Lao and Parhi EURASIP Journal on Advances in Signal
Processing (2017) 2017:45
DOI 10.1186/513634-017-0477-9

EURASIP Journal on Advances
in Signal Processing

RESEARCH Open Access
@ CrossMark

Canonic FFT flow graphs for real-valued
even/odd symmetric inputs

Yingjie Lao' and Keshab K. Parhi®”

Abstract

Canonic real-valued fast Fourier transform (RFFT) has been proposed to reduce the arithmetic complexity by
eliminating redundancies. In a canonic N-point RFFT, the number of signal values at each stage is canonic with
respect to the number of signal values, i.e., N. The major advantage of the canonic RFFTs is that these require the least
number of butterfly operations and only real datapaths when mapped to architectures. In this paper, we consider the
FFT computation whose inputs are not only real but also even/odd symmetric, which indeed lead to the well-known

operations, compared to prior works.

discrete cosine and sine transforms (DCTs and DSTs). Novel algorithms for generating the flow graphs of canonic
RFFTs with even/odd symmetric inputs are proposed. It is shown that the proposed algorithms lead to canonic
structures with % + 1 signal values at each stage for an N-point real even symmetric FFT (REFFT) or g — 1 signal values
at each stage for an N-point RFFT real odd symmetric FFT (ROFFT). In order to remove butterfly operations, several
twiddle factor transformations are proposed in this paper. We also discuss the design of canonic REFFT for any
composite length. Performances of the canonic REFFT/ROFFT are also discussed. It is shown that the flow graph of
canonic REFFT/ROFFT has less number of interconnections, less butterfly operations, and less twiddle factor

Keywords: Fast Fourier transform (FFT), Real-valued FFT (RFFT), Canonic flow graph, Even symmetric inputs, Odd
symmetric inputs, Twiddle factor transformation, Discrete cosine transform (DCT), Discrete sine transform (DSTs)

1 Introduction

FFT is an important topic in digital signal process-
ing (DSP) and is widely used in applications such as
telecommunications, biomedical signal processing, and
spectral analysis. There has been a significant interest in
improving the performance of FFT for specific applica-
tions. One such example is computing FFT of real-valued
signals, referred as RFFT. Many physical signals, such
as biomedical signals, are real. The real-valued signals
exhibit conjugate symmetry in spectral domain giving rise
to redundancies. This property can be exploited to reduce
both arithmetic and architectural complexities.

Although most FFT algorithms were developed for
complex-valued sequences, redundancies and symmetries
in all of these algorithms can be exploited to reduce
the number of multiplications and storage by roughly a
factor of 2 for RFFTs. A number of RFFT computation

*Correspondence: parhi@umn.edu

’Department of Electrical and Computer Engineering, University of Minnesota,
Minneapolis, MN 55455, USA

Full list of author information is available at the end of the article

@ Springer Open

algorithms and implementations have been proposed for
both pipelined and in-place architectures in the litera-
ture [1-4]. An approach to compute an N-point RFFT
using an % -point complex FFT was presented in [1]. How-
ever, this approach requires significant amount of post-
processing. Custom pipelined architectures for RFFT have
been proposed in [5-8]. In [5], the computations of % -1
conjugate-symmetric samples were eliminated to obtain
hardware-efficient RFFT structures, where N represents
the size of the FFT. Here, we consider a complex signal
as two signals: real part signal and imaginary part signal.
Therefore, in these architectures, the number of signals
computed at the output is the same as the input, i.e., N.
However, although the outputs are canonic in the number
of signals, these architectures still exhibit redundancies at
the intermediate stages, as they are composed of hybrid
datapaths consisting of both complex and real datapaths.
Recently, pipelined architectures consisting of only real

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13634-017-0477-9&domain=pdf
http://orcid.org/0000-0001-6543-2793
mailto: parhi@umn.edu
http://creativecommons.org/licenses/by/4.0/

Lao and Parhi EURASIP Journal on Advances in Signal Processing (2017) 2017:45

datapaths for decimation-in-frequency (DIF) RFFT were
proposed in [9]. Real-valued FFT architectures for radix-
23 and radix-2* were presented in [10] based on hybrid
datapaths. In contrast to the work in [9], the architec-
tures in [10] do not maintain the canonic property in the
number of signal values computed at the output of each
FFT stage. The designs of RFFTs for both decimation-
in-time (DIT) and DIF approaches that are canonic with
respect to the number of signals at the output of each
stage (i.e., data-canonic) have been proposed in [11]. For
a canonic N-point RFFT, the total number of values com-
puted at the output of each stage is guaranteed to be N.
Furthermore, each stage only contains maximum % real
butterflies as opposed to % complex butterflies.

This paper explores the design of canonic FFT flow
graphs for when inputs are real-valued and also even/odd
symmetric, referred as REFFT and ROFFT, respec-
tively. The motivation of this work is that linear-phase
FIR filter impulse responses are even/odd symmetric.
For example, the type 1 FIR filter has odd number of
taps where the values of the taps are even symmetric. As
a result, we can improve the computation of H[k] from
h[n] by eliminating the redundancies. Therefore, instead
of computing y[n] by x[n] xh[n], we can choose to com-
pute the IFFT of X[k] H[k] to obtain the output y[#], as
shown in Fig. 1. The complexity of H[k] can be reduced
by the proposed REFFT instead of RFFT.

The main contribution of this paper is the design
of novel algorithms for canonic REFFT/ROFFT. We
also propose twiddle factor transformations, which are
required to transform the structures to be canonic
and to reduce arithmetic complexity. Note that the
dataflows of REFFT and ROFFT indeed lead to DCT
type 1 and DST type 1, respectively. A number of
prior works have derived data-canonic DCT and DST
algebraically [12-14]. However, our starting point is
different from these prior works, since we begin to elim-
inate the redundancy from canonic RFFT structures. In
addition, our approach will result in more hardware-
efficient architectures and dataflow with more regularity.
Furthermore, we present the algorithms for generating
REFFT/ROFFT for any composite length, which has not
been investigated in the literature. Except type 1, archi-
tectures for DCT/DST types 2—4 have also been studied
in [15, 16].

The organization of the paper is as follows: Section 2
provides a brief overview of FFT, RFFT, and canonic RFFT

x[n] hin] ——— y[n] = FFT(Y[K]) = FFT"(X[KIH[K])

Fig. 1 Obtain y[n] by computing the IFFT of X[k] H[k]

Page 2 of 23

and introduces REFFT/ROFFT. Examples of canonic
REFFTs and their generalizations to an algorithm for any
N = 27 size are presented in Section 3. In Section 4,
we describe the pre-processing that is required before
performing the proposed algorithms. Section 5 presents
an approach for generating canonic power-of-two size
ROFFT. In Section 6, we present an approach to design
canonic REFFT for any composite length. Section 7
discusses the performances of canonic REFFT/ROFFT.
Finally, Section 8 concludes the paper.

