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Abstract

In this paper, a novel target acquisition and localisation algorithm (TALA) is introduced that offers a capability for
detecting and localising multiple targets using the intermittent “signals-of-opportunity” (e.g. acoustic impulses or
radio frequency transmissions) they generate. The TALA is a batch estimator that addresses the complex
multi-sensor/multi-target data association problem in order to estimate the locations of an unknown number of
targets. The TALA is unique in that it does not require measurements to be of a specific type, and can be implemented
for systems composed of either homogeneous or heterogeneous sensors. The performance of the TALA is
demonstrated in simulated scenarios with a network of 20 sensors and up to 10 targets. The sensors generate
angle-of-arrival (AOA), time-of-arrival (TOA), or hybrid AOA/TOA measurements. It is shown that the TALA is able to
successfully detect 83-99% of the targets, with a negligible number of false targets declared. Furthermore, the
localisation errors of the TALA are typically within 10% of the errors generated by a “genie” algorithm that is given the
correct measurement-to-target associations. The TALA also performs well in comparison with an optimistic
Cramér-Rao lower bound, with typical differences in performance of 10-20%, and differences in performance of
40-50% in the most difficult scenarios considered. The computational expense of the TALA is also controllable, which
allows the TALA to maintain computational feasibility even in the most challenging scenarios considered. This allows
the approach to be implemented in time-critical scenarios, such as in the localisation of artillery firing events. It is
concluded that the TALA provides a powerful situational awareness aid for passive surveillance operations.

Keywords: Passive detection and localisation, Multi-sensor/multi-target data association, Maximum likelihood
estimation, Gauss-Newton gradient descent, Cramér-Rao lower bound, Time-of-arrival measurements

1 Introduction
Recently, there has been great interest in the detection,
localisation and tracking of noncooperative targets using
passive sensors that exploit the “signals-of-opportunity”
generated by such targets (e.g. see [1] and references
therein). Typical applications include detection and local-
isation of weapon firing events [2, 3] and localisation
in wireless communication systems [4, 5], non-line-of-
sight (e.g. urban) environments [6], and in search/rescue
operations [7].

Passive surveillance has the advantage of covertness,
and passive sensors are typically smaller, cheaper, and
lower power than their active counterparts. This allows
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passive sensors to be utilised in scenarios that would
preclude the deployment of active sensors (e.g. such as
in remote operations). Passive measurement exploitation
has a long history, beginning with angle-of-arrival (AOA)
emitter localisation [8]. Other commonly used passive
measurements include time-of-arrival (TOA), time differ-
ence of arrival (TDOA), frequency of arrival (FOA), and
combinations thereof (e.g. again, see [1] and references
therein).

Due to the intermittent nature of target signals in
passive surveillance operations (e.g. artillery firings may
occur in short bursts only every few days), recursive esti-
mation techniques (e.g. such as the extended Kalman
filter [9]) may be ineffective, because the interval between
signals is too large to allow persistent target tracking.
Therefore, it is common to perform batch estimation in
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order to detect and localise target emitters, exploiting all
measurements generated by the sensors within a time
window, e.g. [2, 4, 5, 10-13]. The time window must be
sufficiently large to account for target signal propagation
delays between the sensors.

Previous work on passive emitter geo-location has
largely concentrated on the case of a single target, thereby
avoiding the problem of associating measurements to tar-
gets. For example, maximum likelihood (ML) approaches
have been developed for single target localisation using
either TOA measurements [14], range measurements gen-
erated by a multi-static passive radar [15], or TDOA
measurements [16]. Target localisation using hybrid mea-
surements has also been performed, with least squares
(e.g. [4, 5]) and ML (e.g. [11, 12]) approaches devel-
oped in order to localise a single emitter using hybrid
AOA/TDOA measurements.

To-date, only a small number of papers have con-
sidered the problem of localising multiple emitters
[2, 10, 13, 17-20]. Some of these papers have addressed
simplified scenarios with either perfect measurements
[17, 18] or a known number of emitters [13]. The remain-
ing papers have developed techniques specifically for
a TOA measurement model [2, 10, 19, 20], and these
approaches cannot be easily modified to deal with other
measurement models (e.g. hybrid AOA/TOA measure-
ments). Furthermore, as noted in [10], there remains a
requirement to generalise existing approaches in order
that they can exploit measurements generated by a net-
work of heterogeneous sensors.

The target acquisition and localisation algorithm
(TALA) introduced herein addresses the complex multi-
sensor/multi-target data association problem, in order to
detect and localise an unknown number of target sig-
nals/events (e.g. such as acoustic impulses generated by
artillery firings or intermittent radio frequency transmis-
sions). The TALA is a batch estimator, and its novelty lies
in the mechanism by which it circumnavigates the need
to perform global multi-sensor/multi-target data associa-
tion, e.g. as necessary in [20], thereby allowing the TALA
to maintain computational feasibility, even for large-scale
problems. Furthermore, unlike existing approaches (e.g.
[2, 10, 19, 20]), the TALA does not require measure-
ments to be of a specific type (i.e. TOA measurements)
and can be implemented for systems composed of either
homogeneous or heterogeneous sensors.

Specifically, the TALA initially performs nearest neigh-
bour data association (e.g. see [21]) on a measurement-
by-measurement basis, allowing each measurement to be
associated with multiple hypothesised target locations.
The algorithm formulates a set of potential target location
hypotheses, and then performs Gauss-Newton (G-N) gra-
dient descent (e.g. [24]) to provide maximum likelihood
estimates of these locations, before a final downselection
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step, ensures that each measurement is associated with no
greater than one estimate.

This mechanism for handling the complex multi-
sensor/multi-target association problem, based on manip-
ulating multiple competing hypotheses, removes the need
to perform global data association (which can be a com-
putationally prohibitive combinatorial optimisation, e.g.
see [22]), and is analogous to the track-oriented multiple
hypothesis tracking (TOMHT) methodology introduced
in [22]. However, unlike the TOMHT, the TALA is a
non-recursive (i.e. “one-shot”) approach, rather than the
update of an existing target set.

The remainder of this paper is organised as follows. In
Section 2, the TALA is described. In Section 3, details
are provided of the two measures of optimal estimation
performance that are used to baseline the performance
of the TALA. The first measure is the Cramér-Rao lower
bound [23], and the second is a “genie” TALA that is
given the correct measurement-to-target associations. In
Section 4, simulation results are presented for scenar-
ios in which all sensors provide hybrid AOA/TOA mea-
surements, and scenarios in which 50% of the sensors
provide only AOA measurements, with the remaining
sensors providing only TOA measurements. A discus-
sion is presented in Section 5 with conclusions following
in Section 7. Section 6 provides details of recommen-
dations for future work. Finally, Appendix A provides
details of the methodology for determining initial can-
didate target locations using the AOA and distance dif-
ference of arrival (DDOA) measurements available in the
simulations.

2 Target acquisition and localisation algorithm
2.1 Overview

The TALA is a batch estimation algorithm that utilises
all measurements generated within a time window by
an array of sensors, in order to detect and localise an
unknown number of target events (i.e. intermittent sig-
nals, such as acoustic impulses or radio frequency trans-
missions). Initially, the TALA generates “candidate” target
locations, and then performs “soft” nearest neighbour
data association (e.g. [21]), allowing each measurement
to be associated with more than one candidate location.
This approach removes the need to perform global multi-
sensor/multi-target data association, e.g. as necessary in
[20], thereby maintaining computational feasibility, even
for large scale problems.

Using the measurements associated with each candi-
date location, ML estimation is then performed in order
to localise each potential target. The ML estimation prob-
lem cannot be solved analytically, and an iterative G-N
approach (e.g. [24]) is used to solve an equivalent non-
linear least squares problem. The G-N approach per-
forms iterative gradient descent, and in order to combat
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potential divergence, line search and randomisation are
used to ensure that each iteration increases the value
of the likelihood. It is noted that alternative techniques,
such as the Newton-Raphson (N-R) approach (e.g. [25]) or
the Levenberg-Marquardt algorithm [26, 27], could also
be used to perform the gradient descent and may offer
similar performance.

2.2 Summary of the main steps
The main steps in the TALA are as follows:

1. Step 1: Determine initial candidate locations

e If possible (generally only in two-dimensional
emitter geo-location), determine the
intersection between measurements generated
by each pair of sensors.

e More generally, determine a candidate location
that minimises a Mahalanobis-based distance
metric using measurements generated by each
pair of sensors.

e These points form the initial candidate (target)
location set.

e In cases for which performing measurement
intersection or Mahalanobis distance
minimisation is problematic/impossible, initial
candidate locations should be randomly
sampled within the surveillance region.

2. Step 2: Associate measurements and determine
likelihood for each candidate location

e Determine the measurement from each sensor
that has the greatest individual likelihood (or
equivalently the smallest Mahalanobis distance)
for each candidate location.

e This measurement is associated with the
location provided that the individual likelihood
is greater than a pre-specified threshold value.

e Each measurement is allowed to be associated
with more than one candidate location.

e The overall likelihood of each candidate
location is calculated using all of the associated
measurements.

