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Abstract

Target detection has occupied a pivotal position in distributed system. Scan statistics, as one of the most efficient
detection methods, has been applied to a variety of anomaly detection problems and significantly improves the
probability of detection. However, scan statistics cannot achieve the expected performance when the noise intensity
is strong, or the signal emitted by the target is weak. The local vote algorithm can also achieve higher target detection
rate. After the local vote, the counting rule is always adopted for decision fusion. The counting rule does not use the
information about the contiguity of sensors but takes all sensors’ data into consideration, which makes the result
undesirable. In this paper, we propose a scan statistics with local vote (SSLV) method. This method combines scan
statistics with local vote decision. Before scan statistics, each sensor executes local vote decision according to the data
of its neighbors and its own. By combining the advantages of both, our method can obtain higher detection rate in
low signal-to-noise ratio environment than the scan statistics. After the local vote decision, the distribution of sensors
which have detected the target becomes more intensive. To make full use of local vote decision, we introduce a
variable-step-parameter for the SSLV. It significantly shortens the scan period especially when the target is absent.
Analysis and simulations are presented to demonstrate the performance of our method.
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1 Introduction
Target detection has an important research significance
on military and civil applications in distributed system,
such as intrusion detection and fire detection. The relia-
bility of target detection result suffers from the problem
of local false alarm, while data fusion can improve the
precision of the target detection. For multiple sensor sys-
tems, sensors send their sense data to a fusion center,
and the fusion center makes the final decision to improve
the global probability of detection. Distributed detection
using multiple sensors and optional fusion rules has been
extensively investigated.
Chair and Varshney [1] present an optimum fusion

structure to classical Bayesian detection problem in dis-
tributed sensor networks. To obtain the global decision,
the fusion center weighs the reliability of every sensor and
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compares them with a threshold. The reliability of sen-
sor is supported by the probability of detection and false
alarm rate. Although this method can get optimum per-
formance, it has to know the probability of detection and
false alarm rate previously. Since we cannot get the target
location before detection, this method cannot be applied
to practical applications.
Niu and Varshney [2] put forward the counting rule,

where the fusion center employs the total number of
detections reported by local sensors for hypothesis testing
and analyzes the performance of the counting rule with a
significant number of sensors. In [3], the authors give per-
formance analysis when sensors are deployed in a random
sensor field. The counting rule does not need the prob-
abilities of local detection and a false alarm in advance.
It makes the counting rule more suitable for the practical
environment. For the counting rule, it takes the results of
sensors equally. However, sensors close to the target get
higher accuracy than sensors far away. Sensors far away
from the target degrade global probability of detection.
In [4, 5], the authors propose a method which gives dif-
ferent weight to each sensor depending on the evaluated
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distance to the target or the signal-to-noise ratio (SNR).
It makes the final decision more accurate at the cost of
sending more data to the fusion center.
The authors in [6] propose the local vote algorithm

using decisions of neighboring sensors and making a col-
lective decision as a network. The authors examine both
distance-based and nearest neighbor-based versions of
local vote algorithm for grid and random sensor deploy-
ments and show that in many situations, for a fixed system
false alarm, the local vote correction achieves signifi-
cantly higher target detection rate than the decision fusion
based on uncorrected decisions (see Fig. 1). The authors
in [7] propose an improved threshold approximation for
the local vote decision fusion and demonstrate that this
method can achieve a more accurate result.
Scan statistics has been used to an epidemic or com-

puter intrusion in [8–11]. Moreover, Guerriero [12] puts
the scan statistics to the signal processing community
firstly. The detection is carried out in a mobile fusion
center as a mobile agent (MA) which successively counts
the number of binary decisions reported by local sensors
lying inside its moving field of view. The MA, playing
the role of the fusion center, makes the final decision
about the presence of a target. The authors also demon-
strate the existence of optimal size for the field of view
and the disjoint-window test. In disjoint-window scan

test, the MA travels across the sensor network and scans
the network using no overlapping windows. In [13–15],
the authors introduce the variable window scan statistics
and investigate the performance of those variable window
scan statistics methods. The disjoint-window scan statis-
tics can shorten the scan period. However, it has poor
performance compared with the scan statistics (SS).
How to improve the probability of detection while

