed by two completely multiplicative graphs of (p -

Articulation point
eliminated by dashed
path

Articulation point
eliminated by dashed
path

Fig. 8 Non-multiplicative graph with p =3 depth levels and p — 1

extra R-operations in the form of pure delay
- J

Cruz Jiménez et al. EURASIP Journal on Advances in Signal Processing (2017) 2017:31

1) levels each, connected in parallel from the input of
the graph, and one A-operation placed in the p-th level
summing up the outputs of the aforementioned graphs.
The output of one of these graphs is connected to the n
-1 inputs of the last A-operation, and the output of the
other graph is connected to the remaining input of the
last A-operation. This is a non-multiplicative graph be-
cause it is not formed by cascading subgraphs, and it is
composed by (2p - 1) A-operations. According to The-
orem 2, we can obtain 7’ ' non-zero digits from the
completely multiplicative graphs, and according to The-
orem 3, these graphs can be pipelined without requiring
extra registers. Since the last A-operation can add n
times the #” ~* non-zero digits in each one of its inputs
and can be pipelined without extra cost, the resulting
graph generates #” non-zero digits using (2p - 1) R-oper-
ations. An example of this is shown in Fig. 9. m

3.1.0.13 Theorem 7 A coustant with (n"’ ' +1)<S<n”
and Q = 1 needs at least 2p — 1 R-operations.

3.1.0.14 Proof Since Q =1 holds, the non-multiplicative
graph must be employed to implement that constant.
From Theorem 6, we have that a constant with (721 +
1) < S < n” non-zero digits can be implemented with at
least p depth levels and at least 2p — 1 R-operations. This
is a lower bound for the number of R-operations, since
from Theorem 5, we have that a non-multiplicative
graph with p-levels needs at least 2p — 1 R-operations. m

3.1.0.15 Theorem 8 A constant with ("’ +1)<S<n”
and 1< Q < p needs at least (2p — Q) R-operations.

3.1.0.16 Proof From Theorem 1, we have that p depth
levels are necessary to achieve the values of S in the spe-
cified range. Since Q) < p holds, we can take advantage of
a completely multiplicative graph with Q-1 R-operations
at most, which, according to Theorem 2, generates n>™*

-~ Depth level: 1

Non-multiplicative<

graph -~ Depth level: 2

e Depth level: p — 1

........... Depth level: p

Fig. 9 Non-multiplicative graph that generates the maximum number
of non-zero digits, n°, with the minimum number of R-operations in
non-multiplicative graphs

Page 7 of 13

non-zero digits at most, and represents the product of
Q -1 factors. The last factor can be formed with a non-
multiplicative subgraph with [p - (Q -1)] depth levels.
According to Theorem 5, this subgraph needs at least
2[p-(Q-1)] -1 R-operations, and according to The-
orem 6, it can generate #n” = >~} non-zero digits. The
total graph, illustrated in Fig. 10, can generate at most
2t x n? =@Vl Z P non-zero digits and uses at least
Q-D)+2[p-(Q-1)]-1=2p-2(Q-1)+(Q-1-1=
2p-(Q-1)-1=(2p - Q) R-operations. m

Finally, from Theorem 1, we have that the number of
depth levels necessary to achieve S is p = log,,(S)1. Sub-
stituting this value for p and using Theorems 4, 7, and 8,
we obtain the lower bound for the number of R-opera-
tions needed to form a PSCM block as follows:

I _ 2|_logn(S)-|—Q;
M Tlog,(5) 1:

0 < log,(5)1,
0=l log,(5) 1.

(6)

3.2 PMCM case
The theorems in this section are stated for N constants
€1, €y ..., Cn» Whose respective MNSDs are Sy, Ss, ..., Say
and their respective numbers of prime factors are Q;, Q
9y +oey Qpp such that §; <5, < ... < Sp

Theorem 9 indicates the lower bound for the number
of n-input A-operations needed to form an MCM block.
If pipelining is added, more R-operations than the afore-
mentioned lower bound may be needed because the
constants with fewer prime factors may use non-

¢ Articulation points:

P Q-1

Non-multiplicative
: graph

Depth levels:
[p—(@Q-1)]

Fig. 10 Generalized graph that generates the maximum number of
non-zero digits, n”, with the minimum number of R-operations in a
multiplicative graph for constants with less prime factors than the
minimum number of depth levels