3. Step 3: Candidate location deletion

e The number of candidate locations can be large.

e To reduce the computational expense of the
algorithm, at this stage, some of the candidate
locations are deleted.

¢ A candidate location is deleted if it either has
too few measurements associated with it or if it
shares identical associations with another
candidate target location that has a greater
overall likelihood.
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e Optionally, the candidate location is deleted if it
shares any associations with another candidate
target location that has a greater overall

likelihood.

4. Step 4: Maximum likelihood estimation

e Using the candidate locations retained from
Step 3, plus the measurements associated with
each location, determine ML estimates via an
iterative G-N approach.

¢ Optionally, measurement reassociation may be
performed on each iteration of the G-N
algorithm.

5. Step 5: Final downselection/outputs

e Perform downselection to ensure that each
measurement is associated with only one ML
estimate.

An illustrative example of the TALA is shown in Figs. 1
and 2.

2.3 Step 1: Determine initial candidate locations

An N sensor system is considered. Let n(i) denote the
number of measurements, each of dimensionality d;, gen-
erated by sensor i. Let z(i,j) denote the j-th measurement
generated by sensor i. It is assumed that target-generated
measurements are corrupted by additive Gaussian noise!.
Hence, for a target located at coordinates X € R3, each
target-generated measurement at sensor i is given as fol-
lows:

z(i,) = f(X;0) +ed) 1)

where f(X;i) = (fl X0 ... fa, (X5 i))/. Each measure-
ment error e(i) ~ MN(0,%;), with X; denoting the
error covariance of each target-generated measurement at
sensor i.

The first step in the TALA is to generate a set of ini-
tial candidate location hypotheses, with these hypotheses
then manipulated in order to determine ML estimates of
the locations of an unknown number of targets. Therefore,
it would seem prudent to choose candidate locations that
are consistent with the measurements. To this end, the fol-
lowing methodology is used to generate initial candidate
locations:

1. If the focal problem is concerned with the
geo-location of targets within a two-dimensional
region (e.g. the geo-location of ground-based targets
within a geographically flat region), initial candidate
locations can be determined as the intersection of
each pair of measurements (if such an intersecting
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Fig. 1 An exemplar scenario with four target events and three sensors that provide hybrid AOA/TOA measurements. Shown are target events
(marked by triangles) and the sensors (marked by diamonds); along with AOA measurements (black lines) and DDOA measurement hyperbolae (grey
lines). Also shown is the likelihood map, with dark regions showing a normalised overall measurement likelihood close to unity, and white regions
showing a normalised overall measurement likelihood close to zero. It is noted that this likelihood map is not calculated by the TALA and is shown

point exists). In later simulations, the intersections
between pairs of AOA measurements and pairs of
DDOA measurements are used to generate initial
candidate locations.

2. For more complex applications in which
measurement intersection cannot be performed (e.g.
three-dimensional target geo-location, in which case
the measurements are extremely unlikely to intersect
because of the presence of measurement errors), for
each pair of measurements z = (z(il, ) z(ia, .)/)/, for
i1 # ip; a candidate location X, can be determined by
minimising the Mahalanobis distance between 2z and

FOO 2 (FOGH) FXin)), Le.

X, = arg min [e(X)’i’le(X)] ©)
XeR3

where €(X) 2 (2 — f(X)); and ¥ is the error
covariance of the measurement z.

It may be necessary to limit the number of can-
didate locations by not considering all combinations

of sensor measurements in determining the intersec-
tions (in two-dimensional applications) or minimising (2)
(in three-dimensional applications). Moreover, in three-
dimensional geo-location applications, the optimisation
in Eq. (2) may not be straightforward, and it may be more
efficient to randomly select candidate locations within the
surveillance region.

2.4 Step 2: Associate measurements and determine
likelihood for each candidate location

It is assumed that for each sensor, a maximum of one mea-

surement is generated by each target in the time window

under consideration. Furthermore, for each candidate tar-

get location X, and each sensor i:

1. Theindex a(X;i) € {1,...,n(i)} of the measurement
that is associated is the one with the largest
individual likelihood, i.e. nearest neighbour data
association is performed (e.g. see [21]).

2. If every measurement generated by a sensor has an
individual likelihood that is less than 100& % of the
maximum value /;(max), then no measurement from
that sensor is associated with the location®. The
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Fig. 2 Demonstration of the TALA for the scenario with four targets. a Step 1: intersection of each pair of AOA measurements (white circles) and each
pair of DDOA measurement hyperbolae (grey circles). b Step 3: intersections that are retained (white circles), and intersections that are deleted (black
circles; deletion criterion 3 is not used). € Step 4: ML estimates. d Step 5: downselected ML estimates (circles), and the true target locations (triangles).
Each ellipse shows the 5 standard deviation error covariance associated with each ML estimate

threshold & €[0, 1] is pre-specified. It is noted that
this approach is equivalent to gating the
measurement Mahalanobis distance with a threshold

g=+—2né.

Therefore, a(X; i) is given as follows:

argmax [;(X;j) if max [;(X;)) > & x [;(max)
N 0] Jj=Lyeon(i)
a(X;i) =

-1 otherwise

(3)

where /;(X;j) denotes the individual likelihood at sensor i
as a result of associating the j-th measurement z(i, j) with
candidate target location X. For the measurement model

(1), this individual likelihood is given as follows:

1
C2m)%/2 det(X;)1/?

6] T [l ) — F X D] )

, 1, ..
L;(X;)) exp (—2 [2G,))

(4)

—1 denotes that no
is associated with the

It is noted that a(X;i) =
measurement from sensor i
location X.

The overall measurement likelihood is then given as
follows:

1 1
(27)P72 det(x)12 P {_2

X0V =7 Z - fX)] }

LX) =

(Z
(5)
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where:
N, = total number of measurements associated with
the location X (6)
N
S 2
i=1 a(X;i)>—1

Z £ concatenated vector of associated measurements (8)

= (z(La(X; 1) ... 2(Ng a(X;Ny))')' )
(with the sensor indices reordered to 1, ...,N,)
fXO=(FX1 ... FXGND') (10)
D = dimensionality of the concatenated vector of
all associated measurements (11)
N
-y Y @2
i=1 a(X;i)>—1
X1 Yo N1
Y12 Xo
Y = (13)
XN, N,—1
YN, YN,~1N, XN,
%,j £ correlation between the measurements at
sensors i and j (14)

It is noted that if the measurements from all sensors are
uncorrelated (i.e. X;; = 0, for all i, j), the overall mea-
surement likelihood at each candidate location X is given
by the product of the individual likelihood values of the
associated measurements, i.e.

N
tx =[] JI &&Xac) (15)

i=1 a(X;i)>—1

More importantly, in this case, the ensemble of mea-
surements that satisfy Eq. (3), for i = 1,..., N, also
maximises the overall measurement likelihood.

There is no practical reason why the nearest neighbour
data association approach cannot be used if the measure-
ments from different sensors are correlated. However, it
should be noted that the resulting measurement set is
not guaranteed to be close to optimal in maximising the
overall measurement likelihood. In such cases, perform-
ing measurement reassociation during gradient descent
(see Section 2.6.3) may be helpful in correctly resolving
the complex multi-sensor/multi-target data association
problem.
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An exemplar likelihood map is shown in Fig. 1. It is
noted that this map is shown for illustration only. The
reader is reminded that the TALA calculates the likeli-
hood only at the initial candidate locations and at the loca-
tions determined on subsequent iterations of the gradient
descent algorithm.

2.5 Step 3: Candidate location deletion

Clearly, the number of candidate locations can be large.
To reduce the computational expense of the algorithm, at
this stage, some of the candidate locations are deleted. A
candidate location is deleted if any of the following are
true.

1. Deletion criterion 1: The candidate location does
not have at least uPyN measurements associated
with it (i.e. it is not consistent enough with the data).
This value is set by noting that the average number of
measurements generated by each target is PN for a
system with N sensors, and with a probability P, that
each target is detected by each sensor. In simulations,
a value of u = 0.5 was shown to produce excellent
results.

2. Deletion criterion 2: The candidate location has
exactly the same measurements associated with it as
another candidate location that has greater overall
likelihood.

3. Deletion criterion 3 (optional): The candidate
location has one or more measurements associated
with it that are also associated with another
candidate location that has greater overall likelihood.
The procedure for implementing this deletion
criterion is as follows:

(a) The overall likelihood is calculated for each
candidate location, using the procedure
described on Step 2 of the algorithm.

(b) The candidate location with the greatest
overall likelihood is accepted as a potential
target location.

(c) Recursively, consider the candidate location
with next greatest likelihood. If this candidate
location does not share any associations with
any of the previously accepted candidate
locations it is also accepted as a potential
target location, otherwise it is deleted.

Deletion criterion 3 has the advantage of significantly
reducing the number of candidate locations that need to
be manipulated, and this can significantly reduce the com-
putational expense of the algorithm. The disadvantage is
that by deleting candidate locations at this early stage, the
TALA has a reduced probability of detecting all target
events. This criterion therefore compromises estimator
performance for increased computational speed.
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In Fig. 2b, the results of the intersection deletion step are
shown for the exemplar scenario. It is noted that deletion
criterion 3 is not used in this example.