reducing the false alarm rate is an eternal topic. To han-
dle complex network environments, improving the global
performance in low SNR is our primary goal. The research
mentioned above can improve the detection probability
and decrease the false alarm rate. However, those algo-
rithms cannot meet the expected performance in low
SNR. The local vote algorithm can significantly improve
the global performance, especially in low SNR. After the
local vote, the counting rule is adopted for decision fusion.
The counting rule does not consider the spatial correla-
tion that sensors near the target have a higher probability
of reporting detections. It weakens the advantage which
is brought by local vote. In this paper, we combine two
previous ideas: local vote decision and scan statistics.
Sensors make a local vote, and the MA performs scan
statistics. According to Fig. 1, we can see that local vote
makes the distribution of sensors which have detected the
target more concentrated. It inspires us to introduce a

Fig. 1 Ordinary versus Local vote decision fusion under different deployment. After local vote, the number of sensors (black dot) that detected the
target (red dot) has increased. a, b grid deployment, c, d random deployment
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variable-step-parameter for the scan statistics with a local
vote (SSLV). Our contributions in this paper are described
as follows.

• A model of the SSLV is proposed. We analyze the
difference between the SSLV and the traditional SS.
The deduction of global false alarm ratio for the
SSLV is developed.

• We apply the SSLV to a grid sensor network and
compare its performance with the SS. According to
the simulation, we can prove that the SSLV
overwhelms the SS in low SNR. We also verify that an
optimalMx at a given situation does exist.

• We introduce a variable-step-parameter for the SSLV
and analyze its influence on our method. From the
simulation, we know that the variable-step-parameter
has little negative effect on detection performance of
the SSLV. However, it significantly shortens the scan
period especially when a target is absent.

The remainder of the paper is organized as follows.
Section 2 demonstrates two-dimensional scan statistics as
a foundation for the SSLV. Section 3 describes the system
model of scan statistics with the local vote and intro-
duces a variable-step-parameter into the SSLV. Section 4
applies the SSLV to a grid sensor network, and various
simulations and analysis are provided. Finally, Section 5
concludes our research.

2 Scan statistics
In this part, we will introduce the classical two-
dimensional scan statistics algorithm. The scan statistics
is a kind of distributed detection method. Each sensor
makes its hypotheses according to its sense data and sends
the result to the fusion center. The traditional counting
rule algorithm collects data from all sensors in the field
of interest and makes the global judgment through these
data. Unlike the counting rule algorithm, the SS makes an
MA sequentially collect the data from the agent area, and
the MA makes the final decision for the global network.
When a target is present, sensors near the target are more
likely to make the right judgments. The SS considers this
spatial correlation that makes it more accurate than the
counting rule.
We assume that all sensors follow the same hypothe-

ses: eitherH0 (target absent) is valid orH1 (target present)
is uniformly accurate. R presents the region of interest
(ROI). We deploy sensors in region R , and the region
is defined by [0,T1] × [0,T2]. More specifically, let
hi = Ti/N ′i > 0, where N ′i are positive integers, and
i = 1, 2. For 1 ≤ i ≤ N ′1 and 1 ≤ j ≤ N ′2, let X′i,j be
the count of sensors that have been observed in the rect-
angular basic regions [(i − 1)h1, ih1] × [

(j − 1)h2, jh2
]
.

In the process of scan, the MA records the results of

sum in its agent region, and the size of agent region is
m1 bym2.

v′
i1,i2 =

i2 + m2 − 1∑

j = i2

i1 + m1 − 1∑

i = i1

X′
xj (1)

where m1 and m2 are the width and height of the MA
respectively. We also call them1 andm2 the window sizes
of the MA. The MA collects data and finds the maximum
value to compare with a pre-set threshold value k.