Cruz Jiménez et al. EURASIP Journal on Advances in Signal Processing (2017) 2017:31

Page 8 of 13

e L__ [3]

SCM

Average Lower Bounds
~
T

0 V. ! ! !

0 2 4 6

Fig. 11 Average lower bounds

8 10 12 14
Wordlength (bits)

multiplicative graphs, which require extra R-operations
(see Theorems 5 to 8). Besides, all the outputs of the
PMCM block must have equal number of depth levels to
balance the input—output delay, which also may require
extra R-operations. Based on these observations, The-
orem 10 extends the lower bound provided in Theorem
9 by identifying at least how many extra R-operations
would be needed. From these theorems, we obtain the
lower bound for the number of R-operations needed to
form a PMCM block.

3.2.0.1 Theorem 9 At least K n-input A-operations are
needed to build an MCM block, where K is given by

N-1
K = log, (1) T+ 3 E(S:, i), (7)

i=1
]-' S - Sl+17
|-10g ;+1 -| Si < Sl+1

L

with E(S;,Sit1) =

3.2.0.2 Proof Recall that every A-operation has only one
possible configuration and therefore can generate only
one fundamental. Simply shifted (i.e., scaled by a power
of two) versions of that fundamental can be obtained
from that A-operation. Since the target constants are in-
teger and odd by definition, it is not possible to obtain
two target constants from the same A-operation.

Table 2 Percentage of constants with improved lower bounds

Word length Lscm (3] Lscm [4]
B =14 bits 54% 45%
14<B<32 63% 55%

Therefore, there must be at least N n-input A-operations
for the N constants. Note that, since the terms S; are
sorted in ascendant order, S; corresponds to the simplest
constant, i.e., the one with the smallest number of non-
zero digits. From Theorem 1, we have that with p depth
levels we can obtain #” non-zero digits at most. By
using the relation #”>S;, we have that the minimum
number of levels necessary to generate S; non-zero
digits is [log,(S;)1, which implies the existence of at
least I log,(S;)1 A-operations for that constant. Finally, if
Si+1>n x S; holds, we have that a single A-operation is not
able to generate the constant ¢;,; if there are only coeffi-
cients with at most S; digits available because the number
of non-zero digits at the output of an A-operation is at
most the sum of the number of non-zero digits at its in-
puts. Therefore, at least I log,,(S;, 1/S;)1 A-operations will
be required. This proof is a straightforward extension of
the proof given in [3] for the lower bound of 2-input A-
operations that form an MCM block. m

3.2.0.3 Theorem 10 At least L R-operations are needed
to build a PMCM block, where L = K + F + G, with

{ m_ax{r logn(S,v)_]—Q,»}; Vi such that Q; < rlogn(Si)—l,

0; otherwise.

F=

N-1
G =Y Tlog,(Sy)1-T log,(s:) 1

i=1
and K given in (7).
3.2.0.4 Proof Consider that there is a constant c,, that

satisfies Q,,, <[log,(S,,)1 and, if there are more con-
stants that satisfy such condition, c,, has the greatest

Cruz Jiménez et al. EURASIP Journal on Advances in Signal Processing (2017) 2017:31

Page 9 of 13

(d)

13,003

(e)

Fig. 12 a Two-input adder graph of constant 11,467, b three-input adder graph of constant 11,467, ¢ two-input adder graph of constant 11,093,
d three-input adder graph of constant 11,093, e two-input adder graph of constant 13,003, and f three-input adder graph of constant 13,003

(®)

difference [l log,(S,,)1-Q,,]. From Theorem 8, we
have that the constant can be formed by cascading a
non-multiplicative graph with a completely multiplica-
tive graph, where the non-multiplicative graph needs
2[llog,(S,)1-(Q,,-1)] -1 R-operations. Since The-
orem 9 has not taken into consideration the number
of prime factors, only [l log,(S,,)1-(Q,,-1)] A-oper-
ations have been accounted in that theorem, under
the assumption that the constant ¢,, can be con-
structed with the optimal completely multiplicative
graph. Therefore, at least [Ilog,(S,)1-(Q,,-1)]-1
extra R-operations must be included when pipelining
is applied, which explains the term F. The term G is