2.6 Step 4: Maximum likelihood estimation

2.6.1 Background — standard Gauss-Newton approach
Consider the set of N, measurements associated with a
candidate location, calculated via Eq. (3). The ML estimate
X of the target location, based on these measurements
is given as follows:

Xy = arg max L(X) (16)
X

= arg;nin [(Z-fXOVZHZ-FX01] (17)

with Z, f(X), and X given in Egs. (9), (10), and (13)
respectively.

The non-linear least squares problem (17) can be solved
using the G-N approach (e.g. [24]). The G-N approach
performs iterative gradient descent, starting with an ini-
tial estimate Xo. It generates a sequence of estimates as
follows:

Xip1 = X — 8 (18)

where the full “Newton step” &y is given as follows:

8 = [FX) T FXp] ' FX)' 27 Z — £(Xp)]
(19)

The Hessian matrix F(Xy) is given as follows:

/

FXp) = (Vx, fX0)) =(Vx fXis 1) ... Vx f Xis Nao)')
(20)

where Vy, is the first-order partial derivative operator
with respect to X; € R3.

If the iterative scheme given in Eq. (18) converges, it
will do so to a stationary point, thereby providing a ML
estimate. However, convergence is not guaranteed and is
highly dependent on the proximity of the initial estimate
X to the stationary value.

2.6.2 Implementation — Gauss-Newton approach with an
adaptive step size

In light of the potential for the G-N approach to diverge,
the implementation herein allows steps smaller than, and
in the opposite direction to, the full “Newton step”, whilst
attempting to maximise the increase in the overall mea-
surement likelihood on each iteration. Specifically, the
G-N approach is initialised with each initial candidate
location. On each subsequent iteration, the location is

modified as follows:
Xit1 = X+ Ag (21)

where, either:
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® Ay is the increment from the set
{ady/m: o = —m,...,—1,1,...,m} that results in
the greatest increase in the overall measurement
likelihood; where 8y, is the full Newton step (19) and
m is a pre-specified positive integer;

or, if no step from the above set increases the overall
measurement likelihood:

e Ay isastep in a randomly generated direction (i.e.
drawn from a Uniform distribution on [ —7, ]) of
magnitude 83s (nominally, §51 = 200 metres). This
random step is accepted if it increases the overall
measurement likelihood.

The G-N approach is terminated if either:

1. A total of 20 random steps have been attempted.

2. The magnitude of each component of the gradient of
the normalised sum-of-squared errors (GNSSE)* is
smaller than a pre-specified value (nominally 1073).
Only in this case is successful convergence to a ML
estimate deemed to have been achieved.

This “line search” adaptation of the G-N approach is
similar to the line search approach detailed in Section 9.7
in [25]. In Fig. 2c, ML estimates calculated using the G-N
approach are shown for the exemplar scenario.

2.6.3 Reassociation during gradient descent

In scenarios in which the measurement errors are large,
each initial candidate location (e.g. generated from the
intersection of a pair of measurements) may be distant
from the ML estimate. In such cases, the measurements
associated with the initial candidate location may not be
the nearest to each of the subsequent iterates, Xy, k =
1,2,..., of the G-N algorithm.

Motivated by this, in cases in which the measurements
are inaccurate, reassociation can be performed after each
iteration of the G-N approach. That is, having determined
iterate Xy, reassociation is performed, and the measure-
ments associated with location X are used to determine
the next increment 8y, and next iterate Xy .

Performing reassociation can significantly improve per-
formance when measurement errors are large. However,
this is at the cost of (i) increasing the computational
expense of the algorithm and (ii) making the algorithm
less likely to converge to a ML estimate, hence reducing
the number of target events located.

2.7 Step 5: Final downselection/outputs

Having determined the ML estimates on Step 4, downs-
election is performed in order to ensure that each mea-
surement is associated with no greater than one ML
estimate. The procedure for performing this downselec-
tion is exactly the same as given in the optional deletion
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criterion 3 on Step 3. It is noted that if the optional crite-
rion is performed on Step 3, and provided that reassocia-
tion is not performed during the gradient descent on Step
4, then this downselection has already been performed.

A final downselection step also deletes estimates that lie
within the sensor perimeter. Such estimates are rare, but
can occur because of incorrect associations, or conver-
gence to the wrong point of intersection of the associated
measurements.

The remaining ML estimates provide estimates of the
target event locations. The approximate error covariance
(denoted C(X™*)) of each estimate X* is given by the
inverse of the observed Fisher information matrix [28].
This covariance is as follows:

cix) ~ [Fxyz'Fxn]™ (22)

The matrix X is again given by Eq. (13); and the matrix
F(.) is given by Eq. (20). In Fig. 2d, the final outputs of the
target localisation algorithm are shown for the exemplar
scenario.

3 Measures of optimal estimation performance
3.1 Cramér-Rao lower bound

Let X denote the location of a target event. The Cramér-
Rao lower bound (CRLB) (e.g. [23]) provides a bound on
the mean square error (MSE) of any (unbiased) estimator
X of X ) i.e.

Ezix [(X —f() (x —X)} >JX)"! £ CRLB (23)

where J(X) is the Fisher information matrix (FIM) and
Ezx denotes mathematical expectation with respect to
the measurement vector Z, given X. The CRLB pro-
vides a bound on the performance of any unbiased target
localisation algorithm.

In the case in which there can be missed detections (i.e.
P, < 1), it is straightforward to show that for a realisation
of target detections at each of the sensors, the conditional
FIM is given as follows:

JX) = BXyE T E) (24)
where F is the Hessian (20) determined only for sensors
that have detected the target. The matrix X is the asso-
ciated measurement error covariance. The CRLB is then
approximated as follows:

N
CRLB ~ - Zj,(xrl (25)
s r=1
where #; is the number of measurement sequence reali-
sations considered, and jr(X) is the conditional FIM for
measurement sequence realisation r. This is referred to
the “enumeration” bound [29] and has been shown to be
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the least optimistic formulation of the CRLB [30] for the
case Py < 1.

The CRLB location root mean square error (RMSE) is
then given as follows:

CRLB location RMSE = /CRLB1; + CRLBy; + CRLB33
(26)

where CRLBy; denotes the i-th diagonal entry of the CRLB
(this provides a MSE bound for the estimation of the i-th
coordinate of the target event).

In the simulations that follow, for each target location
X, a single measurement sequence realisation is consid-
ered (i.e. n; = 1). The overall CRLB is then calculated
by averaging the value of the CRLB for each of the tar-
get locations, with its associated measurement sequence
realisation, used in the simulations.

It is noted that this CRLB formulation can still be opti-
mistic because the bound is calculated independently for
each target event. The formulation therefore does not take
into account the difficulty of associating measurements
between targets, in multiple event scenarios. Formally,
this difficulty is quantified via an information reduction
matrix, which is extremely complex and can only be cal-
culated via Monte Carlo integration. For full details of the
approach, the reader is referred to [31].

In later simulations, there is also the potential for spuri-
ous false alarm (i.e. “ghost”) measurements to occur. It is
therefore noted that the CRLB formation utilised herein
does not take into account the impact of these false mea-
surements. The reader is referred to [32] for details of how
to adjust the CRLB in the presence of false alarms.

3.2 “Genie” TALA with the measurement-to-target
associations given
In light of the potential optimism of the CRLB formulation
presented in the previous section, a second performance
measure is provided in order to help quantify the optimal-
ity of the TALA. This second performance measure is a
“genie”-based algorithm, in the spirit of [10], that is given
the correct measurement-to-target associations.
Specifically, for each target, the genie algorithm
attempts to determine a ML estimate as follows:

1. The G-N approach (given on Step 4 of the TALA) is
used in an attempt to determine a ML estimate,
using the measurements generated by the target.

2. The G-N approach is initialised using the intersection
of two of the target-generated measurements, if such
an intersection exists. Otherwise, an initial location is
randomly generated, as in step 3 below.

3. If the G-N approach fails to converge to a ML
estimate, an initial candidate location is randomly
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generated within the surveillance region, and the
G-N approach is rerun. A maximum of 20 randomly
generated initial locations are attempted.

This performance measure is referred to as the “genie”
TALA (gTALA). Clearly, the gTALA is likely to provide a
bound on the optimal performance of the TALA because
it avoids the potentially complex problem of associating
measurements to targets. However, a performance bound
is not guaranteed.

4 Simulations
4.1 Scenarios considered
A sensor system, comprising of an array of 20 micro-
phones, is deployed in order to detect and localise acoustic
artillery firing events that occur within a two-dimensional
geographical region (see Fig. 3).

Three scenarios are considered, given as follows:

1. Scenario 1: Target events occur at different times,
with the time instance of each event sampled from a
uniform distribution on [0, 100] seconds. Each sensor
provides hybrid AOA/TOA measurements.

2. Scenario 2: Target events occur simultaneously.
Again, each sensor provides hybrid AOA/TOA
measurements.
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3. Scenario 3: Target events occur simultaneously.
Fifty percent of the sensors provide only AOA
measurements, with the remaining sensors providing
only TOA measurements.