2 Background

2.1 FFT

The N-point discrete Fourier transform (DFT) for a
sequence x[#] is defined as [17]

N-1 N-1

XK= aln] e THK = 3" aln] WK,
n=0 n=0
k=0,1,...,N—1, (1)
where Wy = e N . FFT is a fast algorithm to com-

pute the DFT [18]. In algorithmic terms, the DFT
requires O(N?) arithmetic operations, whereas the FFT
requires O(NlogN) arithmetic operations. The original
DFT equation can be rearranged using different radices to
design various FFT algorithms [19-22]. These algorithms
and architectures provide unique tradeoffs that can be
exploited for an intended application. A 16-point radix-2
FFT flow graph is shown in Fig. 2. Note that the minus
signs in the lower paths of butterflies are omitted.

2.2 Real-valued FFT
For real-valued inputs x[#], it can be shown that

X[k]= X*[N —k]. 2)

In this case, there are % — 1 conjugate output pairs, i.e.,
X[kland X[N—k], fork = 1,2,..., X —1. Therefore, only
% + 1 outputs need to be computed in an N-point RFFT,
since we can compute either X[k] or X[N — k], along with
2 real output signals X[0] and X[N/2]. The total number
of purely real and purely imaginary signal values is N. A
16-point RFFT example is shown in Fig. 2. Only 9 samples
consisting of 16 values need to be computed at the output.
This property of RFFT can be utilized to simplify the com-
putation. The 16-point radix-2 RFFT is shown in Fig. 3.
The shaded regions in boxes in Fig. 3 are removed and
only 9 outputs of the FFT are needed, where the nodes
marked by white circle and black circle respectively repre-
sent purely real or purely imaginary signals and complex
signals.

Lao and Parhi EURASIP Journal on Advances in Signal Processing (2017) 2017:45

Page 3 of 23

X(0)

—
D=
4 X(12)

<
NI et

e 0 i

X(10)

~ . 0

=< X9

ey 0

X(13)

wl
oIS o oo =00

No 1

X(11)
N W S?f I X7)

Fig. 2 Flow graph of a 16-point FFT. Input signals are assumed to be complex

X(15)

2.3 Canonic RFFT

RFFT algorithms can be further optimized, according to
the specific application requirements. For example, three
types of RFFTs can be defined by considering the numbers
of signal, multiplication, and addition, respectively:

Data-canonic (canonic): The RFFT algorithm has
the least number of signals at each FFT stage (canonic
is always referred to data-canonic in this paper).
Multiplication-canonic: The RFFT algorithm has
the least number of multiplications.
Addition-canonic: The RFFT algorithm has the
least number of additions.

Note that data-canonic RFFTs are not necessarily
multiplication-canonic or addition-canonic. Algorithms
for generating canonic RFFT have been presented in [11],
where the number of signals is guaranteed to be N at
each FFT stage for an N-point RFFT. For the 16-point
RFFT as shown in Fig. 3, the outputs are canonic with
respect to the number of signals, 16 (i.e., 2 real values and
7 complex values). However, the intermediate stages of
the flow graph are not canonic with respect to the num-
ber of signals. For instance, there are 10 real values and 6
complex values, i.e., 22 values in total before the butterfly

operations at the second stage. Therefore, Fig. 3 is not
canonic with respect to the number of signal values.

In order to reduce the number of signal values to
eliminate redundancy, twiddle factor transformations are
required. The push transformation of the twiddle factors
can be described as shown in Fig. 4. We can push a fac-
tor of WX from before the butterfly operation to after the
butterfly operation to reduce the number of signal values.
For example, we can push a factor of W? to the output of
the 4th butterfly operation from the top at the 3rd stage
in Fig. 3. After the twiddle factor transformation, the top
input of the butterfly will be purely real and the bottom
input will be purely imaginary. Therefore, the number of
signals at this stage can be reduced to 16 from 18, which
is canonic with respect to the number of signals. We also
need to push the twiddle factors of the 6th, 7th, and 8th
butterflies at the 2nd stage to obtain the canonic RFFT,
as shown in Fig. 5. After pushing the twiddle factors, the
top output of the butterfly can be obtained by appending
the 2 inputs, since the top input is purely real and the bot-
tom input is purely imaginary; the bottom output can be
eliminated, as it is conjugate symmetric to the top output.

Note that the canonic structures for a certain size RFFT
are not unique. This is because the twiddle factors can be

X(10)

X(6)
X(14) |

x(9)
x(10)
x(11)

X(1)
X(9)
X(5)
X(13)

x(12)

%
x(13) >
x(74)C/ iw‘: -
x(15) W ¢

X(3)
X(11)
X(7)

X(15)

Fig. 3 Flow graph of a 16-point radix-2 real-valued FFT (RFFT). Input signals are purely real, and redundant signals in the shaded regions are removed

Lao and Parhi EURASIP Journal on Advances in Signal Processing (2017) 2017:45

Page 4 of 23

oW~ wWe

real ><

o
real WA 1 we

Fig. 4 Twiddle factor transformation: push

real o /
real O——

moved from one stage to another if the signals before and
after are complex without altering the number of signal
values. For example, the twiddle factors after the second
stage of the bottom part of Fig. 5 can also be pushed to the
next stage. This operation does not affect the number of
signal values for each stage.

2.4 REFFT/ROFFT

When the inputs of a RFFT are even symmetric or odd
symmetric, the outputs will be purely real or purely imag-
inary [17], which are equivalent to DCT type 1 and DST
type 1, respectively. This property can also be exploited to
reduce the arithmetic complexity of the RFFT, as the % -1
inputs are redundant. In this paper, we present algorithms
to generate canonic REFFT/ROFFT from RFFT.

3 Canonic REFFT for power-of-two length

In this section, we present the flow graphs for REFFT
which eliminate the redundancies in general RFFT. The
number of signals is also guaranteed to be canonic at each
stage, i.e., % + 1 signals.

3.1 4-point REFFT

A 4-point canonic RFFT flow graph is shown in Fig. 6. The
nodes marked by white circle and white square respec-
tively represent purely real and purely imaginary signals.
Solid and dashed lines respectively represent purely real
and purely imaginary datapaths. In the 4-point RFFT, due
to redundancy, the bottom butterfly at the second stage
is removed and the computations of real and imaginary
parts of X[1] are separated as shown in Fig. 6.

If the inputs are even symmetric, i.e., x[1] = x[3], the
outputs will be purely real. Therefore, X[14] in Fig. 6 will
be 0. As a result, we can eliminate the computation of
X[14] so that there will be only three signals at the output.
Furthermore, we can also remove input x[3] to achieve the
canonic property from the beginning. However, we need
to multiply x[1] by 2, since x[1] = x[3]. The operation can
be described by Fig. 7, where the butterfly operation of
two inputs with the same value is replaced by a multiplica-
tion of one input by 2. Finally, the flow graph of a canonic
4-point REFFT can be derived as shown in Fig. 8.