Table 3 Number of R-operations for Example 1 using n=2 and
n =73 input adders

Constant R-operations n=2 R-operations n=3
Lscm (3] Lsem [4] Lpscm Lpscm

11,467 3 4 5 3

11,093 3 4 5 3

13,003 3 4 5 3

explained by the fact that extra R-operations may be
needed to achieve the same number of pipelined
stages from input to output in every constant. Since
the minimum depth level of a constant is given by T
log,(S)1, the differences between the minimum depth
level of the constant ¢y (which has the greatest depth
level among other constants) and the minimum depth
levels of the other constants are accumulated in the
term G. m

From Theorem 10, we can express the lower
bound for the number of R-operations in the PMCM
case as

Table 4 Resulting R-operations for Example 2 using n =2 input

adders
Algorithm R-operations
Hcup ADmin (method [30] with additional pipelining) 7

PAG using ASAP pipelining (preliminary solution from [8]) 7
Optimal PAG (method [8]) 5
Lyviem (31 3

4

LPMCM

Cruz Jiménez et al. EURASIP Journal on Advances in Signal Processing (2017) 2017:31

Table 5 Resulting R-operations for Example 3 using n=2 input

Page 10 of 13

Table 7 Resulting R-operations for Example 4 using n =3 input

adders adders

Algorithm R-operations Algorithm R-operations
RAG-n (method [36] with additional pipelining) 13 PAG for 3-input adders (method [10]) 4

RSG (method [22]) 7 Lomcm 3

OFL (method [7)) 6

Luem 131 4 the case of 2-input additions, and in most of the cases, it
Lemcm 6

N-1

Loviews = Tlog, (51) 1+ Y (Tog, (Sn) 1-T log, (5) 1)

i=1
N-1

+ZE(Si75i+l) + F7

i=1

L; Si=Sin,
with E(S;, Siv1) = {|- logn%‘—'f -|; S; < S’
and l
Fo { miax{rlogn(S,-)T—Q,-}; Vi such that Q; < |—logn(S,')-|7
0; otherwise.

4 Results and comparisons

In this section, comparisons of the proposed lower
bounds with the lower bounds currently available in lit-
erature are presented, detailing PSCM and PMCM cases
in Subsections 4.1 and 4.2, respectively. In all cases, two
and three-input additions were considered.

First, the PSCM case is addressed for n =2 (i.e., 2-input
additions) with an illustration of the lower bounds aver-
aged over all the constants with a word length of B bits,
where B goes from 1 to 14. This illustration compares the
proposed lower bound with the existing lower bounds
from [3] and [4], showing that the proposed lower bound
is tighter. An example is also included, where the pipe-
lined shift-and-add multipliers for some constants are
constructed with 2-input and 3-input additions.

The effectiveness of the PMCM lower bound is dem-
onstrated by examples, where pipelined shift-and-add
multiple constant multiplication blocks are constructed
using the algorithms from [7, 8, 22, 30] and [36] for the
case of 2-input additions and the algorithm from [10]
for the case of 3-input additions. The proposed lower
bound is compared with the lower bound from [3] in

Table 6 Resulting R-operations for Example 4 using n=2 input

provides better estimation of the number of required R-
operations. For n=3 (i.e.,, 3-input additions), there are
no theoretical lower bounds currently available in litera-
ture. Thus, the proposed lower bound is only compared
with the solution from [10]. In that case, the proposed
lower bound falls short only by one R-operation.

4.1 PSCM case

The lower bounds from methods [3] and [4], as well as the
proposed lower bound Lpgcy, from (6) are averaged for all
constants with B bits, where B is between 1 and 14. These
averages are shown in Fig. 11. We can observe the tighten-
ing of the proposed lower bound, i.e., the proposed lower
bound in general is greater than the lower bounds currently
available in literature. Table 2 presents, for n =2, the per-
centage of constants with improved lower bounds among
10,000 14-bits random constants and among 10,000 B-bits
random constants, with B between 15 and 32.