In all scenarios, the number of false measurements gen-
erated by each sensor has a Poisson distribution with
mean 1.5x1077 per square metre of the surveillance
region. As a result, there are an average of 2.2 false mea-
surements per sensor. Each false measurement is gener-
ated at a random location uniformly distributed within
the surveillance region. False alarms at different sensors
are generated at different locations within the surveillance
region. The parameter settings are summarised in Table 1.

4.2 Measurement generation

4.2.1 AOA and TOA measurements

Each sensor generates two-dimensional measurements of
AOA (i.e. azimuth) and/or TOA of target events. If an
event occurs at Cartesian coordinates X; = (x, yk) at
time i, target-generated measurements (when they exist)
are given as follows:

AOA £ 6() = tan! <yk_y5> +eg()  (27)
Xk — XS
TOA £ t() = tx +d(Xy)/c+ es() (28)

500

BAT A :
Y

y-coordinate (metres)
0

=500

: M\ A D

o 4 ZQS : :
: pap pRNE RE,
A D = PVGN ;
RN SN

generated within 500 m of the sensor array perimeter

a-coordinate (metres)

Fig. 3 Surveillance scenario. Shown are the sensor locations (circles) and randomly generated target event locations (triangles). Target events are not
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Table 1 Parameter values used in the simulations
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Parameter Value

Number of sensors (N) 20

Locations of sensors

Probability of detection of each target (P4) 0.8,09,0r1.0
Average false alarms per sensor 2.2

AOA measurement error standard deviation (og) 10

DDOA measurement error standard deviation (v/2¢o;) 10m

Signal propagation speed, ¢
Number of target events Upto 10

Target event locations

Grid formation with separations of 50 m (see Fig. 1)

343.2 m/s (i.e. the speed of sound in air)

Uniformly sampled in the surveillance region [3 km, 7 km] x [-2 km, 2 km], but excluding

events from occurring within 500 m of the sensor array (again, see Fig. 3)

Target event times

Either the same or each sampled from a uniform [0, 100] seconds distribution

where ey (.) and e;(.), and zero-mean, Gaussian distributed
measurement errors with standard deviations oy and o;
respectively; c is the signal propagation speed; and d(Xy)
is the distance between the target and the sensor, i.e.:

dXo) = /G~ + Ok — 352 (29)

where (xs, ys) are the Cartesian coordinates of the sensor.

4.2.2 DDOA measurement generation

Typically, the times ¢ at which the target events occur are
unknown. However, these times can be factored out of the
analysis by calculating the difference between the TOA
measurements generated by different sensors (assuming
the signal originates from the same target), giving mea-
surements of the time difference of arrival (TDOA). Mul-
tiplying the TDOA by the signal propagation speed, and
under the assumption that the two TOA measurements
are generated by the same target event, the distance dif-
ference of arrival (DDOA) between TOA measurements
generated by sensors i and j is given as follows:

(30)
(31)

c[t@) — ()]
[di(Xy) — di(Xp)] + c[es (D) — e: ()]

(i)

Importantly, Eq. (31) is independent of #. The exploita-
tion of TDOA measurements has been an area of great

interest for over three decades [33]. Each TDOA measure-
ment provides a hyperbola of potential target locations,
and the intersection of two such hyperbola enables the
target location to be estimated (e.g. see [34]).

In determining the DDOA measurements, it is impor-
tant to be aware of the potential for data incest (i.e. using
the same information more than once), especially when
one considers the following:

(G, k) = 1(,)) + 1, k) (32)

In order to determine a unique set of DDOAs, in which
no measurement is a linear combination of any of the
other measurements, the DDOAs are calculated between
a reference sensor (denoted throughout by the index “R”)
and each of the other sensors. It is noted that the DDOA
measurements generated by different sensors are corre-
lated, because they utilise the same TOA measurement
generated by the reference sensor. Indeed, it can easily be
shown that Cov [‘L'(R, i),t(R,j)] = czatz for i # j; and
Cov[t(R,i),T(Ri)] = 2c*02 fori=1,...,N.

The reference sensor is chosen to be the sensor at which
the greatest number of measurements are generated. This
ensures that the largest possible set of potential DDOA
measurements is created. This is particularly important if
there are missed detections, because in such cases a poor
choice of reference sensor (i.e. choosing one at which very
few measurements are generated) could severely restrict
the number of DDOA measurement combinations eval-
uated, which might negatively impact on the ability of
the TALA to subsequently detect and localise the target
events.

Again, let n(i) denote the number of measurements
generated by sensor i, which can include both target
generated measurements and spurious false alarms. The
total number of DDOA measurement combinations is
then [n(R) X D £R n(i)]. However, it follows immediately
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from the reverse triangle inequality that:

IR —~di(X0)| < /s, —25)” + (5, —95)? forall
(33)

The inequality (33) states that the magnitude of each
ground-truth DDOA measurement can be no greater than
the distance between the reference sensor and sensor i.
Motivated by this, DDOA measurements are only consid-
ered if they satisfy the following inequality:

TR D] < x5, —25)% + (5, — 5% + yor (39)

where o; 2 /2co; is the DDOA measurement error
standard deviation; and y > 0 is a pre-specified multi-
plier. If y > 1, DDOA measurements that do not satisfy
Eq. (34) are likely to have been calculated from TOA
measurements generated by different targets, although
Eq. (34) can also be violated if TOA measurement errors
are abnormally large.

4.3 TALA implementation
The TALA implementations in the three scenarios have
the following features:

1. Inscenarios 1-2, the TALA is implemented using the
coupled AOA/DDOA measurement pairs, with the
reference sensor providing only AOA measurements.

2. Itis noted that the DDOA measurements
determined for different sensors are correlated,
because they exploit the same TOA measurement set
generated by the reference sensor. The correlation
between between the DDOA measurements at
different sensors is c202. As a result, the matrix
manipulations within the TALA cannot exploit the
redundancy created had the measurement error
covariance matrix X been (block) diagonals.

3. Inscenarios 1 and 3, initial candidate locations are
generated as the intersection of each pair of AOA
measurements and the intersection of each pair of
DDOA measurements. Calculating the AOA
intersections is straightforward. However, calculating
the DDOA intersections is more problematic, and an
iterative N-R approach is used. Full details are given
in Appendix A.

4. Scenario 2 is the most computationally complex
because, respectively, the number of DDOA
combinations that satisfy Eq. (34) is greater than in
scenario 1, and the dimensionality of the
concatenated measurement vector is greater than in
scenario 3. As a result, for scenario 2:

¢ Only the AOA intersections are used to
generate initial candidate locations.
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e The correlations between the DDOA
measurements are ignored (which simplifies the
matrix manipulations within the TALA, e.g. see
endnote 5).

5. In all three scenarios, in order to reduce the
computational complexity of the TALA, the initial
candidate locations are determined only from the
intersections of measurements generated by five of
the sensors.

6. In all three scenarios, deletion criterion 3 is used on
Step 3. Therefore, the intersection deletion step only
allows each AOA measurement to be exploited by
one candidate location. As a result, in scenarios 1-2,
the intersection deletion step must account for the
fact that some AOA/DDOA measurement pairs
share a common AOA measurement.

7. Only in scenario 3 is measurement reassociation
performed during the G-N gradient descent.

A summary of the TALA settings is provided in Table 2.
It is noted that some elements of the implementations
(e.g. ignoring measurement correlations) can compro-
mise algorithm performance for increased computational
speed.

4.4 Performance evaluation

Results are based on 1000 simulations of each scenario;
with either 1, 2, ..., or 10 target events, and P, values
of 0.8, 0.9, and 1.0. In comparing the performance of the
TALA with that of the gTALA and the CRLB, the overall
location RMSE is calculated in each case. For the TALA,
the overall location RMSE is given as follows:

Ng
. 1
overall location RMSE = N ; [MSEi(x) + MSE:(»)]
(35)
where:

MSE;(x) = MSE of estimate i in the
x-coordinate direction (36)

MSE;(y) = MSE of estimate i in the
y-coordinate direction (37)

Ng £ total number of target events
detected (across the 1000 simulations) (38)

In determining the MSE values, a global nearest neigh-
bour approach is used to pair the estimates with the true
target event locations. An estimate is declared to be a
successful detection if the absolute distance error of the
estimate is less than 10 times the CRLB location RMSE for
that event, otherwise the estimate is declared to be a false
event.
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Table 2 Summary of TALA settings

Page 12 of 24

TALA component

Details

AOA/DDOA intersections (Step 1)

N-R approach to determine DDOA intersections (Step 1)

Measurement association (Step 2)

Intersection downselection (Step 3)

G-N approach for ML estimation (Step 4)

Based on measurements at only five sensors, only DDOAs satisfying Eq. (34) are used,
withy =2

10 attempts allowed: attempt #1 initialises with the corresponding AOA intersection,
subsequent attempts use random starting locations

Gate threshold, & = 102 (scenarios 1-2) gate threshold, & = 102 (scenarios 3)

Only consider intersections for which the total number of associated measurements
is no smaller than NPy /2

Determine overall likelihood for step sizes of £20%, +40%, £60%, £80%, and £100%
of the Newton step (i.e. m = 5)

If no step increases the overall likelihood, consider a step of magnitude 200 m (i.e.
= §)y) in a random direction

Stop iterating if the procedure above has attempted a total of 20 random steps, or
each component of the GNSSE F(X)’2~" x [Z — f(X)] has a magnitude smaller

than 1073

Reassociation is only performed during gradient descent in scenario 3

The gTALA and CRLB overall location RMSEs are cal-
culated in similar fashion, but do not require the pairing
step because, in each case, the target event is pre-specified
in each RMSE calculation. In order to reduce the impact of
outliers, in Tables 3, 5, and 7, the overall location RMSEs
are also calculated when the 1% worst geo-location esti-
mates (in terms of the TALA overall location RMSE) are
excluded from each calculation.