Sm1 × m2N1 × N2 = max{v′
i1,i2 ; 1 ≤ i1 ≤ N1 − m1

+ 1, 1 ≤ i2 ≤ N2 − m2 + 1} (2)

If there is a maximum value greater than k, we can say
that k events are clustered within the inspected region.
Therefore, the global probability of detection PD and
global probability of false alarm PF can be respectively
expressed as

PD = P
(
Sm1 × m2N1 × N2 ≥ k|H1

)

PF = P
(
Sm1 × m2N1 × N2 ≥ k|H0

)
(3)

It is important for us to give the expression of
P

(
Sm1 × m2N × N ≥ k

)
. Although there is no exact

expression for P
(
Sm1 × m2N1 × N2 ≥ k

)
, we can eval-

uate the approximation for it. When the X′
ij is the

Bernoulli random variable with parameter P = α,
where 0 < α < 1, the accurate approximation for
P

(
Sm1 × m2N1 × N2 ≥ k

)
can be expressed as

P(Sm × m ≥ k)

≈ 1 −
[

[P {Sm × m (m,m) ≤ k − 1} ](N − m − 1)2

[P {Sm × m (m,m + 1) ≤ k − 1} ]2(N − m − 1)(N − m)

]

× [P {Sm × m (m + 1,m + 1) ≤ k − 1} ](N − m)2

(4)

The full content can be found in [12, 16]. In [12], the
authors also demonstrate the expression when the X′

i,j
conforms to Poisson distribution.

3 Two-dimensional scan statistics with local vote
decision

In this section, we give a detailed description of the SSLV
that we proposed and the problems which are brought
by local vote. Section 3.1 presents the scan statistics with
local vote decision algorithm. The correlation of local
sensors is presented in Section 3.2. According to our
analysis, it turns out that the results provided by sen-
sors are not independent and identically distributed (i.i.d)
anymore after the local vote. It makes an expression (4)
cannot be used in the SSLV, but a new expression for the
SSLV is deduced in Section 3.3. Section 3.4 introduces a
variable-step-parameter into the SSLV in order to take full
advantage of the local vote.
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3.1 Scan statistics with local vote decision
Precisely, in this part, we will give an introduction about
the SSLV in two-dimensional region. The underlying
assumptions in the last part are still suitable here. The dif-
ference is that we let sensors make a local vote decision
before scan statistics. According to [6], we can take vari-
ous neighborhood algorithms, such as fixed distance r or
fixed size. Any one of those algorithms can be selected,
then all corresponding parameters can be confirmed. For
better description, we will redefine some variables. Let Xi,j
be the event that has been observed in the rectangular
sub-regions [ih1, (i + 1)h1] × [

jh2, (j + 1)h2
]
after local

vote where 1 ≤ i ≤ N1 and 1 ≤ j ≤ N2 ,Ni = N ′i−2,
and for simplicity, we exclude the rectangular sub-regions
on the edge of the field in this part. For 1 ≤ i ≤ N1
and 1 ≤ j ≤ N2, letm1 andm2 be the positive integers,
1 ≤ m1 ≤ N1 and 1 ≤ m2 ≤ N2.

vi1,i2 =
i2 + m2 − 1∑

j = i2

i1 + m1 − 1∑

i = i1

Xi,j (5)

Similarly, if vi1,i2 exceeds a pre-set value of k, the MA
makes the final decision that a target is present. The
largest number of events in an agent region can be
expressed as

Sm1 × m2; N1z × N2 = max {vi1,i2 ; 1 ≤ i1 ≤ N1 − m1

+ 1, 1 ≤ N2 − m2 + 1} (6)

For simplicity, we abbreviate Sm1 × m2; N1 × N2 to
S. The next step is to obtain the expression of
P

(
Sm1 × m2 N × N ≥ k

)
to make the SSLV useful.

3.2 Correlation of sensors
Our algorithm introduces local vote decision into the tra-
ditional scan statistics. Therefore, we should figure out
what has changed after the combination of two algo-
rithms. The dependence among sensors should be exam-
ined first. For any sensor detection event Zi, we start by
calculating the expected value μi and variance σi2 of the
updated decision.