Example 1 presents the pipelined shift-and-add multi-
pliers for constants {11,467}, {11,093}, and {13,003} con-
structed with 2-input additions (shown in Fig. 12a, c,
and e, respectively) and 3-input additions (shown in
Fig. 12b, d and f, respectively). In all the cases, the opti-
mal solutions have the number of R-operations predicted
by the proposed lower bound, as shown in Table 3. Be-
sides, for the case of two-input additions, the proposed
lower bound outperforms the ones from [3] and [4] be-
cause the lower bound from [3] falls short by 2 R-opera-
tions and the lower bound from [4] falls short by one R-
operation.

Example 1 The constants {11,467}, {11,093}, and
{13,003} have similar graph and the same lower bounds
as shown in Table 3. The corresponding graphs are pre-
sented in Fig. 12.

4.2 PMCM case

In Example 2, the multiplier block with constants {44;
130; 172}, formed with 2-input additions, is presented.

Table 8 Resulting R-operations for Example 5 using n= 2 input

adders adders

Algorithm R-operations Algorithm R-operations
PAG (method [8]) 9 PAG (method [8]) 8

Lyviewm (3] 4 Lmem [3] 5

Lemcm 4 Lpmem 6

Cruz Jiménez et al. EURASIP Journal on Advances in Signal Processing (2017) 2017:31

Table 9 Resulting R-operations for Example 5 using n =3 input

adders

Algorithm R-operations
PAG for 3-input adders (method [10]) 3

Lemcm 3

In Table 4, the number of R-operations obtained by the
algorithms Hy, [30] with pipelining, PAG using ASAP
pipelining [8], and the optimal PAG [8] are listed. Add-
itionally, the lower bound of [3] and the proposed lower
bound Lpycp from (8) are given. The proposed lower
bound is closer to the number of R-operations needed
to implement the multiplier block than the lower
bound of [3].

Example 3 presents the group of constants {3; 13; 21;
37} that form a multiplier block. The R-operations
needed to implement the multiplier block using 2-input
additions are obtained with the algorithms RAG-n [36]
with pipelining, RSG [22], and OFL [7]. The resulting
values are shown in Table 5, where it can be observed
that the OFL algorithm offers the less number of R-op-
erations. Also, the lower bound of [3] and the proposed
lower bound Lpyicy from (8) are given in Table 5. In
this example, the proposed lower bound estimates the
same number of R-operations used by the OFL algo-
rithm to implement the multiplier block.

Page 11 of 13

A multiplier block formed with the constants {7,567;
20,406} is illustrated in Example 4. The R-operations
needed to implement the multiplier block using 2-input
additions are obtained with the algorithm PAG [8].
Table 6 shows the resulting number of R-operations to-
gether with the estimated number of R-operations using
the lower bound of [3] and the proposed lower bound
Lpycem from (8). The R-operations needed to implement
the multiplier block using 3-input additions are obtained
with the algorithm PAG for 3-input additions [10].
Table 7 shows the resulting number of R-operations
along with the estimations using the proposed lower
bound Lppicm from (8).

Finally, Example 5 presents the constants {87,381;
689,493} that form a multiplier block. The R-operations
needed to implement the multiplier block using 2-input ad-
ditions are obtained with the algorithm PAG [8], and the R-
operations needed to implement the multiplier block using
3-input additions are obtained with the algorithm PAG for
3-input additions [10]. Table 8 shows the resulting number
of R-operations together with the estimated number of R-
operations using the lower bound of [3] and the proposed
lower bound Lpyicy from (8). Table 9 shows the resulting
number of R-operations along with the estimations using
the proposed lower bound Lpyicpy from (8). The proposed
lower bound presents a reliable estimation of the number
of R-operations needed to implement the multiplier block.

20 '20

689,493 87,381

(a)

for the multiplier block {87,381; 689,493}

Fig. 13 a Two-input adder graph by PAG algorithm for the multiplier block {87,381; 689,493} and b three-input adder graph by PAG algorithm

689,493

87,381

(b)

Cruz Jiménez et al. EURASIP Journal on Advances in Signal Processing (2017) 2017:31

Example 2 (example given in [8]) A multiplier block
with the constants from the set {44; 130; 172} have the
estimate number of R-operations as shown in Table 4
(the resulting graphs are shown in Fig. 1 of paper [8]).

Example 3 (example given in [7]) A multiplier block
with the constants from the set {3; 13; 21; 37} have the
estimate number of R-operations as is shown in Table 5
(the resulting graphs can be seen in Fig. 4 of [7]).