The percentage of target events detected (%E) and the
average number of false events declared (#FE) are then
given as follows:

%E = 100 x NE/TE
#FE = Nrg/1000

(39)
(40)

where T is the total number of events across the 1000
simulations, and Ngf is the total number of false events
declared across the 1000 simulations.

4.5 Simulation results

Simulation results are presented in Figs. 4, 5 and 6 and
Tables 3, 4, 5, 6, 7 and 8. All simulations were run on an
Intel Core™i5-430M processor (2.26 GHz).

Firstly, in Fig. 4 and Table 3, the estimation accuracy
of the TALA is shown for scenario 1. Estimation perfor-
mance is similar to both the gTALA performance and the
optimistic CRLB. Indeed, the RMSEs of the TALA and
gTALA typically differ by less than 10%, indicating that
the TALA is extremely good and making the correct asso-
ciations of measurements to target events. In fact, the
TALA makes the correct measurement-to-target associa-
tion over 93% of the time in this scenario. Furthermore,

the RMSE of the TALA is typically within 10-20% of the
CRLB. When outliers are removed from the analysis, dif-
ferences in performance are even smaller, with the TALA
RMSE typically around 5% greater than both the gTALA
RMSE and the CRLB. The TALA is able to identify and
geo-locate 93—-98% of the target events (see column 1 in
Table 3). Moreover, the average number of false events
declared (i.e. estimates that are too geographically distant
from a true target event to be considered to be detec-
tion/localisation of an event) is negligible (see column 2 in
Table 3).

Table 4 shows the average computational time of the
TALA for scenario 1. It is observed that for single events,
the TALA provides almost instantaneous estimates. As
the number of target events increases, the algorithm run-
time increases exponentially, primarily because the num-
ber of AOA and DDOA intersections that have to be
computed and manipulated increases exponentially (see
column 2). Nevertheless, the algorithm is still able to pro-
vide estimates of the geo-locations of up to 10 target
events in around 1 s.

In Fig. 5 and Tables 5 and 6, the performance of the
TALA is shown for scenario 2, the first of the scenarios
with simultaneous target events. In this case, the number
of DDOA combinations that satisfy Eq. (34) is increased.
Therefore, the measurement-to-target association prob-
lem has greater complexity, which significantly increases
the complexity/run-time of the TALA. In this case, in
order to reduce the complexity of the TALA, only the
AOA intersections are used to generate initial candidate
locations, and the TALA ignores the correlations between
the DDOA measurements. The following observations are
made.
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Table 3 Summary of the TALA geo-location performance for scenario 1

TALA (0% exclusions) TALA (1% exclusions) Events P,
%E #FE RMSE %% gTALA %% CRLB RMSE %1 gTALA %1 CRLB
98.10 0.00 216.98 2.80 772 195.97 236 -0.78 1 1.0
98.40 0.00 238.12 272 14.92 206.67 2.76 1.72 2 1.0
97.77 0.00 232.70 3.01 13.87 197.37 3.31 -1.54 3 1.0
98.13 0.00 23933 6.25 18.18 214.38 5.95 797 4 1.0
98.06 0.00 22799 5.50 12.77 200.64 4.65 1.25 5 1.0
97.95 0.00 226.04 520 10.06 198.73 453 -1.34 6 1.0
98.17 0.00 231.29 548 13.60 203.29 517 1.83 7 1.0
97.99 0.00 234.62 3.84 14.51 201.89 446 0.46 8 1.0
98.12 0.00 231.39 6.28 13.25 202.37 591 097 9 1.0
98.14 0.01 230.68 5.62 13.69 19847 5.60 -0.19 10 1.0
96.80 0.00 256.88 7.90 19.27 220.50 7.01 492 1 0.9
97.20 0.00 24717 4.10 12.19 22018 6.73 2.10 2 0.9
97.23 0.00 248.38 554 14.06 215.66 539 135 3 0.9
96.53 0.00 25522 4.76 18.13 22220 494 5.06 4 0.9
96.84 0.00 263.92 9.34 2273 222.88 6.10 5.89 5 09
97.28 0.00 255.65 6.46 16.71 222.66 6.85 3.83 6 09
96.80 0.00 261.96 6.25 20.74 223.58 6.88 528 7 09
96.78 0.01 256.22 848 17.31 223.52 8.00 459 8 09
97.14 0.00 247.81 532 13.90 221.65 5.83 4.09 9 0.9
96.91 0.01 250.97 7.88 16.14 217.35 7.57 2.86 10 0.9
94.30 0.00 251.86 6.68 9.02 23115 7.78 2.70 1 0.8
94.65 0.00 278.05 6.17 17.02 236.68 541 191 2 0.8
94.97 0.00 278.78 558 18.50 241.75 793 544 3 0.8
94.90 0.00 281.74 8.78 21.92 240.55 6.93 6.52 4 0.8
95.14 0.01 279.13 6.49 20.70 240.08 6.44 6.26 5 0.8
95.22 0.01 273.00 4.20 16.35 234.65 5.16 224 6 0.8
94.76 0.01 29193 10.05 2512 239.95 745 525 7 038
94.46 0.01 281.12 6.25 19.67 236.85 7.05 3.26 8 0.8
93.99 0.01 285.59 774 22.04 236.52 647 3.60 9 0.8
9347 0.02 28047 725 2047 237.02 7.32 436 10 0.8
Shown are the percentage of target events detected (%E), the average number of false events declared (#FE), and the geo-
location RMSEs (in metres). RMSEs are shown for all target geo-locations determined across the 1000 simulations (i.e. 0%
exclusions), and with the worst 1% of geo-location estimates excluded from each RMSE calculation. Also shown are the
percentage increase of the TALA RMSE over the gTALA RMSE (%1 gTALA) and the percentage increase of the TALA
RMSE over the CRLB RMSE (%7 CRLB)
1. The geo-location performance of the TALA again 4. The additional complexity of the data association
compares well with the gTALA and the CRLB (see problem has been negated by the changes to the
Fig. 5 and Table 5), with a degradation in TALA. As a result, in the most complex cases (i.e.
geo-location performance of just a few percent with 10 target events), the TALA run-time remains
compared to scenario 1. less than 2 s (see Table 6).
2. The TALA again detects 93—-98% of the target events
(see column 1 of Table 5). In Fig. 6 and Tables 7 and 8, the performance of

3. The average number of false events declared is again ~ the TALA is shown for scenario 3. This is the most
negligible (see column 2 of Table 5). difficult scenario, because in addition to target events
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location RMSE (metres)

location RMSE (metres)

number of target events

Fig. 4 Target localisation performance for scenario 1. The TALA RMSE (black circles), gTALA RMSE (white circles), and the CRLB RMSE (black triangles).
The percentage differences between the performance of the TALA and (i) the CRLB (black diamonds) and (ii) the gTALA (white diamonds). Results are

averaged over all 1000 simulations.a Py = 1.0.b Py = 09.c Py = 0.8

occurring simultaneously, each sensor provides only AOA
or TOA measurements, and not hybrid AOA/TOA mea-
surements. This makes measurement association more
problematic. For this reason, measurement reassocia-
tion is performed on each iteration of the gradient
descent algorithm, following the procedure described in
Section 2.6.3. However, the reduced size of the concate-
nated measurement vector, as a result of the reduction
in the dimensionality of each measurement, does not

necessitate the computational adjustments to the TALA
that were required for scenario 2.

In scenario 3, the geo-location performance of the
TALA again compares well with the gTALA and the CRLB
(see Fig. 6 and Table 7), although indicative of the more
difficult scenario, percentage differences in performance
are greater than previously. To elaborate, the RMSEs of
the TALA and gTALA typically differ by 10-20%, with
the RMSE of the TALA typically 20-50% greater than the
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Fig. 5 Target localisation performance for scenario 2. The TALA RMSE (black circles), gTALA RMSE (white circles), and the CRLB RMSE (black triangles).
The percentage differences between the performance of the TALA and (i) the CRLB (black diamonds) and (ii) the gTALA (white diamonds). Results are

averaged over all 1000 simulations.a Py = 1.0.b Py = 0.9.c Py = 0.8

CRLB. When outliers are removed from the analysis, dif-
ferences in performance are significantly reduced, with
the TALA RMSE typically within 20% of both the gTALA
RMSE and the CRLB. The TALA detects 83-99% of
the target events (see column 1 of Table 7), whilst the
average number of false events remains extremely low
(see column 2 of Table 7). The reduced computational
complexity of the algorithm, as a result of the reduction
in the dimensionality of each concatenated measurement

vector, enables the TALA to generate estimates in the
most complex scenarios in less than 0.5 s (see Table 8).