μi = P (Zi = 1) =
Mi∑

n = Mx

(
Mi
n

)
αn(1 − α)Mi − n

(7)

where Mi is the number of neighbors which depends
on local vote decision algorithm. Mx is a variable
that has a significant influence on the performance.
σi2 = μi (1 − μi).
The dependence between Zi and Zj has relations with

the intersection of their respective neighborhoods U(i)
andU(j). The number of sensors in the intersectionU(i)∩
U(j) can be denoted by ni,j. According to the expression of
covariance, we first compute E(ZiZj) = P(Zi = Zj = 1)

and then calculate the covariance between Zi and Zj. We
divide the neighborhoods into three parts. Suppose that A
is the number of positive decisions in U(i) ∩U(j) and B is
the number of positive decisions in U(i), but not in U(j),
while C is the number of positive decisions in U(j), but
not in U(i). Noting that A, B, and C are independent, we
can have

E
(
ZiZj

) =
ni,j∑

k = 0
P(A = k)P(B > Mxi − k)

× P(C > Mxj − k)

(8)

P (A = k) =
(
ni,j
k

)
αk (1 − α)ni,j − k (9)

P (B > Mxi − k) =
Mi − ni,j∑

q = Mxi − k + 1

(
Mi − ni,j

q

)

αq(1 − α)Mi − ni,j − q (9)

P
(
C > Mxj − k

) =
Mj − ni,j∑

q = Mxj − k + 1

(
Mj − ni,j

q

)

αq(1 − α)Mj − ni,j − q (10)

The covariance is then given by

Cov(Zi,Zj) = [
E(Zi,Zj) − μiμj

]
I(ni,j > 0) (11)

According to the deductions above, we can find out that
decision Xi,j is not i.i.d anymore after the local vote.

3.3 Approximation for P(S ≥ k)
In [16], the authors give the proof of approximation when
the Xi,j is i.i.d with the Markov Chain imbeddable systems
[17]. Obviously, it is not applicable here. Luckily, there
are different ways to give the accurate approximation for
P(S ≥ k) and one of them is using the Haiman theorem
[18–20].

Theorem 1 Let {Xi} be a stationary 1-dependent
sequence of r.v’s and for x < w, w = sup{u;P(X1 ≤ u) <

1}, let qn = qn(x) = P{max(X1, . . .Xn) ≤ x}. For any x
such that P (X1 > x) = 1 − q1 ≤ 0.025 and any integer
n > 3 such that 3.3n(1 − q1)2 ≤ 1, we have

∣
∣
∣qn − (2q1 − q2)

(1 + q1 − q2 + 2(q1 − q2)2)
n

∣
∣
∣

qn
≤ 3.3n(1 − q1)2

(12)

According to the Haiman theorem, we need to con-
struct a stationary 1-dependent sequence. Supposing that
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N1 = Km1 and N2 = Lm2, where K and L are positive
integers, we have

Zk = max
(k − 1)m1 < t ≤ km1
0 < s ≤ (L − 1)m2

vts, k = 1, 2, . . .K − 1

(13)

{Zk}k = 1,...,k − 1 is a 1-dependent stationary sequence
and P (S ≤ n) = P( max

k = 1...K − 1
{Zk} ≤ n). Let

Q2 = P (Z1 ≤ n) and Q3 = P (Z1 ≤ n,Z2 ≤ n).
Then, if 1-Q2 ≤ 0.025, we can get approximation from
Haiman theorem

P (S ≤ n) ≈ (2Q2 − Q3)[ 1 + Q2 − Q3

+ 2(Q2 − Q3)
2]−(K − 1) (14)

with an error of about 3.3(K − 1)(1 − Q2)
2. To evalu-

ate (15), one needs approximations for Q2 and Q3. Hence,
the question is transformed into evaluating Q2 and Q3.
We may apply Theorem 1 again considering the two
sequences of random variables defined by

Yl = max
0 < t ≤ m1

(l − 1)m2 < s ≤ lm2

vts

and

Zl = max
0 < t ≤ 2m1

(l − 1)m2 < s ≤ lm2

vts, l = 1, 2, . . . L − 1

which are also stationary and 1-dependent. Put Q22 =
P(Y1 ≤ n), Q23 = P(Y1 ≤ n,Y2 ≤ n), Q32 = P(Z1 ≤ n)

and Q33 = P(Z1 ≤ n,Z2 ≤ n). We have

Q22 = P (S(m1,m2, 2m1, 2m2) ≤ n) ,

Q23 = P (S(m1,m2, 2m2, 3m2) ≤ n) ,

Q32 = P(S(m1,m2, 3m1, 2m2) ≤ n),

Q33 = P(S(m1,m2, 3m1, 3m2) ≤ n).