Example 4 (example given in [10]) A multiplier block
with the constants from the set {7,567; 20,406} have the
estimate number of R-operations as shown in Table 6
for two-input adders and Table 7 for three-input adders
(Fig. 3 of [10] shows the corresponding graphs).

Example 5 A multiplier block with the constants from
the set {87,381; 689,493} have the estimate number of R-
operations as shown in Table 8 for 2-input adders and
Table 9 for 3-input adders. The corresponding graphs
are shown in Fig. 13.

5 Conclusions

New theoretical lower bounds for the number of R-oper-
ations in the fully pipelined SCM and the fully pipelined
MCM cases for n-input adders/subtractions have been
presented. The proposed lower bounds are tighter be-
cause pipelining registers were explicitly considered. On
the other hand, it was observed that the use of articula-
tion points allows a rapid increase of the number of
non-zero digits from a depth level to the next depth
level. The new theoretical lower bounds achieve better
estimation of the number of required operations needed
to implement a single multiplier or a multiplier block.
The tightening of the new lower bounds was illustrated
with examples in the comparisons section.

Acknowledgements

This paper has been supported by CONACYT scholarship no. 224191. The
authors are grateful to D. E. T. Romero for his helpful comments during the
development of this proposal.

Funding
This work is a result of a doctoral thesis developed in the Institute INAOE;
the thesis has been supported with CONACYT's grant.

Authors’ contributions

MGCJ contributed to the main development of the theorems and examples
in this proposal. UMB is the advisor in the development of low-complexity
FPGA-based arithmetic blocks and contributed to the review of theorems
and examples. GJD as thesis advisor directed all the work an the paper was
written under her supervision. All authors read and approved the final
manuscript.

Authors’ information

Miriam Guadalupe Cruz Jimenez received the BS degree from the Minatitlan
Institute of Technology and the MS degree from the National Institute for
Astrophysics, Optics and Electronics (INAOE), Mexico. She received the best
paper award at the conference CIIECC 2013. Currently, she is a PhD student
in the Institute INAOE. She is a reviewer for the journals IEEE Transactions on
Circuits and Systems | and Circuits, Systems & Signal Processing.

Dr. Uwe H. Meyer-Baese (IEEE, S'91-M'93) was born in Kassel, Germany, on
July 10, 1964. He received his BSEE, MSEE, and Ph.D. “Summa cum Laude”
from the Darmstadt University of Technology in 1987, 1989, and 1995,

Page 12 of 13

respectively. In 1994 and 1995, he held a Postdoctoral Position in “Institute of
Brain Research,” Magdeburg, Germany. In 1996 and 1997, he was a visiting
professor at the University of Florida, Gainesville. From 1998 to 2000, he
worked as a Research Scientist in the ASIC industry. He joint Electrical and
Computer Engineering Department at the FAMU-FSU College of Engineering
in 2001 and is now an Associate Professor. He holds 3 patents, has published
over 100 journal and conference papers, 5 books, and supervised more than
60 master thesis projects in the real-time DSP/FPGA area. He is author of the
best-selling Springer textbook on DSP with FPGAs. He was a recipient of the
Max-Kade Award in Neuroengineering in 1997, ECE Department Research
Award in 2005, Who's Who in Science member in 2005, SPIE, Best Presenta-
tion Award in 2006, FAMU-FSU College of Engineering Teaching Award in
2007, and the Humboldt Fellow in 2009. He has served as Faculty Senator of
the FSU senate since Spring 2011. He has been an elected member of the
editorial board for the journal Signal, Image and Video Processing for 2011-
2015 and has been elected as a board member as well as an associate editor
for the EURASIP Journal of Advances in Signal Processing for 2011-2013.
Gordana Jovanovic Dolecek received a BS degree from the Faculty of
Electrical Engineering, University of Sarajevo, an Ms degree from the
University of Belgrade, and a Ph.D. degree from the Faculty of Electrical
Engineering, University of Sarajevo. She was with the Faculty of Electrical
Engineering, University of Sarajevo until 1993, as a research assistant, assistant
professor, associate professor, and full professor. From 1986 to 1991, she was
chairman of the Department of Telecommunication. During 1993-1995, she
was with the Institute Mihailo Pupin, Belgrade. In 1995, she joined Institute
INAOE, Department for Electronics, Puebla, Mexico, where she works as a
professor and researcher. She is the author of three books and more than 100
papers. She is also author of four lectures for TechOnLine University. Her
research interests include digital signal processing and digital communications.
She is a member of IEEE and The National Researcher System (SNI) of Mexico.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

'Department of Electronics, Institute INAOE, Tonantzintla, Puebla, México.
“Electrical and Computer Engineering Department, Florida State University,
Tallahassee, FL, USA.