3.2 8-point REFFT

It can be observed that flow graph in the red box of Fig. 9
is the same as the 4-point RFFT. Therefore, we can elimi-
nate the redundancy of this 4-point RFFT by replacing it
with the flow graph as shown in Fig. 8. For the bottom half
of the first two stages, since x[1] = x[7] and x[3] = %[5],
we can remove the bottom butterfly of the first stage.
Consequently, the bottom two datapaths at the following
stages also need to be removed. It can be calculated that
the bottom four signal values after the first stage of Fig. 9
are x[1] +x[3], x[1] —x[3], x[1] +x[3], and x[3] —x[1],
respectively. The butterfly simplification shown in Fig. 7
can be applied to the second butterfly operation of the sec-
ond stage to eliminate redundancy, since the two inputs
of the butterfly have the same value. For the twiddle fac-
tor operation W' after the second stage, if we assume
x[1] —x[3] = a, then the result of the twiddle factor
operation will be

(a —a(—))) * W' = V2adie T = 2a. (3)

x(12)

X(13) c/

x(14)
x(15) (./

Fig. 5 A canonic 16-point RFFT

Lao and Parhi EURASIP Journal on Advances in Signal Processing (2017) 2017:45 Page 5 of 23
X[0]>< -\/ X[0] x[0] \/ X[0]
x[2] 1° X[1r] X[2] = X[1]

/\ 2 o /\
X[1] ~ X[2] x[1]0 o ~ X[2]
Fig. 8 Flow graph of a canonic 4-point REFFT
x[3] oo 0 - — = >X[1i]
Fig. 6 Flow graph of a canonic 4-point RFFT to the butterfly operation to eliminate redundancy. For

Therefore, the W' in Fig. 9 should be replaced by V2,
while the imaginary path is removed. The butterfly sim-
plification can be described in Fig. 10. As a result, the final
flow graph is shown in Fig. 11.

3.3 16-point REFFT

A canonic 16-point RFFT is shown in Fig. 12. In fact, this
flow graph is the same as that of Fig. 5 if we separate the
real and imaginary signals.

Similarly, the top half of the first three stages can be
reduced to the 8-point REFFT as shown in Fig. 11. Fur-
thermore, the last % inputs can be removed, as these four
signals are redundant, i.e., [1]= x[15], x[3] = x[13],
x[5] = «x[11], and x[7] = x[9]. In order to study the
required operations to eliminate redundancy, we calculate
the signal values of the bottom half in Fig. 12, as presented
in Table 1.

Since the 9th signal and the 13th signal before the 3rd
stage of Fig. 12 have the same value, we can remove the
butterfly by using the butterfly simplification as shown
in Fig. 7. For the 11th and 15th signals, as the real input
and imaginary input of the twiddle factor operation W?
have the same value, according to Eq. (3), we can also
replace the twiddle factor operation W? by /2, while the
imaginary path is removed.

Now, let us consider the remaining signals, i.e., the 10th,
12th, 14th, and 16th signals. We assume x[1] —x[7] = b
and x[3] —x[5] = c. For simplicity, we consider W! =
p — gj. Then, W3 = q — pj. After calculation, we can get
that Re[(b + ¢j) * W] = Re[(¢ + bj) * W3] = bp + cq and
Im[(b+cj)* W] = —Im[(c+bj) * W3] = cp — bq, respec-
tively. It can be seen that the 2 inputs of the 2nd butterfly
operation of the bottom half at the 3rd stage have the same
value (i.e., the 10th signal and the 14th signal). Therefore,
the butterfly simplification shown in Fig. 7 can be applied

2

X 2*x X o——— 2%

el
X 1 0

Fig. 7 Operation to the butterfly with two identical inputs

the butterfly operation whose inputs are the 12th signal
and the 16th signal, the operation described in Fig. 13 can
be used to reduce the butterfly operation with 2 opposite
value inputs to a single datapath. Note that the twiddle
factor operation W* = —j after the 3rd stage also needs
to be moved to the path of the 12th signal. Consequently,
the final flow graph is obtained, as shown in Fig. 14.

3.4 Generalization to N = 2"-point DIF REFFT

In the above sections, we have illustrated that a canonic
N-point REFFT can be derived from a canonic %-point
REFFT. From these examples, according to the regular-
ity of the canonic RFFT flow graph, the proposed method
can be summarized in Algorithm 1 from previous sections

Algorithm 1 Generation of a Canonic N = 2"-Point
REFFT

1. For an N-point RFFT, the top half is the same as an
%—point RFFT. Therefore, this part flow-graph can be

simply reduced to the canonic %—point REFFT.

2. Since we need to maintain % + 1 signal values and

% + 1 signals have already been eliminated in the canonic
%—point REFFT, we need to remove % more signals.

3. Since the last quarter of the inputs are redundant, we
can remove these % signals.

4. Since the last quarter of the inputs are removed, the
butterfly operations at the (n — 1)st stage of the bottom
half are all removed. If the two inputs of the butterfly have
the same value, the operation described in Fig. 7 needs to
be performed. If the two inputs of a butterfly operation
have the opposite values, the operation described

in Fig. 13 needs to be performed. The result is that all the
datapaths of the third quarter at the (n — 1)st stage except
the (% + 1)st signal become multiplications by 2.

5. The third quarter flow-graph before the (n — 1)st stage
is unmodified. N

6. When N > 8, the twiddle factor operation W,{ after
the (% + 1)st signal at the (# — 1)st stage needs to be
replaced by +/2.

7. For the last stage, there are butterfly operations before
output pairs X[k] and X [% — k], where 0 < k < % —1.

Lao and Parhi EURASIP Journal on Advances in Signal Processing (2017) 2017:45

Page 6 of 23

[0l I X[o]
X[4] = | X[1r]
| A
x[21:>< o1 X[2]
|
(6] oo - S R T /KA X
- == \ /
x[1]>< Y X[4]
x[5] 3 o— W' A x X[5r]
/\ I—» — ‘\ // \\
/ \
! \ // \\
X[7] oo ol [T S == XB5i)

Fig. 9 Flow graph of a canonic 8-point RFFT

(assume we already have the flow graph of a canonic
Y _point REFFT).

Note that the canonic RFFT flow graph can be extended
for any N = 2”-point REFFT recursively. Based on the p
atterns presented in the above examples and Algorithm 1,
given a canonic 32-point RFFT as shown in Fig. 15, a 32-
point REFFT is shown in Fig. 16. In this structure, the
number of signal values computed at each stage or the
output is 17; thus, this structure is canonic.