Then, if 1-Q22 ≤ 0.025 and 1-Q32 ≤ 0.025, we can still
get the approximations from Theorem 1.

Q2 ≈ (2Q22−Q23)
[
1 + Q22 − Q23 + 2(Q22 − Q23)

2]−(L-1)

(15)

with an error of about 3.3(L − 1)(1 − Q22)
2 and

Q3 ≈ (2Q32−Q33)[1 + Q32 − Q33 + 2(Q32 − Q33)
2]−(L−1)

(16)

with an error of about 3.3(L − 1)(1 − Q32)
2.

Assuming that L ≤ K and substituting (17) and (16) into
(15), we can get the final expression we need.

The total error on the resulting approximation of
P(S ≤ n) is bounded by about

Eapp = 3.3(L − 1)(K − 1)((1 − Q22)
2 + (1 − Q32)

2

+(L − 1)(Q22 − Q23)
2). (17)

The exact formulas for Quv,u, v ∈ {2, 3} is hard to
be obtained. Thus, we can use Monte Carlo simulation
to evaluate these quantities. The final expression can be
given by

P (S ≥ k) = 1 − P (S < k) = 1 − P(S ≤ k − 1) (18)

where P (S ≤ k − 1) can be approximated by (15).

3.4 The SSLV with variable-step-parameter
The traditional scan statistics is a kind of continuous
scan. Disjoint-window scan statistics means the MA trav-
els across the ROI and scans the area using no over-
lapping windows. In [12], the authors investigate the
disjoint-window test and compare its performance with
the scan statistics. Obviously, the scan statistics over-
whelms the disjoint-window, and its performance is more
stable. However, the disjoint-window can shorten scan
period. In this section, we will introduce a variable-step-
parameter for the SSLV. In the process of scan, the MA
makes a choice for the next start position according to the
result of the current scan. Since the detection probability
is based on the distance between the target and sensors,
sensors near the target have a higher probability of detect-
ing the target. If the result of detection is small, we can
magnify the value of step to avoid the redundant scan
especially when the target is absent. The variable step is
given by

step = max
{⌊(

1 − vts
k

)
fov

⌋
, 1

}
(19)

The scan region can be a rectangular region given by
R (i1, i2) = [i1h1, (i1 + m) h1] × [i2h2, (i2 + m) h2].
Assuming R (i1, i2) is the scan region at the
current time, then the next scan region is
R[ (i1 + step) h1, (i1 + step + m) h1]×[ i2h2, (i2 + m) h2],
i1 + step ≤ N − m + 1. We only introduce the step at
one-dimensional field for better performance. Whereas,
the global false alarm rate can still be evaluated by (15).

4 Application of the SSLV in distributed system
In this section, we apply the SSLV into a particular sit-
uation and provide a detailed description concerning
observation model, local vote decision model, false alarm
probability at the MA, and the optimalMx.

4.1 Observations model
In this section, we will present the observation model
depicted in Fig. 1. All sensors are assigned in a grid pattern
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in Fig. 1a and in a random pattern in Fig. 1c. We con-
sider the two-dimensional field is a square of areas b2. The
number of total sensors can be expressed asM. (xs, ys) for
s = 1, . . .M present the coordinates of sensor s. The coor-
dinate of each sensor is known. Noises at local sensors are
i.i.d and follow the Gaussian distribution with zero mean
and variance σw2.

ws ∼ N(0, σw2)s = 1, . . .M (20)