Received: 26 January 2017 Accepted: 19 April 2017
Published online: 03 May 2017

References

1. R Guo, LS DeBrunner, K Johansson, Truncated MCM Using Pattern
Modification for FIR Filter Implementation. Paper presented at the
Proceedings of IEEE International Symposium on Circuits and Systems
(ISCAS), Paris, France, p. 3881-3884, May 30-Jun 2, 2010.

2. L Aksoy, EO Glines, P Flores, Search algorithms for the multiple constant
multiplication problem: exact and approximate. Microprocess. Microsyst.
34(5), 151-162 (2010). doi: doi.org/10.1016/j.micpro.2009.10.001.

3. O Gustafsson, Lower bounds for constant multiplication problems. IEEE
Trans. Circuits and Syst. II: Express briefs 54 (11), 974-978 (2007). doi: 10.
1109/TCSII.2007.903212.

4. DET Romero, U Meyer-Baese, GJ Dolecek, On the inclusion of prime factors
to calculate the theoretical lower bounds in multiplierless single constant
multiplications. EURASIP Journal on Advances in Signal Processing 122, 1-9
(2014). doi:10.1186/1687-6180-2014-122.

5. S Mirzaei, R Kastner, A Hosangadi, Layout aware optimization of high speed
fixed coefficient FIR filters for FPGAs. Int. Journal of Reconfigurable
Computing (2010). doi: 10.1155/2010/697625.

6. M Kumm, P Zipf, High speed low complexity FPGA-based FIR filters using
pipelined adder graphs. Paper presented at the Int. Conference on Field
Programmable Technology (FPT), Indian Institute of Technology Delhi, New
Delhi, India, p. 1-4, 12-14 December 2011.

7. U Meyer-Baese, G Botella, DET Romero, M Kumm, Optimization of high
speed pipelining in FPGA-based FIR filter design using genetic algorithm.
Proc. SPIE 8401, Independent Component Analyses, Compressive Sampling,

http://dx.doi.org/10.1016/j.micpro.2009.10.001
http://dx.doi.org/10.1109/TCSII.2007.903212
http://dx.doi.org/10.1109/TCSII.2007.903212
http://dx.doi.org/10.1186/1687-6180-2014-122
http://dx.doi.org/10.1155/2010/697625

Cruz Jiménez et al. EURASIP Journal on Advances in Signal Processing (2017) 2017:31

20.

21.

22.

23.

24.

25.

Wavelets, Neural Net, Biosystems, and Nanoengineering X, 84010R1-12
(2012). doi:10.1117/12.918934.

M Kumm, P Zipf, M Faust, CH Chang, Pipelined adder graph optimization
for high speed multiple constant multiplication. Paper presented at the
Proceedings of IEEE International Symposium on Circuits and Systems
(ISCAS), p. 49-52, COEX, Seoul, Korea, 20-23 May 2012.

M Kumm, D Fanghanel, K Moller, P Zipf, U Meyer-Baese, FIR filter
optimization for video processing on FPGAs. EURASIP J Adv Sig Process
111, 1-18 (2013). doi:10.1186/1687-6180-2013-111

M Kumm, M Hardieck, J Willkomm, P Zipf, U Meyer-Baese, Multiple constant
multiplications with ternary adders. Paper presented at the International
Conference on Field Programmable Logic and Applications (FPL), Porto,
Portugal, p. 1-8, 2-4 Sept. 2013.

M Kumm, P Zipf, Pipelined compressor tree optimization using integer
linear programming. Paper presented at the 24th International Conference
on Field Programmable Logic and Applications (FPL), p. 1-8, Munich,
Germany, 2-4 Sept. 2014.

M Kumm, P Zipf, Efficient high speed compression trees on Xilinx FPGAs.
Paper presented at the MBMV, IBM Germany Research and Development,
Boblinguen, Germany, p. 171-182, 10-12 March 2014.