4 Pre-processing

4.1 Canonic property

In fact, the canonic RFFTs presented above are all
obtained from DIF FFTs by twiddle factor transforma-
tions as described in [11]. For the canonic RFFTs gener-
ated from DIT FFTs, we cannot derive a canonic REFFT
directly. For example, we consider the canonic 16-point
DIT RFFT as shown in Fig. 17. The first 3 stages of the
top half flow graph can also be reduced to the canonic
8-point REFFT as shown in Fig. 11. We calculate the bot-
tom half signal values in Fig. 17 as shown in Table 2. Note

that W? = ? — %j. However, in this case, the 10th

signal and the 14th signal are neither the same nor oppo-
site. Therefore, we cannot remove this butterfly whose
inputs are the 10th signal and the 14th signal by replacing
the butterfly operation with a multiplication of 1 input by
2. Furthermore, as the 2 input values are x[1] —x[7] and

\2

W1

e

Fig. 10 Butterfly simplification

%(x[B»] —x[5] —x[7] +x[1]), respectively, the butterfly
operation cannot be reduced to a multiplication with
another value. Similarly, the butterfly operation whose
inputs are the 12th signal and the 16th signal also can-
not be removed. Therefore, the canonic property cannot
be achieved, as the number of signals before the 3rd stage
will be greater than 1—26 +1=09.

4.2 Pull the twiddle factors

Similar to the twiddle factor transformation as described
in Fig. 4, we can perform twiddle factor transformation to
turn the 16-point RFFT flow graph in Fig. 17 into the flow
graph in Fig. 12. However, the operation will be pulling
the twiddle factors to previous stages instead of pushing
the twiddle factors to later stages, as shown in Fig. 18. For
example, as shown in Fig. 17, we can pull W! from after
the third stage to before the third stage, which leads to the
flow graph as shown in Fig. 12.

According to the work in [11], as the signal values before
and after the butterfly operation are both complex, the
twiddle factors are free to move. Furthermore, it can be
shown that since

N-1
X[k =Y xln] Wi
n=0
Y1 ¥-1
= Z x[2n] W,%[”k + Z x[2n +1] Wg"H)k
n=0 n=0
N1 ¥1
= > xl2m] W™+ W D xl2m+ 1] W
n=0 n=0
k=0,1,...,N—1, (4)

Lao and Parhi EURASIP Journal on Advances in Signal Processing (2017) 2017:45

Page 7 of 23

x[01[>< \/\I \ / X[0]
X[4] = I X[1]
AN/
x[2p 7 X(2]
x[1]>< 2 / \ X[4]
x[3] 3 o—| V2 x X[3]
Fig. 11 Flow graph of a canonic 8-point REFFT

the twiddle factors after the (n — 1)st stage at the bottom
half will be WII\‘[at the path where the output is X % + kJ.
The two output paths of the butterfly operation at the
(n — 1)st stage at the bottom half can be expressed as
X[% +k] and X[% + % +k], respectively. Thus, the twiddle
factors after the (n — 1)st stage always follow the pattern as

N
shown in the left butterfly in Fig. 18 (i.e., WI]\‘, and W}l\({+ h),

if the complex butterfly operation has not been removed

in the canonic N-point RFFT. Note that the two twiddle
factors will still have the same pattern even if the twiddle
factors have already been transformed: as shown in Fig. 19,
after transforming W, the two twiddle factors after the

/ /—‘,-M
butterfly can still be W and W/]]\([*, if we consider k’
k—m.
In conclusion, the goal of the twiddle factor transforma-
tion is to make sure the twiddle factor operations before

A 3

Fig. 12 Flow graph of a canonic 16-point RFFT

x[0] X[0]
x[8]| : \/ X[1r]
x[4] /\' X[2r]
x[12| oo X[1i]
x[2] X[4r]
><[1OI 5 X[5r]
x[6] X[2i]
X X[5i]
x[1] X[8]
(9] XW—’ X[or]
x[5] X[10r]
x[13]x_10—_j>& B - =~ X[9]]
x[3] o-—— = X[4i]
x[11]:><_1 X[13r]
(7] vl ———> X[10i]
x[15]xo—-'& - - X[13]]

Lao and Parhi EURASIP Journal on Advances in Signal Processing (2017) 2017:45 Page 8 of 23
Table 1 Signal values of the bottom half in Fig. 12

Position Input After 1st stage After 2nd stage Before 3rd stage

9th x(1] x[11+x[7] XU 4071 +x[5) +x([3] XU X071 +x05] +x[3]

10th x(7) x[1]=x(7) X1 =x(7] Rel (L 1] =x{7) = ([5] =x[3D))) = W]
11th x[5] x[5]+x(3] XU +x[71 =x[5] =x[3] X[+x[7] =x[5] —x[3]

12th x[3] X[5] =x[3] (5 =x[31) (=) m[(X 1] =x[7] = ([5] =x[31))) % W']
13th x[3] x[3]+x[5] X[X071 +x05] +x(3] XL X[7] +x[5] +x[3]

14th x[5] x[3] =x[5] x[3] =x[5] Rel (x[3] =x[5] —(x[71 —x[11))) % W3]
15th x[7] X[71+x[1] X[314x[5] =x[1] —=x[7] (3] +x05] =x[1] =x[7])(fj)

16th X1 X[7)=x[1] (=) 1ML (3] =x[5] = (L 7] =X 1)) % W3]

N N

stage n are only W; or W} (only the twiddle factor after

N

the (% + 1)st signal at the (1 — 1)st stage is W3, which

can be replaced by ﬁ), when we extend a canonic %—

point REFFT to a canonic N-point REFFT. If the twiddle
N

factor is W)j = —j, the twiddle factor essentially trans-
forms a purely imaginary signal to a purely real signal or
transforms a purely real signal to a purely imaginary sig-
nal. We know that imaginary signals will equal to 0, as the
inputs are even symmetric. Therefore, if the twiddle fac-

N
tor after the butterfly is removed or transformed to W,
then one of the two outputs of the butterfly operation will
be 0. In this case, we can eliminate the butterfly operation
according to either Fig. 7 or 13.

It can be concluded that twiddle factor transformation
is helpful in eliminating butterfly operations, which needs
to be applied to the RFFT flow graph before performing
the algorithm to generate canonic REFFT.

5 Canonic ROFFT for power-of-two length

In the previous sections, we have presented the approach
to generate canonic REFFT. In this section, we present
the algorithm to generate canonic ROFFT. As discussed in
Section 2, the outputs of the RFFT will be purely imagi-
nary if the inputs are odd symmetric, i.e., x[k] = —x[N — k],
where1 < k < % — 1. Note that in order to ensure purely
imaginary outputs, x[0] and x| %] should be equal to 0.
Therefore, these two signals can also be removed. As a
result, for an N-point ROFFT, a canonic flow graph should
only have — 1 signal values at each stage. For example,
for a canomc 4-point RFFT as shown in Fig. 6, the flow
graph for the RFFT when the inputs are odd symmetric
only has one signal, as shown in Fig. 20.