In all three scenarios, the performance of the TALA was
sensitive to the gate threshold &. Setting the value of & too
high can increase the proportion of incorrect associations.
This is particularly true in scenarios for which P; < 1,
in which case there is an increased likelihood that a false
measurement will be associated with a candidate loca-
tion whenever a sensor fails to make a target detection.




Hernandez EURASIP Journal on Advances in Signal Processing (2017) 2017:36

Page 16 of 24

o
—~ 3
wn
£ 3
o ©
Eg
m ¥
m o
E =
g &
® o
Q o
2=
o
number of target events
o
—~ 3
wn
£ 3
O ©
Eg
m ¥
m o
E =
g &
® o
Q o
2=
o
o
—~ 3
wn
£ 3
O »
Eq
Lu <
m o
E g
g &
g s
8
o
number of target events
Fig. 6 Target localisation performance for scenario 3. The TALA RMSE (black circles), gTALA RMSE (white circles), and the CRLB RMSE (black triangles).
The percentage differences between the performance of the TALA and (i) the CRLB (black diamonds) and (ii) the gTALA (white diamonds). Results are
averaged over all 1000 simulations.a Py = 1.0.b Py = 09.c Py = 0.8

Conversely, setting the value of & too low can result in
target-generated measurements failing to be gated. Via
extensive experimentation in all three scenarios, thresh-
old values in the range 1073 — 1072 were shown to result
in near optimal performance. This is equivalent to gating
the measurement Mahalanobis distance with a threshold
g in the range 3.0-3.7.

The performance of the TALA was also assessed for
both closely spaced and well separated emitters, and the

results are similar to those presented herein, with only a
few percent difference in the resulting RMSE, %E, and #FE
values. Additionally, a Newton-Raphson (N-R) approach
(e.g. [25]) was implemented in order to perform the gra-
dient descent within the TALA. The N-R approach had
similar performance to the G-N approach, with the excep-
tion that the computational expense of the N-R algorithm
was greater, as a result of the requirement to calculate
second-order derivative terms.
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Table 4 TALA average computational time, and the average number of candidate locations at the end of each step of the TALA, for
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scenario 1

TALA Average number of candidate positions

run time Step 1 Step 3 Step 3 Step 3 Step 4 Step 5 Events Pg
(s) (crit 1) (crit2) (crit 3)

0.01 20.01 8.63 435 0.98 0.98 0.98 1 1.0
0.04 50.19 18.31 9.07 197 197 1.97 2 1.0
0.05 90.41 2847 14.16 2.94 2.94 293 3 1.0
0.11 146.74 39.78 19.62 3.94 3.94 3.93 4 1.0
0.19 217.19 53.06 25.81 492 492 4.90 5 1.0
0.29 295.72 67.31 32.21 5.90 5.90 5.88 6 1.0
041 392.83 79.28 3840 6.90 6.90 6.87 7 1.0
061 489.83 95.09 4599 7.87 7.87 7.84 8 1.0
0.77 613.30 109.80 5278 8.87 8.87 8.84 9 1.0
1.03 747.38 12743 61.14 9.85 9.85 9.82 10 1.0
0.02 17.09 7.04 3.53 0.97 0.97 0.97 1 09
0.02 41.22 14.80 7.50 1.95 1.95 1.94 2 09
0.07 76.86 23.16 11.84 292 2.92 292 3 09
0.13 120.39 3224 16.36 3.88 3.88 3.86 4 09
0.18 17715 42.50 21.23 4.87 4.87 4.84 5 0.9
0.23 242.85 54.03 26.81 5.86 5.86 5.84 6 09
035 319.59 63.91 31.86 6.81 6.81 6.78 7 09
047 393.38 76.07 37.77 7.78 7.78 7.75 8 09
0.60 49443 88.45 43.77 8.77 8.77 8.75 9 09
0.86 606.16 102.99 50.96 9.74 9.74 9.70 10 09
0.02 15.21 5.65 2.96 0.95 0.95 0.94 1 0.8
0.03 34.04 11.86 6.13 1.90 1.90 1.90 2 0.8
0.04 60.84 18.28 9.58 2.86 2.86 2.85 3 0.8
0.10 98.99 25.73 13.55 3.81 3.81 3.80 4 0.8
0.16 144.13 34.58 18.10 478 478 476 5 0.8
0.22 195.82 44.28 22.70 5.74 5.74 572 6 0.8
0.29 254.63 51.31 2648 6.68 6.68 6.64 7 0.8
040 320.04 61.82 31.65 761 7.61 7.57 8 0.8
0.50 393.89 7118 3643 8.50 8.50 847 9 0.8
0.67 470.19 81.29 4161 9.39 9.39 9.36 10 0.8

5 Discussion

There is a tradeoff between the run-time and the
performance of the TALA. Adjustments that reduce
the run-time, such as reducing the initial number of
candidate locations (e.g. by not considering all mea-
surement intersections), ignoring the correlations
between DDOA measurements (e.g. to simplify the
matrix manipulations in the gradient descent), and
more quickly reducing the number of candidate loca-
tions (e.g. by performing downselection on Step 3),

can each reduce the proportion of emitters detected,
although performance degradation is not significant.
Furthermore, performing measurement reassocia-
tion during gradient descent can improve the TALA
performance, particularly if measurement errors are
large or the sensors provide only limited information
(e.g. AOA measurements only), rather than hybrid
measurements. However, measurement reassocia-
tion also increases the computational expense of
the TALA.
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Table 5 Summary of the TALA geo-location performance for scenario 2

TALA (0% exclusions)

TALA (1% exclusions)

Events Py
%E #FE RMSE %71 gTALA %% CRLB RMSE %74 gTALA %1% CRLB
98.20 0.00 22155 4.97 9.99 199.36 4.13 093 1 1.0
98.40 0.00 24013 359 15.89 208.14 349 244 2 1.0
97.67 0.00 23585 440 1541 198.36 383 -1.05 3 1.0
98.02 0.00 240.26 6.67 18.65 214.88 6.20 8.23 4 1.0
97.72 0.00 22759 531 1257 203.19 598 2.54 5 1.0
9773 0.00 23052 729 12.24 202.06 6.28 032 6 1.0
97.86 0.00 23317 6.34 14.53 204.34 571 235 7 1.0
97.75 0.00 23642 463 15.39 203.31 5.19 1.7 8 1.0
97.83 0.00 23520 8.03 1511 204.10 6.82 1.83 9 1.0
97.76 0.00 23539 778 16.02 20292 7.96 204 10 1.0
96.60 0.00 261.04 9.65 21.20 22255 8.01 5.89 1 09
97.20 0.00 248.90 4.82 1297 22157 740 275 2 09
97.00 0.00 25068 6.52 1511 219.06 7.06 295 3 09
96.60 0.00 260.54 6.95 20.60 227.29 734 747 4 09
96.50 0.01 26233 8.68 2199 225.08 715 6.94 5 09
97.08 0.00 259.16 792 1831 22481 7.88 4.84 6 09
96.49 0.00 264.01 7.08 2168 226.14 8.10 6.49 7 09
96.38 0.01 262.57 1.7 2022 227.18 9.76 6.30 8 09
96.66 0.01 25379 7.86 16.65 22642 8.10 6.33 9 09
96.25 0.01 25798 10.90 19.39 221.94 9.84 504 10 09
94.30 0.00 25148 6.52 8.85 23214 8.24 3.14 1 0.8
94.45 0.01 28493 8.80 19.91 23850 6.22 269 2 0.8
95.00 0.00 28547 8.11 2134 246.61 10.10 7.56 3 0.8
94.55 0.00 28755 11.02 2443 24497 8.90 848 4 0.8
94.74 0.01 289.19 1032 25.05 239.86 6.35 6.17 5 0.8
94.87 0.01 27723 5.81 18.15 238.06 6.69 372 6 0.8
94.34 0.01 290.23 941 2439 24357 9.08 6.84 7 0.8
94.03 0.02 29022 9.69 2354 241.85 9.31 543 8 0.8
9338 0.02 28833 877 2321 240.69 8.35 542 9 0.8
92.60 0.02 289.14 10.56 24.19 240.79 9.03 6.02 10 0.8

Again, shown are the percentage of target events detected (%E), the average number of false events declared (#FE), and the geo-location RMSEs (in metres). RMSEs are
shown for all target geo-locations determined across the 1000 simulations (i.e. 0% exclusions), and with the worst 1% of geo-location estimates excluded from each RMSE
calculation. Again, also shown are the percentage increase of the TALA RMSE over the gTALA RMSE (%1 gTALA) and the percentage increase of the TALA RMSE over the CRLB

RMSE (%1 CRLB)

Deciding when it is necessary to make computational
simplifications can be performed “on-the-fly’, based on
the number of measurements generated within the time
window under consideration. A larger number of mea-
surements may indicate a large number of emitters and/or
signals that are closely spaced in time, which may then
necessitate computational savings. Of course, the algorith-
mic complexity that can be afforded depends on the time-
criticality of the application, specifically whether the com-

mander requires the processing to be performed almost
instantaneously (e.g. in order to immediately perform a
retaliatory strike), or whether a longer processing time can
be tolerated (e.g. when conducting post-event analysis).