L Aksoy, E Costa, P Flores, J Monteiro, Exact and approximate algorithms for
the optimization of area and delay in multiple constant multiplications. IEEE
Trans. Comput-Aided Des. Integr. Circuits 27(6), 1013-1026 (2008). doi:10.
1109/TCAD.2008.923242

L Aksoy, E Costa, P Flores, J Monteiro, Finding the optimal tradeoff between
area and delay in multiple constant multiplications. Elsevier Journal
Microprocessors and Microsystems 35 (8), 729 — 741 (2011). doi: doi.org/10.
1016/j.micpro.2011.08.009.

AG Dempster, SS Dimirsoy, | Kale, Designing multiplier blocks with low logic
depth. Paper presented at the Proceedings of IEEE International Symposium
on Circuits and Systems (ISCAS), Scottsdale, Arizona, p. 773-776, 26-29 May
2002.

M Faust, C-H Chang, Minimal logic depth adder tree optimization for
multiple constant multiplication. Paper presented at the Proceedings of IEEE
International Symposium on Circuits and Systems (ISCAS), Paris, France, p.
457-460, May 30-Jun 2, 2010.

K Johansson, O Gustafsson, LS DeBrunner, L Wanhammar, Minimum adder depth
multiple constant multiplication algorithm for low power FIR filters. Paper
presented at the Proceedings of IEEE International Symposium on Circuits and
Systems (ISCAS), Rio de Janeiro, Brazil, p. 14391442, 15-18 May 2011.

AG Dempster, MD Macleod, Using all signed-digit representations to design
single integer multipliers using subexpression elimination. Paper presented
at the Proceedings of IEEE International Symposium on Circuits and
Systems (ISCAS), Vancouver, British Columbia, p. 165-168, 23-26 May 2004.
L Aksoy, E Costa, P Flores, J Monteiro, Multiplierless design of linear DSP
transforms. VLSI-SoC: Advanced Research for Systems on Chip, ed. by S. Mir,
C-Y Tsui, R Reis, O Choy (Springer 2011), p. 73 - 93.

YH Ho, CU Lei, HK Kwan, N Wong, Global optimization of common
subexpressions for multiplierless synthesis of multiple constant
multiplications. Paper presented at the Proceedings of Asia and South
Pacific Design Automation Conference, Seoul, South Korea, p. 119-124, 21-
24 January 2008.

A Hosangadi, F Fallah, R Kastner, Simultaneous optimization of delay and
number of operations in multiplierless implementation of linear systems.
Paper presented at the Proceedings of International Workshop on Logic
Synthesis, Lake Arrowhead, California, p. 1-8, 8-10 June 2005.

KN Macpherson, RW Stewart, Rapid prototyping - Area efficient FIR filters for
high speed FPGA implementation. IEE Proceedings - Vision, Image Signal
Processing 156, 711-720 (2006). doi:10.1049/ip-vis:20045133.

U Meyer-Baese, J Chen, CH Chang, AG Dempster, A comparison of
pipelined RAGn and DA FPGA-based multiplierless filters. Paper presented
at the IEEE Asian-Pacific Conference on Circuits and Systems, Singapore, p.
1555-1558, 4-7 December 2006.

L Aksoy, E Costa, P Flores, J Monteiro, Design of low-complexity digital finite
impulse response filters on FPGAs. Paper presented at the Proceedings of
Design, Automation and Test in Europe Conference, Dresden, Germany, p.
1197-1202, 12-16 March 2012.

M Faust, C-H Chang, Bit-parallel Multiple Constant Multiplication using
Look-Up Tables on FPGA. Paper presented at the Proceedings of IEEE
International Symposium on Circuits and Systems (ISCAS), p. 657-660, Rio
de Janeiro, Brazil, 15-18 May 2011.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

Page 13 of 13

G Botella, A Garcia, M. Rodriguez-Alvarez, E Ros, U Meyer-Baese, M C Molina,
Robust bioinspired architecture for optical-flow computation. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 18(4), 616-629
(2010). doi: 10.1109/TVLSI.2009.2013957.