We design each sensor s to decide between the following
hypotheses

H0 : rs = ws

H1 : rs = ys + ws (21)

where rs is the received signal at sensor s. Sensors make
their decisions according to the value of rs. ys = as/ds ,
and as is i.i.d which follows the Gaussian distribution with
zeromean and variance σ 2 (σ 2 represents the power of the
signal that is emitted by the target at distance ds = 1m),
and ds is the Euclidean distance between the local sensor
s and the target

ds =
√

(xs − xt)2 + (ys − yt)2 (22)

and (xt , yt) are the unknown coordinates of the target.
Sensors near the target receive more signals than those
far away. Receiving more signals means higher probabil-
ity of detection. In our simulations, we assume that the
location of the target follows a uniform distribution, and
all local sensors make their judgments by using the same
threshold τ . According to the Neyman-Pearson lemma
[21], the local sensor-level false alarm rate and probability
of detection can be respectively obtained by

pfa = 2Q
(√

τ

σw2

)
(23)

pds = 2Q

⎛

⎝
√

τ

σw2 + σ 2

ds2

⎞

⎠ (24)

whereQ (x) = ∫ ∞
x 1/

√
2π e−ξ2/2 dξ is the unit Gaussian

exceedance function.

4.2 Local vote decision model
We divide the ROI into M (the total number of sensors)
little sub-squares. The location of the sensor inside each
small sub-square is known. Let h = b/N ′ , where N ′ sat-
isfies N ′2 = M, and we divide the square of area b2 into
M cells so that each cell of area h2 contains only one sen-
sor. Let us denote the cell [ih, (i + 1)h] × [

jh, (j + 1)h
]

by c(i, j). We define X′i,j as the binary data from the local
sensor s inside c(i, j) with 0 ≤ i ≤ N ′-1 and 0 ≤
j ≤ N ′-1.
If sensors are deployed along a regular grid, sensors at

the vertex of a square can be selected as the neighbors for

local vote algorithm. The number of the neighbors is fixed.
Each sensor contains nine neighbors (including itself ) in
our simulation. When sensors are randomly deployed in
the field, sensors within a fixed distance can be selected
as neighbors for local vote algorithm. The number of the
neighbors is not fixed in this version. Every sensor receives
the decision from its neighbors ignoring the sensors on
the edge of the field. If the sum of these decisions exceeds
the given threshold Mx, the sensor makes the decision of
target presence. After the local vote decision, the local
sensor-level false alarm rate and probability of detection
are given by

p′
fa =

Mi∑

n = Mx

(
Mi
n

)
pfan(1 − pfa)Mi − n (25)

p′
ds =

Mi∑

n = Mx

(
Mi
n

)
pdsn(1 − pds)Mi − n (26)

whereMi is the number of neighbors andMx is the pre-set
threshold. We define Xi,j as the binary data from the local
sensor s inside c(i, j) with 1 ≤ i ≤ N and 1 ≤ j ≤ N after
local vote where N = N ′ − 2. We observe that for each
1 ≤ i ≤ N , the sequence (Xi,j)1 ≤ i ≤ N is c-dependent,
and for each 1 ≤ j ≤ N , the sequence (Xi,j)1 ≤ j ≤ N
is also c-dependent, where c = 2 in our simulation. c
has relations with the choice of local vote algorithm. In
(15), we construct a 1-dependent sequence to evaluate
global false alarm probability. Only when c ≤ m can we
guarantee the sequence is 1-dependent.

4.3 False alarm probability at the MA
The binary data from local sensors can be expressed as
Is = {0, 1} (

s = 1, . . . ,M′). M′ represents the number
of all sensors except those on the edge of the field. When
there is a detected target, Is takes the value 1; otherwise, it
takes the value 0 after the local vote. It is easy to verify that

M′∑

s = 1
Is =

N∑

j = 1

N∑

i = 1
Xij (27)

TheMA travels across the area and sequentially collects
the local binary decisions from sensors located inside its
agent region, which we consider to be squares of size fovh.
fov is the size of the window. The sequential fusion rule at
theMA for 1 ≤ i1 ≤ N−fov+1 and 1 ≤ i2 ≤ N−fov+1
is given by

{
vi1,i2 ≥ k ⇒ decide H1
otherwise ⇒ MA continues to scan (28)

where vi1,i2 = ∑i2 + fov + 1
j = i2

∑i1 + fov + 1
i=i1 Xij. At the MA,

the probability of global false alarm PF is

PF = P(Sfov × fov ≥ k|H0) (29)
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We note that (30) can be evaluated using the approx-
imation as in (15) after substituting fov with m and pfa
with α.
In Fig. 2, we plot the global probability of false alarm

PF for the MA versus the local probability of false alarm
pfa for the sensor. The curves obtained by using the SSLV
approximation in (15) and simulations (based on 5000
Monte Carlo runs) are plotted. Fig. 2 shows that the
approximation in (15) is very accurate.