X 0

=)

-X T 2% X o—— 2%

Fig. 13 Operation to the butterfly with two inputs have opposite
values

When eliminating the redundancies, the difference is
that we need to keep imaginary paths, while removing real
paths. Therefore, when we extend from %—point to N-
point, we can choose to remove the third quarter of the
inputs instead of the last quarter. The algorithm for gen-
erating canonic N-point ROFFT from a canonic %—point
ROFFT is presented in Algorithm 2. Any N = 2"-point
ROFFT can be derived by using the Algorithm 2.

Algorithm 2 Generation of a Canonic N = 2"-Point
ROFFT

1. For an N-point RFFT, the top half is same as an
%—point RFFT. Therefore, this part flow-graph can be

simply reduced to the canonic %—point ROFFT.
N

2 Since we need to maintain 5 — 1 signal values and
4 — 1 signals have already been eliminated in the canonic
N N

5 -point ROFFT, we need to remove % more signals.

3 Since the third quarter of the inputs are redundant, we
can remove these % signals.

4. Since the third quarter of the inputs are removed, the
butterfly operations at the (1 — 1)st stage of the bottom
half are all removed. If the two inputs of the butterfly have
the same value, the operation described in Fig. 7 needs to
be performed. If the two inputs of a butterfly operation
have the opposite values, the operation described

in Fig. 13 needs to be performed. The result is that all the
datapaths of the last quarter at the (n — 1)st stage except
the (% + 1)st signal become multiplications of 2.

5. The last quarter flow-graph before the (n — 1)st stage is
unmodified. v

6. When N > 8, the twiddle factor operation Wg after
the (% + 1)st signal at the (7 — 1)st stage needs to be
replaced by V2.

7. For the last stage, there are butterfly operations before

output pairs X[k] and X [% — k], where 0 < k < % —

Given a canonic 16-point RFFT as shown in Fig. 12,
according to the Algorithm 2, the flow graph of a canonic
16-point ROFFT is shown in Fig. 21. Note that as dis-
cussed above, before performing Algorithm 2, we need to

Lao and Parhi EURASIP Journal on Advances in Signal Processing (2017) 2017:45

Page 9 of 23

—— —

X[0]

X[1]

I
A
[.

| W
- W
2 Xi8]

JAL .,

Fig. 14 Flow graph of a canonic 16-point REFFT

o—» ; X[6]

fffff o X(3]

pull the twiddle factors from after the (n — 1)st stage to
before the (n — 1)st stage if needed.

6 REFFT for any composite length

The algorithm for generating canonic RFFT computation
for any composite length has been presented in [23]. In
this section, we consider the design of canonic REFFT
computation for any composite length. For an N-point
REFFT, we need to ensure the number of real samples at
each stage is equal to L%J + 1. As shown in Fig. 22a, we
should remove % real signals and keep the other %
real signals and X[0] when N is odd. \X/}}Ven N is even as

-2

shown in Fig. 22b, we need to remove 5= real signals

and keep the other % real signals and X[0] and X[%].
Consider an N-point REFFT where N = P x Q. To derive
the N-point REFFT, we consider the N-point RFFT that
constitutes Q P-point RFFTs at the first stage and P Q-
point RFFTs at the second stage. We discuss the process
for four different cases, i.e., (1) P is odd, Q is odd; (2) P is
odd, Q is even; (3) P is even, Q is odd; and (4) P is even,
Qis even.

6.1 Subcomponents

If we consider a P x Q RFFT structure with even sym-
metric inputs, the inputs of each P-point RFFT at the first
stage can be summarized in Table 3.

It can be seen that only the inputs of the first P-point
RFFT are even symmetric, as xp[k] = xp[N —k]. Note that
xp[k] represents the input order in each P-point RFFT.
However, for other P-point RFFTs, the inputs are not even

symmetric. When Q is even, the inputs of the (g + 1>st

P-point RFFT are x [kQ + %] where 0 < k < P—1, which

follow the pattern of xp[k] = xp[P — 1 — Kk].

Moreover, it can also be seen that inputs of the (m)th
P-point RFFT and the inputs of (Q 4+ 2 — m)th P-point
RFFT are reverse-ordered versions of each other, where
2 < m < Q. The relation of the inputs of the two P-point
RFFTs can be expressed as

x2[k] =1 [(=(k + D)n]. (5)

Note that the actual interval of the inputs of the P-point
RFFT is Q. Therefore, according to the DFT time reversal
and time shift properties, we can obtain

X[kl = X1 [(=k)n] x Wk, (6)

which leads to the relation that X;[0]= X;[0] and
Xo[k]= X1 [N — k] xWKQ, where 1 < k < N — 1. The
twiddle factors after the first stage for the (m)th P-point
REFT are W=Dk where 1 < k < P — 1. As a result,
the values after the twiddle factor operations of the (m)th
P-point RFFT, S1[k], and the (Q+ 2 — m)th P-point RFFT,
Sa[k], can be expressed by

S1lk] = Xy [k] W=Dk, @)
Sal k] = Xo[k] WQmHDK — X1 [(—k)n]
% W—kQ W(Q—m+1)k
= X1[(—k)n] x WK (8)

respectively. We know that the outputs for RFFT are
conjugate symmetric:

X[k]= X*[N —k].)

Lao and Parhi EURASIP Journal on Advances in Signal Processing (2017) 2017:45

Page 10 of 23

x[0] >< X[0]
X[16] 3 /\ X[11]
X[8] : : 3 X[2r]
x[25] Aoy T L i e e --=> X[1i]
]
X[4] T X[4r]
- \\V// \
X[20] K —' AN X[5r]
I \ / \
12 R R e e
1 / \
X[ZB]X‘]O—.»EF 77777 »i}” ‘\»&777771\4} i;k,,,, X[5i]
.] :
x2] X[8r]
x[181><.1 % X(91]
I \
X[10] = ;' X[101]
]
x[ZG]X_ Fo—g o - N FVAVA NV H p--——> X[9i]
X[6] -—+ X[4i]
x[22]><_1 v X[131]
/\ ! \ // \ V‘A’
x[14]: : e B - -~ X[10]]
! \\ // \\ ,’
x[30] I o mh oo —==> X[13]]
XM X[16]
x[17] X[17r]
x[9] X[18r]
X[25] ——— X(171]

x[8]

x[21] X[211]
i
13] oty cw";' ;»:bf"* X181
x[29] Fo—g—e ol \‘»déﬁﬁﬁ\ﬁf A X[21i]
X(3] o-———~ XI8i]
xl191><.1 v“f X
X[11] /\1~ ;’ \\ X[26r]
|
x[27]x_10—ﬂ} fffff ol - = —\ThE- == > X[25]]

I "W
I il .1
I i1l

23 we d

e | w]
| \ \ “

x[18] =] LN, i

!
!
|
O———— 0 ————— o-!