G Botella, U Meyer-Baese, A Garcia, M Rodriguez, Quantization analysis and
enhancement of a VLS| gradient-based motion estimation architecture.
Digital Signal Processing, 22(6), 1174-1187 (2012). doi: doi.org/10.1016/j.dsp.
2012.05.013.

G Botella, U Meyer-Baese, A Garcia, Bio-inspired robust optical flow
processor system for VLS| implementation. Electron Lett 45(25), 1304-1305
(2009). doi:10.1049/e1.2009.1718

E Castillo, A Lloris, DP Morales, L Parrilla, A Garcia, G Botella, A new area-
efficient BCD-digit multiplier. Digital Signal Processing 62, 1-10 (2017). doi:
dxdoi.org/10.1016/.dsp.2016.10.011.

Y Voronenko, M Puschel, Multiplierless multiple constant multiplication,
ACM Transactions on Algorithms, 3 (2), 11 (2007). doi: 10.1145/1240233.
1240234.

| Koren, Computer Arithmetic Algorithms. (Prentice Hall, 1993).

U Meyer-Baese, Digital Signal Processing with Field Programmable Gate
Arrays, 4th. edn. (Springer, 2014).

DR Bull, DH Horrocks, Primitive operator digital filters. IEE Proceedings G -
Circuits, Devices and Systems 138(3), 401-412 (1991). doi:10.1049/ip-g-2.
1991.0066

K Johansson, O Gustafsson, L Wanhammar, Switching activity estimation for
shift-and-add based constant multipliers. Paper presented at the
Proceedings of IEEE International Symposium on Circuits and Systems
(ISCAS), Seattle, Washington, p. 676-679, 18-21 May 2008.

J Chen, CH Chang, High-level synthesis algorithm for the design of
reconfigurable constant multiplier. IEEE Trans Computer-Aided Des Integr
Circ Syst 28(12), 1844-1856 (2009). doi:10.1109/TCAD.2009.2030446

AG Dempster, MD Macleod, Use of minimum-adder multiplier blocks in FIR
digital filters. IEEE Trans. Circ Syst Il — Analog Digit Sig Process 42(9), 569—
577 (1995). doi:10.1109/82.466647

O Gustafsson, AG Dempster, K Johansson, MD Macleod, L Wanhammar,
Simplified design of constant coefficient multipliers. Circuits Syst. Signal
Process 25(2), 225-251 (2006). doi:10.1007/500034-005-2505-5

KK Parhi, VLSI digital signal processing systems: design and implementation,
(John Wiley & Sons, 2007).

O. Gustafsson, Contributions to Low-Complexity Digital Filters, 837,
(Linkdping Studies and technology dissertations, 2003).

R Kastner, A Hosangadi, F Fallah, Arithmetic Optimization Techniques for
Hardware and Software Design, (Cambridge University Press, 2010).

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

http://dx.doi.org/10.1117/12.918934
http://dx.doi.org/10.1186/1687-6180-2013-111
http://dx.doi.org/10.1109/TCAD.2008.923242
http://dx.doi.org/10.1109/TCAD.2008.923242
http://dx.doi.org/10.1016/j.micpro.2011.08.009
http://dx.doi.org/10.1016/j.micpro.2011.08.009
http://dx.doi.org/10.1049/ip-vis:20045133
http://dx.doi.org/10.1109/TVLSI.2009.2013957
http://dx.doi.org/10.1016/j.dsp.2012.05.013
http://dx.doi.org/10.1016/j.dsp.2012.05.013
http://dx.doi.org/10.1049/el.2009.1718
http://dx.doi.org/10.1016/j.dsp.2016.10.011
http://dx.doi.org/10.1145/1240233.1240234
http://dx.doi.org/10.1145/1240233.1240234
http://dx.doi.org/10.1049/ip-g-2.1991.0066
http://dx.doi.org/10.1049/ip-g-2.1991.0066
http://dx.doi.org/10.1109/TCAD.2009.2030446
http://dx.doi.org/10.1109/82.466647
http://dx.doi.org/10.1007/s00034-005-2505-5

	Abstract
	Introduction
	Definitions of terms
	Proposed lower bounds
	PSCM case
	PMCM case

	Results and comparisons
	PSCM case
	PMCM case

	Conclusions
	Acknowledgements
	Funding
	Authors’ contributions
	Authors’ information
	Competing interests
	Author details
	References