6 Future work
1. To remind the reader, the TALA implementation
herein requires that three heuristic parameters be
set, these being (i): £ €[ 0,1] in Eq. (3), (ii): n €[ 0, 1]
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Table 6 TALA average computational time, and the average number of candidate locations at the end of each step of the TALA, for

scenario 2

TALA Average number of candidate positions

run time Step 1 Step 3 Step 3 Step 3 Step 4 Step 5 Events Py
(s) (crit 1) (crit2) (crit 3)

0.01 20.60 8.14 4.00 0.98 0.98 0.98 1 1.0
0.01 53.16 17.36 8.36 197 197 1.97 2 1.0
0.02 95.94 2717 13.19 2.94 2.94 293 3 1.0
0.07 157.20 38.03 18.28 3.94 3.94 3.92 4 1.0
0.14 224.86 50.44 23.96 491 491 4.89 5 1.0
0.23 303.82 63.97 29.81 5.89 5.89 5.87 6 1.0
042 397.65 75.00 35.38 6.88 6.88 6.85 7 1.0
0.63 494.44 90.18 4258 7.85 7.85 7.82 8 1.0
0.98 602.77 103.05 48.20 8.84 8.84 8.81 9 1.0
1.53 731.13 119.31 55.76 9.81 9.81 9.78 10 1.0
0.00 17.70 6.64 3.24 0.97 0.97 0.97 1 09
0.01 4437 14.07 6.96 1.95 1.95 1.94 2 09
0.02 82.47 2238 11.20 292 2.92 291 3 09
0.05 129.90 31.09 1543 3.88 3.88 3.87 4 09
0.11 186.77 4134 20.24 4.85 4.85 4.83 5 0.9
0.20 253.62 52.50 25.55 5.85 5.85 5.83 6 0.9
0.34 330.56 62.03 30.28 6.79 6.79 6.76 7 09
049 406.79 74.07 36.12 7.75 7.75 7.72 8 09
0.73 500.82 85.82 41.60 8.72 872 8.70 9 09
1.08 603.86 99.32 48.15 9.68 9.68 9.64 10 09
0.00 15.82 5.38 277 0.95 0.95 0.94 1 0.8
0.01 3745 1143 576 1.90 1.90 1.89 2 0.8
0.01 68.19 17.84 9.18 287 287 2.85 3 0.8
0.02 110.12 25.08 13.02 3.80 3.80 3.79 4 0.8
0.09 15849 33.88 1742 4.76 4.76 4.74 5 0.8
0.16 213.10 4344 21.94 5.72 5.72 5.70 6 0.8
0.24 27347 50.27 25.60 6.65 6.65 6.61 7 0.8
0.39 340.90 60.32 30.59 7.58 7.58 7.54 8 0.8
0.52 415.07 69.45 35.09 845 845 842 9 0.8
0.76 495.93 79.54 40.03 9.31 9.31 9.28 10 0.8

used in deletion criterion 1 on Step 3, and (iii): y > 0
in Eq. (34). The performance of the TALA is also
dependent on the measurement errors (i.e. op and o
in the focal simulations). It would be interesting to
analyse the performance of the TALA as a function
of these parameters, in order to determine optimal
values for the heuristic parameters as a function of
the measurement errors. Such an analysis may offer

valuable insight into how to optimise the

performance of the TALA across a broad range of

operational scenarios.

2. The performance of the TALA was compared to
both the CRLB [23] and the performance of a “genie”
TALA that exploited the true measurement-to-target
associations. It would be interesting to compare the
performance of the TALA to that of existing
methods developed for specific applications, most
notably the approaches of [2, 10, 19, 20] developed
for multi-target localisation using TOA
measurements and the approaches of [4, 5, 11, 12])
developed in order to localise a single emitter using
hybrid AOA/TDOA measurements.
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Table 7 Summary of the TALA geo-location performance for scenario 3

TALA (0% exclusions) TALA (1% exclusions) Events ,
9%E #FE RMSE %1% gTALA %1 CRLB RMSE %1 gTALA %% CRLB
98.80 0.00 32248 135 13.32 288.98 2.88 3.74 1 1.0
97.95 0.00 34515 0.13 17.89 297.41 214 3.58 2 1.0
97.07 0.01 361.52 567 25.05 290.89 333 252 3 1.0
95.23 0.01 366.09 10.33 27.86 307.61 6.49 9.54 4 1.0
94.52 0.01 379.98 9.55 3295 310.85 9.98 10.97 5 1.0
93.05 0.01 387.99 13.53 33.68 317.57 12.24 11.60 6 1.0
93.01 0.02 390.64 10.55 35.78 313.90 10.25 11.27 7 1.0
91.60 0.02 386.88 13.69 33.54 309.56 10.31 8.95 8 1.0
91.17 0.03 406.21 16.30 40.65 325.19 11.81 14.79 9 1.0
89.81 0.03 376.56 13.63 31.32 315.84 1347 12.36 10 1.0
98.10 0.00 386.89 6.51 24.38 320.99 6.38 6.05 1 0.9
96.10 0.01 401.60 3.73 26.66 330.65 599 6.90 2 0.9
95.63 0.01 394.15 -1.23 25.29 32746 3.16 742 3 0.9
93.13 0.02 399.20 6.69 28.96 326.57 849 8.00 4 09
92.18 0.01 421.33 6.91 36.20 339.06 6.76 12.38 5 09
89.65 0.03 423.84 13.28 34.23 341.83 10.26 1117 6 09
90.30 0.03 446.99 17.38 4335 350.90 1217 15.52 7 09
8842 0.03 43147 1349 37.18 345.19 12.75 12.70 8 09
8740 0.04 453.87 19.29 44.99 360.63 15.51 18.17 9 09
86.34 0.04 456.16 16.64 46.35 353.35 1747 16.77 10 0.9
94.00 0.01 421.12 5.1 2397 359.77 431 10.18 1 0.8
94.15 0.02 464.01 6.32 33.56 366.50 6.98 9.12 2 0.8
91.73 0.02 473.74 11.72 36.06 377.14 941 12.75 3 0.8
90.22 0.03 492.75 14.66 4512 381.17 13.08 15.81 4 0.8
88.86 0.04 504.91 12.79 47.65 39240 13.57 1891 5 0.8
86.60 0.05 479.99 559 38.64 385.92 9.54 15.16 6 0.8
86.80 0.06 486.42 20.15 41.21 382.79 15.62 15.09 7 0.8
85.00 0.05 52225 15.20 50.37 39793 14.58 18.81 8 0.8
83.92 0.07 506.22 11.31 47.08 401.54 17.14 20.90 9 0.8
83.08 0.08 524.07 15.39 52.56 404.82 19.72 2249 10 0.8
Again, shown are the percentage of target events detected (%E), the average number of false events declared (#FE), and the
geo-location RMSEs (in metres). RMSEs are shown for all target geo-locations determined across the 1000 simulations (i.e.
0% exclusions), and with the worst 1% of geo-location estimates excluded from each RMSE calculation. Again, also shown
are the percentage increase of the TALA RMSE over the gTALA RMSE (%1 gTALA) and the percentage increase of the
TALA RMSE over the CRLB RMSE (%1 CRLB)

3. The TALA implementation introduced herein accurately known. In such cases, careful setting of the
implicitly assumes that the measurement error standard deviations within the TALA is required.
standard deviations are known. Extensive field Setting values too small (i.e. being overally optimistic
testing of a prototype system may enable accurate as to the accuracy of each measurement) may inhibit
error statistics to be determined, making this a valid data association, resulting in valid measurements
assumption. In cases for which field testing is not being discarded. Conversely, setting values too high
practicable, or in extended operating conditions, may fail to fully exploit accurate measurements.

measurement error standard deviations may not be Analysis of this tradeoff is left for future work.
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scenario 3

TALA Average number of candidate positions

run time Step 1 Step 3 Step 3 Step 3 Step 4 Step 5 Events Pg
(s) (crit 1) (crit2) (crit 3)