X[31] =

Fig. 15 Flow graph of a canonic 32-point RFFT

- - - e - = > X[201]

n

be X[291]
[T At A
|k - - b |-t - -~ X(261)
\ ! \ | \ | \
R R A L

Then, for1 < k < N — 1, we have
Sol k] = X1 [(—k)n] x WDk
— Xl [N _ k] X W(—m+1)k

= X} [k] x wmtDk, (10)

Therefore, we can conclude that the values of the (m)th
P-point RFFT and the (Q + 2 — m)th P-point RFFT after
the twiddle factor operations are a conjugate-complex
pair:

Si[k] = S3[A]. (11)

Lao and Parhi EURASIP Journal on Advances in Signal Processing (2017) 2017:45

Page 11 of 23

X[0]

P
|~

X[0]

X[16]

x[8]

[X[1]
I

-
.

—
N

I

x[2]

=
x[12]

x[14]

x[10]: ‘
x[6]

'

X[9]

X[10]

X[13]

=
x[17] =

x[9] : : B
x(25] oo -

X[16]

N

X[15]

X[14]

o- -2 e R X(7)

X[5]
x[21]><
x[13] -
x{29lx_w *****

Fig. 16 Flow graph of a canonic 32-point REFFT

X[12]

2 X[11]
T B Xe]
ho- R X(3]

Moreover, as W=Dk and wm=-DWN-K are also a
conjugate-complex pair

Si[k]=S{[N —A]. (12)

As a result, one of these two P-point RFFT is redun-
dant which can be eliminated, while the outputs of the
eliminated P-point RFFT can be obtained by simply con-
jugating the outputs of the retained P-point RFFT.

Before considering the four cases, we need to con-
sider the designs of the following three FFT dataflows.
Note that we only briefly discuss the approaches to
remove redundancies of the FFTs with these three input
patterns in this paper. Future work will be directed

towards addressing the complete algorithms for generat-
ing canonic FFTs with these input patterns.

6.1.1 FFT with Hermitian symmetric inputs (HFFT)

If the inputs of an FFT are Hermitian symmetric, the out-
put will be purely real. We can use the designs of IFFT
of Hermitian symmetric signals (RIFFT) such as the work
presented in [9] to compute the HFFT. Note that the out-
puts of the RIFFT need to be reordered to obtain the
outputs of the corresponding HFFT. We do not discuss the
detailed designs in this paper.

6.1.2 RFFT with odd P and inputs xp[k] = xp[P — 1 — k]
As we have discussed above, when Q is even, the inputs of
the (% + 1)st P-point RFFT are x[kQ+ %], where0 < k <

Lao and Parhi EURASIP Journal on Advances in Signal Processing (2017) 2017:45

Page 12 of 23

=
x[8]

1 /\
x[4] =
x[12]x_ o———0-———-- o-

Fig. 17 Flow graph of a canonic 16-point DIT RFFT

P — 1, which follow the pattern of xp[k] = xp[P — 1 — k]
(e.g., [a,b,c,d,c,b,al, when P = 7). Furthermore, the
outputs of the P-point RFFT connect to twiddle factors

WA% k, respectively. We can circularly shift the inputs of an
odd size P-point RFFT whose inputs have the pattern of
xp[k] =xp[P—1—k] by L Q to an odd size REFFT. The
circular time shift property can be expressed by

Table 2 Signal values of the bottom half in Fig. 17

x[n] < X[k],
x[(n - Vlo)N] <« X[k] W:,Ok.

(13)
(14)

Therefore, if we shift the inputs of an odd size P-point
RFFT whose inputs have the pattern of xp[k] = xp[P -
1 — k] by 2 1Q, the outputs will be Xp[k] WNZ Qk,
as the 1nterval of the inputs is Q. If the outputs of

Position Input After 1st stage After 2nd stage Before 3rd stage

9th x[1] X[11 +x(7] XU X071 +x05] +x(3] XU 4071 +x05] +x(3]

10th x[7] x[11—=x[7] x[11=x[7] X[11 =x[7]

11th x[5] x[5]+x[3] XU 4x[7] —x[5] —x[3] XU 4x[7] =x[51 =x[3]

12th x[3] x[5] —=x[3] (X[5) =x[31) (=) XI5 =x[31)(=))

13th x[3] x[3]+x[5] XOUT X071 +x05] +x(3] XU X071 +x05] +x(3]

14th x(5] X[3] —x(5] x[3] —x[5] 22 (x[3] —x[5] —x[7]+ 11)
15th x[7] x[7]4x[1] X[31+x[5] =x[1] =x[7] (K31 +x05] =x[1 =x[71) (=)
16th x[1] X[71 —=x(1] GL71 =X (=) %—xw] HX[5] =x[7] +x[11)j

Lao and Parhi EURASIP Journal on Advances in Signal Processing (2017) 2017:45

Page 13 of 23

We WX

complex

Wa+k

complex

-

complex W Ry

Fig. 18 Twiddle factor transformation: pull

complex e
Wb+k WN/4

Q
the RFFT connect to twiddle factors Wy k, the values
after the twiddle factor operations can be expressed by

Pk, Sk P X
Xl Wy? Ywi = XKW = Xp[kl (-DF,
where Xp[k] here are the outputs of a P-point REFFT. In
this case, the values after the twiddle factor operations
will be all purely real. The complete operation is shown
in Fig. 23. Therefore, we only need to keep % signals for
this P-point RFFT; the deleted % values after the twiddle
factor operation can be obtained by simply alternately
negating Xp[k] (—1)X, where 1 < k < %

6.1.3 RFFT with even P and inputs xp[k] = xp[N — 1 — k]
When P and Q are both even, the inputs of the (% + 1)st
P-point RFFT also follow the pattern of xp[k] = xp[P —

1— k] (e.g, [a,b,c,d,d,c,b,a], when P = 8), while the

outputs also connect to twiddle factors Wz\% k, respectively.
In this case, we can consider a g x 2 structure as shown
in Fig. 24b. Then, we can pull the twiddle factors before
the butterfly operations, as shown in Fig. 24c.

It can be seen from Fig. 24c that the inputs of the two
g—point RFFTs are reverse-ordered. According to Eq. (6),
we can get the relation of the outputs of the two g-point
RFFTs as below (note the interval of the inputs is 2Q in
this case):

Xo[k] = X1[(—=k)n] x WR2Q, (15)

Therefore, the values of the bottom g—point RFFT
after twiddle factor operation as shown in Fig. 24c are

equal to X[k] WA2Q = X [(=k)n] x WK2Qw*3Q —
Xq[(=N Wk % Furthermore, according to Eq. (9), we
can obtain

X[K] WA3Q = X, [(—hon] WF = X[W3, (16)

which is conjugate of the values of the top g—point RFFT
after twiddle factor operation as shown in Fig. 24c, i.e.,

X1[k] wk 3. Therefore, the inputs of each butterfly oper-
ation as shown Fig. 24c are a conjugate-complex pair.
Consequently, we can remove the bottom half of the
P-point RFFT to eliminate redundancy as shown

in Fig. 24d. The twiddle factor operation W%k needs to
be replaced by 2Re(W§k), where1 < k < g 1.