4.4 OptimalMx

Obviously, the global probabilities of false alarm and
detection have relations with the value of Mx. In this
section, we are looking for the optimal Mx and trying to
show the existence of optimal value. The choice of Mx
must maximize the probability of detection at the given
global false alarm rate so the expression can be written as

max
Mx:PF = α

PD (30)

where PD is the probability of detection at the MA.
For the given exact value of α, it is hard to confirm the
related parameter k according to α because it involves dis-
crete distributions. To solve this constrained optimization
problem in (31), we should use a randomized test [22]. By
defining α1 and α2 as follows

P
(
Sfov × fov ≥ k1

) ≈ α1 < α

P
(
Sfov × fov ≥ k1 − 1

) ≈ α2 > α,
(31)

we use a “coin-flip” decision with probability

k = k1
α − α1
α2 − α1

> 1/2

k = k1 − 1 otherwise. (32)

Fig. 2 Probability of false alarm for MA PF versus probability of false
alarm for the local sensor pfa . Here, we have N′ = 27, b = 5, σ 2 = 1, σw2

= 4, k = 6,Mx = 4, and fov = 5. Simulations are based on 5000 runs

We can confirm the parameter k according to the short-
est distance from α to α1 and α2.
When an Mx and the exact global probability of false

alarm is given, we can get the corresponding k. The global
probability of detection can be confirmed by k. In Fig. 3,
combining with (3) and (30), we plot the global probabil-
ity of detection versus Mx. α is set to be 0.1. As shown
in Fig. 3, there does exist an optimal Mx that maximizes
the probability of detection PD for the MA at the given
condition. By employing this optimum Mx, a significant
improvement in PD can be achieved. In our simulation,
with the increase of Mx, PD increases as well. When
Mx = 4, PD reaches the maximum. After that, PD
decreases with the increase of Mx. The optimal Mx has
relations with other parameters and is different in differ-
ent environments. However, under the given condition,
there is indeed an optimal value that maximizes PD.
From the perspective of the theory, the increase of Mx

decreases the value of k for fixed α. The decrease of k can
increase PD, meanwhile, the increase of Mx can decrease
p′
ds from (27). The decrease of p′

ds constrains the increase
of PD, and PD mainly relies on p′

ds. The decrease of k
can compensate the influence which is brought by the
decrease of p′

ds at the beginning. Hence, PD shows the
unimodal characteristic.

5 Performance analysis
After all above analysis, we should compare the SSLV with
the scan statistics and find out the difference in perfor-
mance between them. Numerous simulations and analysis
are given in this section.
In Fig. 4, we plot the global probability of false alarm

for the MA versus the threshold k under different deploy-
ments. In Fig. 4a, sensors are deployed along the regular

Fig. 3 Probability of detection for MA versusMx . Here, we have
N′ = 27, b = 5, σ 2 = 1, σw2 = 4, k = 6, pfa = 0.05, and fov = 5.
Simulations are based on 5000 runs
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Fig. 4 Probability of false alarm for MA versus threshold k. Here, we
have N′ = 27, b = 5, σ 2=1, σw2 = 4, pfa = 0.05, and fov = 5. Simulations
are based on 5000 runs. a Grid deployment. b Random deployment

grid, and Mi = 9. In Fig. 4b, sensors are randomly
deployed in the field, and the neighborhood distance is set
to be 0.1. We can see from Fig. 4 that with the increase of
Mx , the global probability of false alarm decreases signifi-
cantly.What we need is to get lower false alarm rate. There
is a crossing point in Fig. 4, which means the scan statis-
tics has the same global probability of false alarm with the
SSLV at that point. Before that critical point, the SSLV
gets a lower PF than the scan statistics. After that, the
scan statistics overwhelms the SSLV. It is because the local
vote increases the count of sensors that has detected event
compared with the scan statistics. This critical point is not
an integer and does not exist in fact. However, the near-
est two positive integers of crossing point are the practical
key points.
In Fig. 5, we plot the global probability of detection for

the MA versus the threshold k. From Fig. 5, we know
that PD of the SSLV does not always overwhelm the scan
statistics. However, it shows that for the large value of
the threshold k, the SSLV performs better than the scan