0.01 5553 10.05 5.04 1.01 1.01 0.99 1 1.0
0.01 97.69 22.35 11.86 2.01 1.99 1.96 2 1.0
0.04 149.39 35.80 20.03 3.00 2.98 292 3 1.0
0.03 21567 53.84 31.83 3.94 3.92 3.82 4 1.0
0.08 28431 76.63 4735 491 4.88 4.74 5 1.0
0.12 368.60 102.52 65.49 583 5.79 559 6 1.0
0.17 463.94 130.97 86.62 6.77 6.72 6.53 7 1.0
0.24 563.94 171.32 116.61 7.69 7.63 7.35 8 1.0
033 67447 213.64 149.62 8.62 855 8.24 9 1.0
043 803.40 267.18 191.98 9.48 940 9.01 10 1.0
0.01 5212 8.24 418 1.02 1.01 0.98 1 0.9
0.02 89.31 17.86 9.72 1.99 1.96 1.93 2 09
0.02 134.80 28.85 16.10 2.96 2.93 2.88 3 09
0.04 187.96 42.65 2540 3.88 3.83 3.74 4 09
0.04 247.24 60.20 37.14 4.81 4.75 4.62 5 0.9
0.13 31868 79.85 51.03 5.67 5.58 540 6 09
0.17 396.73 102.12 67.94 6.61 6.53 6.35 7 09
0.24 476.01 129.76 88.87 746 7.38 7.1 8 09
0.31 57135 163.07 114.19 8.30 820 791 9 09
041 674.19 20432 147.04 9.18 9.07 8.67 10 09
0.01 50.18 8.90 522 1.21 1.18 0.95 1 0.8
0.01 81.14 1947 11.79 2.18 2.14 1.90 2 0.8
0.01 116.63 31.50 20.02 3.1 3.04 2.77 3 0.8
0.03 162.80 48.00 31.80 4.05 3.97 3.64 4 0.8
0.05 214.78 71.33 48.32 4.94 4.85 448 5 0.8
0.11 27245 95.83 66.88 5.82 5.70 525 6 0.8
0.17 33048 122,64 87.85 6.74 6.59 6.13 7 08
0.20 401.28 160.11 116.92 7.60 745 6.85 8 0.8
0.27 47767 201.82 149.49 8.40 8.26 7.63 9 0.8
0.36 564.86 250.12 188.52 9.28 9.11 838 10 0.8

7 Conclusions

In this paper, a novel target acquisition and localisation
algorithm (TALA) has been introduced that offers a capa-
bility for detecting and localising an unknown number
of targets using the intermittent “signals-of-opportunity”
they generate (e.g. “events” such as acoustic impulses or
radio frequency transmissions). The TALA is a batch
estimator, and its novelty lies in the mechanism by
which it circumnavigates the need to perform global

multi-sensor/multi-target data association (e.g. as neces-
sary in [20]), which can be a computationally prohibitive
combinatorial optimisation (e.g. see [22]). As a result, the
TALA is able to maintain computational feasibility, even
for large scale problems. Specifically, the TALA main-
tains a set of hypothesised target locations, and performs
nearest neighbour data association on a measurement-
by-measurement basis, allowing each measurement to
be associated with more than one hypothesised target
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location. The algorithm then determines maximum like-
lihood estimates of potential target locations, before a
final downselection step ensures that each measurement
is associated with no greater than one estimate.

The performance of the TALA is demonstrated for
simulated scenarios with a network of 20 sensors and
up to 10 targets. The sensors generate angle-of-arrival
(AOA), time-of-arrival (TOA), or hybrid AOA/TOA mea-
surements. Both simultaneous and non-simultaneous tar-
get events are considered, though clearly simultaneous
events are more challenging, as the problem of resolv-
ing the association of measurements to events has greater
ambiguity.

For non-simultaneous events, and with homogeneous
sensors providing hybrid AOA/TOA measurements, the
target localisation errors of the TALA are typically
within 10-20% of an optimistic Cramér-Rao lower bound
(CRLB) that ignores the multi-target data association
problem. A better comparison shows that the local-
isation errors of the TALA are typically within 10%
of the errors generated by a “genie” algorithm that is
given the correct measurement-to-target associations.
Percentage differences in performance are reduced when
a small percentage (i.e. 1%) of outliers are removed
from the comparisons, with the TALA RMSE typi-
cally then around 5% greater than both the gTALA
RMSE and the CRLB. For simultaneous events, again
with sensors providing hybrid AOA/TOA measurements,
there is only a few percent degradation in geo-
location performance compared to the case of non-
simultaneous events. In both cases, the TALA successfully
detect 93-98% of the targets, with virtually no false
targets declared.

In the most difficult scenarios considered, with simulta-
neous events, and heterogeneous sensors providing either
AOA or TOA measurements, the TALA continues to per-
form well in comparison to the gTALA and the optimistic
CRLB. To elaborate, in this case, the RMSEs of the TALA
and gTALA typically differ by 10-20%, with the RMSE
of the TALA typically 20-50% greater the CRLB. Again,
when outliers are removed from the analysis, differences
in performance are reduced significantly, with the TALA
RMSE typically within 20% of the CRLB. The TALA
detects 83-99% of the target events, whilst the average
number of false events remains extremely low.

The computational expense of the TALA is shown to
remain manageable as the number of targets increases.
This allows the approach to be implemented in challeng-
ing time-critical scenarios, such as in the localisation of
artillery firing events, for which there may be only a small
window of opportunity in which to perform a retaliatory
strike. It is concluded that the TALA provides a pow-
erful situational awareness aid for passive surveillance
operations.
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Endnotes

! This is a common assumption in target state estima-
tion problems (e.g. see [22]). For scenarios in which this
assumption is violated, there are two options; either (i) a
Gaussian approximation can be made or (ii) the likelihood
functions and ML estimation approach within the TALA
be modified in order to correctly account for the change
in the measurement model.

2The maximum value of the individual likelihood is
I;(max) = det(X;)~ Y2/ (2mr)%/2,

3Via experimentation, likelihood threshold values & in
the range 1073 — 1072 were shown to generate excellent
results.

“The GNSSE is the R? vector: F(X3)'E2 7! [Z — f£(Xy)].
At the ML estimate, the GNSSE has a value of 0.

*For example, if the measurement error covariance
matrix X were block diagonal, it can easily be shown that
Na
FXQO)'EMZ-fXpl=) FiXp) T [z — f Xis )]
i=1

(41)

where F;(X;) £ VxS (Xi;i). The complexity of the
calculation of (41) is of order O(N,). However, the cal-
culation of F(Xy)' £~ ![Z — f(X))] using the full Hessian
matrix F(Xy) (given in Eq. (20)) and the full measure-
ment error covariance matrix X (given in Eq. (13)) has
complexity O(N, 2).

Appendix A: Determining the AOA and DDOA
measurement intersections

AOA intersections

Consider two AOA measurements 6 (i) generated by sen-
sors i = 1,2. It is straightforward to show that the point of
intersection (xr, yr) of these two measurements is given as
follows:

Axtan6(2) — Ay
tan6(2) — tanf(1)

X[ = X5, (42)
Axtan6(1)tan6(2) — Aytan6(1)
tanf0(2) — tan6(1)
where Ax and Ay are the distances between the two sen-
sors in the x- and y- coordinate directions respectively,

ie.

I =ys + (43)

(44)
(45)

Ax = x5, — X5,
Ay = ys, — ¥,

It is noted that Egs. (42) — (43) will always output a value
provided that the AOA measurements are not parallel (i.e.
provided that 6(1) # 6(2) and 6(1) # (0(2) £ m)). This
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is true even if the AOA measurements diverge, in which
case the coordinates provided by Egs. (42) — (43) will be
in the opposite direction to at least one of the two mea-
surements. Therefore, the point (xz, y7) is only accepted as
a valid intersection if 6(i) = tan™! ((yI —ys.)/ (%1 — xsi))
fori=1,2.

DDOA intersections

Consider two DDOA measurements 7 (R, i) at sensors i =
1,2. Let X = (x,7) denote the point of intersection of
these measurements. This point of intersection satisfies
the following equations:

mX) £ [drX) —di(X) — (R, D] = 0  (46)
hay(X) £ [dr(X) —da(X) —T(R,2)] = 0 (47)

where d;(X) is again given by Eq. (29). Equations (46) and
(47) each provide a hyperbola of potential solutions for X
(e.g. see Fig. 1), with two intersecting points. The inter-
section that is sought is the one that is in the direction
of the AOA measurements. This intersection is deter-
mined using a N-R approach (e.g. see Section 9.6 in [25]).
This is an iterative technique that generates a sequence
of estimates X, k = 0,1,2, ... that will converge to
a solution provided that the initial estimate X is itself
close enough to the intersection. In order to maximise
the probability that the correct DDOA intersection will
be determined, Xy is set to be the point of intersection
of the two corresponding AOA measurements (if AOA
measurements are also generated by the two sensors, and
these measurements intersect). Otherwise, Xy is set to
be a location randomly generated within the surveillance
region. Successive iterates of the N-R approach are given
as follows:

Xir1 = X — GXQ) " h(Xp) (48)

where h(X)) £ (nXp ha(Xp), GXp) =

[ka [h(Xk)’]]/, and Vx, is the first-order par-

tial derivative operator with respect to Xy, ie.

Vx, = [B/Bxk 8/8yk]/. The matrix G(Xj) is then given as
follows:

(o —xsp) — (xx—xsy) Ok—ysg)  Ok—ysy)
dr(Xx) d1 (Xx) dr(Xy) d1 (Xy)
G(Xy) =
(—xsp)  (xk—%s,) Ok—ysg)  Ok—ysy)
dr(Xx) dy(Xg) dr(Xi) dy (Xx)
(49)

A maximum of 100 iterations of the N-R approach are
performed, and convergence to the DDOA intersection
is assumed to have occurred if, on any iteration, the x-
and y- coordinate location increments each have a mag-
nitude smaller than 10~7. However, the N-R approach is
not guaranteed to converge to the intersection, and when
divergence occurs, further attempts are made to deter-
mine the DDOA intersection by re-initialising the N-R
approach at a location randomly generated within the
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surveillance region. In the simulations presented herein,
up to nine attempts are made using randomly generated
initial locations.
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