6.2 Canonic REFFT generation

In order to generate an N-point canonic REFFT where
N = P x Q, we need to make sure there are only L?J +1
signals at each stage.

At the first stage, there are Q P-point RFFTs. The inputs
of the first P-point RFFT are even symmetric. Therefore,
we only need to keep LgJ + 1 outputs. Furthermore, the
values of the (m)th P-point RFFT and the (Q + 2 — m)th
P-point RFFT after the twiddle factor operations are a
conjugate-complex pair, where 2 < m < L%J. There-
fore, we only need to keep half of them. For each P-point
RFFT, we use the corresponding canonic RFFT structure,
i.e., the number of output signals is equal to P. As a result,
if Qis odd, thereare [2] + 1+ |41 x P = [B2) +1
signals after the first stage, which achieves the canonic
property. However, when Q is even, there is one more P-
point RFFT, i.e., the (% + l)st P-point RFFT. The inputs
of this RFFT follow the pattern of xp[k] = xp[P — 1 — k]
that we can utilize to further eliminate redundancies.
Depending on whether P is odd or even, this RFFT either
can be transformed to a P-point REFFT as described in
Section 6.1.2 or can be reduced to g signals as described in
Section 6.1.3, respectively. Thus, the total number of sig-
nals is ng +1+ L%J + % x P when Q is even, which
is equal to L%J + 1 as well.

At the second stage, there is one Q-point RFFT whose
inputs are the values Xp[0] from the P-point RFFTs at

W WK

complex

a+m k-m
complex

->

complex W YRz

complex W s

Fig. 19 The two twiddle factors after the (n — 1)th stage at the bottom half will still have the same pattern even if the twiddle factors have already

been transformed

Lao and Parhi EURASIP Journal on Advances in Signal Processing (2017) 2017:45

Page 14 of 23

2

X[1] o

Fig. 20 Flow graph of a canonic 4-point ROFFT

o-———> X[1i]

the first stage. Since the outputs Xp[0] from the (m)th
P-point RFFT and the inputs of (Q + 2 — m)th P-point
RFFT have the same value, the inputs of the first Q-
point RFFT at the second stage are also even symmetric.
Therefore, it can be reduced to an REFFT with L%J +1
signal. Besides, there are L%J Q-point FFTs. Each has
inputs Xp[m] after twiddle factor operations from all the
P-point RFFTs at the first stage, where 1 < m < L%J.
Since the values of the (m)th P-point RFFT and the (Q +
2 — m)th P-point RFFT after the twiddle factor operations
are a conjugate-complex pair, the inputs of each Q-point
FFT are Hermitian symmetric. According to Section 6.1.1,
the outputs of these FFTs are purely real. Therefore, we
can reduce these Q-point FFTs to HFFTs, which lead to Q
signals after each Q-point HFFT. When P is odd, the total
IR R R

number of signals is L 5

which is canonic.

However, when P is even, there is one more Q-point
RFFT at the second stage, i.e., (17) + l)st Q-point RFFT,
whose inputs are from Xp [g] of each P-point RFFT at
the first stage, which are purely real. When P is even
and Q is odd, we can circularly shift this Q-point RFFT
in frequency to eliminate redundancy according to the

modulation transformation WA_[kO"x[n] < X[(k — ko)nl,

as referred in [23]. Additionally, we have shown that values
of the (m)th P-point RFFT and the (Q 4 2 — m)th P-point
RFFT after the twiddle factor operations are a conjugate-
complex pair. Consequently, we can obtain that the S| g]
values of the (m)th P-point RFFT and the (Q + 2 — m)th
P-point RFFT after the twiddle factor operations are the
same. Therefore, the inputs of the (% + 1)st Q-point RFFT
at the second stage are also even symmetric. In conclu-
sion, there are two Q-point REFFTs and % Q-point
HFFTs at the second stage. Thus, the number of signals at
the output is equal to % x 24 % x Q= % + 1, which
is also canonic with respect to the number of signals.
When P and Q are both even, for the (g + l)st Q-point

FFT, we can consider it as a (2 X %)—point FFT, as shown

in Fig. 25 [23]. x[k] and x [k + %] go through a butterfly

operation first, for 0 < k < % — 1. We can perform the

operation as shown in Fig. 4 to these butterflies, i.e., push
Wk to behind the butterflies. As a result, the top input
and the bottom input of the butterfly operation become
purely real and purely imaginary, respectively. The bot-
tom output of each butterfly can be eliminated, as it is

x[4] o#,o—»q} ————— M — — — — — — — Or----- S — S ——— - X[i]
\
\ / \ ,’
\ / \ |
\ / \ |
o \ |
\\ // \ |
\
A v
/A “ /r
2 / \\ “ | l
el 2 ;‘ 7 Sl T SO R - X(2]
/ \ \‘ \‘ | I/
‘ / \ i
x[2] = O—_JH} 77777 &—»——»#777734} ——————— »q»\\—‘T—”—ﬁlq}———+ X[5i]
\‘\\ \\/, iy
oy /’/
)\ ’ //
R
VA /’/
vy
oy
ey
v
'\\V /V
“\’H\\
L
(W1
N
[T
| /l/\u
2 ! I/I ‘\ “
x[3] 3 5777—“—\—‘4}777» X[4i]
RN
I \
\/ 3 2 E’H/I ‘\\:*})
Xl 1 oW 3 == s - = X[71]
/\ / \ ! n
! ; / VY
X[7] o O Ekﬂ ——gh——— b -~ X[6i]
\
X L o
x[1] _10—_j>«} ————— o o ————— M m— {{»77777_5}777* X[3i]
Fig. 21 Flow graph of a canonic 16-point ROFFT

Lao and Parhi EURASIP Journal on Advances in Signal Processing (2017) 2017:45

Page 15 of 23

X0] ——]
X[1] ——

X[2] ——
N-point
FFT
Redundant
x[N-1]

a
Fig. 22 a Odd size REFFT. b Even size REFFT

X0] ———
1] —

X[2] ——
N-point
FFT
Redundant

XN-1]———

conjugate of the top output. Then, these outputs are pro-
cessed by one % FFT, as shown in Fig. 26. Note that
two real twiddle factor operations at the inputs are trans-
formed to one complex twiddle factor operation at the
output for each butterﬂy of this Q-point FFT. Therefore,
we only need to keep signals for this Q-point FFT in a
P x Q-point RFFT.