Fig. 5 Probability of detection for MA versus the threshold k. Here, we
have N′ = 27, b = 5, σ 2 = 1, σw2 = 4, pf = 0.05, and fov = 5. Simulations
are based on 5000 runs. a Grid deployment. b Random deployment

statistics. The larger threshold k means the smaller global
probability of false alarm is demanded. It is related to the
value of Mx. With the increase of Mx, we get lower false
alarm rate; however, the probability of detection decreases
as well. Hence, it is important to select the value of Mx
according to the various detection environments. At the
given condition, we can use the method in Section 3.4 to
evaluate the optimal Mx. Overall, the SSLV can substan-
tially decrease the probability of false alarm and improve
the global probability of detection compared with the scan
statistics.
In Fig. 6, we plot the global probability of detection for

the MA versus σ 2 (power of the signal that is emitted
by the target at a distance ds = 1 m) at different local
false alarm rates. The increase of σ 2 enables more sensors
to sense the signal, and the local probability of detection
increases as well. The local probability of detection affects
the global probability of detection. Simulations are based
on 5000 runs. From Fig. 6, we know the probability of
detection increases with the increase of signal strength.
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Fig. 6 Probability of detection for MA versus σ 2. Here, we haveN′ = 27,
b = 5,Mx = 3, σw2 = 6, and fov = 5. Simulations are based on 5000 runs

In Fig. 7, we plot the global probability of detection ver-
sus σ 2 for different methods. Figure 7 illustrates the SSLV
has higher PD than scan statistics when the SNR is low. It
means our SSLV is more suitable for the tough environ-
ment. When the SNR is high, the advantage of the SSLV is
not evident.
After introducing a variable-step-parameter into the

SSLV, we should figure out its influence on the SSLV.
Figure 8 presents the receiver operating characteristic
curves (ROC) of the SSLV and the SSLV with the variable-
step-parameter. From Figure 8, we can see that the
variable-step-parameter has little negative effect on the
performance of detection. The local vote makes the dis-
tribution of sensors report event so concentrated that we
can use this parameter without worry. Figure 9 shows the
scan times of different methods to show the advantage

Fig. 7 Probability of detection for MA versus σ 2. Here, we have
N′ = 27, b = 5, σw2 = 4, k = 8, pfa = 0.05, and fov = 5. Simulations are
based on 5000 runs

Fig. 8 ROC of SSLV and SSLV with variable step. Here, we have
N′ = 27, b = 5, σ 2 = 1, σw2 = 4, pfa = 0.05, k = 6,Mx = 3, and fov = 5.
Simulations are based on 5000 runs

of variable-step-parameter. When the target is absent, the
SSLV with variable step significantly decreases the times
of scan, meanwhile, when the target is present, the SSLV
with variable step reduces the times of scan to some
extent. In our simulation, the target is placed at the center
of the field.

6 Conclusions
This paper has introduced the SSLV algorithm specially
designed to work with target detection in low SNR condi-
tion. The correlation between sensors and the expression
for global false alarm ratio after the local vote have been
described in detail. Moreover, based on the SSLV, the
SSLV with variable-step-parameter has been proposed.
The two algorithms have been examined in simulation

Fig. 9 Scan times versus different hypotheses. Here, we have N′ = 27,
b = 5, σ 2 = 1, σw2 = 4, k = 6,Mx = 3, pfa = 0.05, and fov = 5. The target
is placed at the center of field under the H1 hypothesis
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studies which revealed that they produce similar detec-
tion accuracies, but the SSLV with variable step method is
substantially faster during once scan cycle. Nevertheless,
there are some potential research topics which will be fur-
ther discussed. Firstly, it is evident that getting the optimal
Mx from the simulation is not the optimal method and
a new expression for the optimal Mx should be deduced.
Furthermore, the variable-step-parameter for the SSLV
can be extended to two-dimensional without losing any
detection performance.
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