Since we have shown in Fig. 26 that the bottom %-
point FFT can be deleted, we only need to make sure
that the top %-point FFT only involves real datapaths.
We consider the flow graph before pushing the twiddle
factors, as shown in Fig. 25. The outputs X| g] from the
first P-point RFFT and the (% + 1)st P-point RFFT at
the first stage are purely real and 0, respectively. As a
result, the first butterfly in the (2 x %) structure can be
reduced to a single datapath, as the bottom input is 0.
For the remaining butterflies, the twiddle factors before
the two inputs of each butterfly operation can be
expressed by W3k and W%+§k, as the outputs X[g]
from the P-point RFFTs at the first stage are all purely real.
Furthermore, we have already proved that the values of
the (m)th P-point RFFT and the (Q + 2 — m)th P-point
RFFT after the twiddle factor operations are a conjugate-
complex pair. Therefore, the (m)th input %9 [m — 1] and

the (Q + 2 — m)th input xq[Q - m + 1] of the & 5-

point FFT are a conjugate- complex pair. Consequently,

the inputs of the %—point are Hermitian symmetric. Thus,
each of the remaining butterflies in the 2 x % structure
can also be reduced to one single datapath. If % is odd,

the 2 x %-point FFT can be reduced to the structure as

Table 3 Inputs of each P-point RFFT at the first stage

Inputs
x[kQl,0 <k=<P—1
x[kQ+11,0<k<P—1

1st P-point RFFT
2nd P-point RFFT

(m)th P-point RFFT x[kO+m—-1],0<k<P—

(Qth P-point RFFT xlkO+Q0—-11,0<k<P—

shown in Fig. 27, while if % is even, the canonic struc-

ture is shown in Fig. 28. In Fig. 28, the twiddle factor W¥
is replaced by /2 after the input x| Q] as twiddle oper-

N

atlon can be given by the sum of WN = 5-j and

WN f V2; *5°j- Finally, the canonic REFFT is obtained.
6.3 Examples
6.3.1 N=P x Q,Pisodd, Qisodd

For example, we consider the two 15-point canonic RFFTs
as shown in Fig. 29 and Fig. 30, respectively. The complex
signals are marked bold.

For the 3 x 5 structure as shown in Fig. 29, we
could remove one sample of the first 3-point RFFT
at the first stage, since the inputs are even symmet-
ric. Furthermore, we can remove the last two 3-point
RFFTs, as they are redundant. As a result, there are
2 + 2 x 3 = 8 signals at the first stage. At the
second stage, we can remove two samples of the first
5-point RFFT, as its inputs are also even symmetric.
The second 5-point FFT can be reduced to HFFT, since
the inputs are Hermitian symmetric. Thus, there are 3 +
5 = 8 signals after the second stage, which is canonic with
respect to the number of signals. The final flow graph is
shown in Fig. 31.

Similarly, for the 5 x 3 structure as shown in Fig. 30, we
can also design a canonic REFFT as shown in Fig. 32.

6.3.2 N=PxQPisodd, Qiseven

For example, we consider the 3 x 2 = 6-point canonic
RFFT as shown in Fig. 33. The corresponding canonic
REFFT is shown in Fig. 34. According to Section 6.1.2, the
inputs of the second 3-point RFFT at the first stage can
be shifted by 2. As a result, this RFFT can be reduced to
the 3-point REFFT, as x[1] = x[5]. Note that (=¥ needs
to be added after each output of this 3-point RFFT. It can
be seen that there are four signals at each stage in Fig. 34,
which is canonic with respect to the number of signals.

6.3.3 N=P xQPiseven, Qisodd

We can consider another 6-point canonic RFFT as shown
in Fig. 35. Note that the second 3-point RFFT at the
second stage has been circularly shifted in frequency

Lao and Parhi EURASIP Journal on Advances in Signal Processing (2017) 2017:45

Page 16 of 23

x[Q/2]
x[(3Q/2]

X[PQ/2]

xPa-ar2id |

_—— -

a

o LW xparz) & Wl ,owe,
Q2 | . | WwP-naz Q2
o——— | o« W [W™ o W
' compute :)

|)) WaQ2) shifted RFFT, |) I\NZ(P 1)(Q/2) W22

P-point * _ X[PQ-Q/2] P-point | * —
| - | reeT no=(P-1)Q/2 RFFT -
o— |- x[Q/2] | |

NP-1NQ2) x[(P-2)Q/2 kli ‘| WPDPDQ2)\p(P-1)Q12)

\e == N —— =

a b

XPQ/2] o—] I
) [-1
- P A
X[PQ-Q/2Jo———| P-point
Q2] o RFFT .
X[(P-2)Q/2——=] 1
(o

Fig. 23 a The original odd size P-point FFT whose inputs have the pattern of xp[k] = xp[P — 1 — k]. b Compute the shifted FFT, ny = Pz;]Q. cThe
final P-point RFFT whose inputs are even symmetric

J —————— ———— ————
o o o
XQ/2) or—’ H—oW. X(Q2] $— Q2] §— | we. xQ/2] o— | 2Re(W)) o .
| X we? X[5Q/2] T— P/2-point = x[5Q/2] ﬁ P/2-point J&'_ x[5Q/2] | P/2-point [©
RFFT . . RFFT . RFFT
L ewd) e eR1xa2) W)
X[(P-1)Q/2] F;}g‘g?' x[(2P—3)Q/2](l—'> D ‘TP”,;K"?;’ x[(2P-3)OJZ]<l—'» 1 Mty i o) - X[(2P-3)Q/2o—— [2Re(WHER) |
AP0] |- g X(3072) ¢—— |- - x{lgg//f]l 4 i)
. : . x[7Q/2] ‘]—‘ P/2-point [+ x| 1—' P/2-point [
wpa-a/ad | J_ANL“W’ . REFT : | i) REFT | s | ez
N I @P-narzd——| Al > d@P-tazd——| iiEalke D

Fig. 24 a The original even size P-point FFT whose inputs have the pattern of xp[k] = xp[P — 1 — k]. b The P-point RFFT is considered as a

g x 2-point RFFT. ¢ Pull the twiddle factors. d The final structure which only has g signals

0
x[0] oW ° ° e
XQ/2] Cw<Q'2><F”2><- |
(Q/2)-point >
] o W2 FFT
(1+QI2)(P/2) .
x[1+Q/2] [
(2]
—_—
x[2+Q/2]
B

(Q/2-1)(PI2)
x[Q/2-11 ¥ =

X[Q-1] éN‘°'1’<P’2><- _

(Q/2)-point >
FFT .

Fig. 25 A Q-point FFT is considered as a (2 X %)-poim FFT

X[0]
X[2]
X[4]

X[Q-2]

X[

X[3]
X[5]

X[Q-1]

Lao and Parhi EURASIP Journal on Advances in Signal Processing (2017) 2017:45

Page 17 of 23

x[0] o W, — X0
. — X2
Q2 C)_‘_D/
(Q/2)-point ™ X[4]
P/2
X1] FFT
x[1+o/2]o—-i—n/ —— X[Q-2]
X[2]
X[2+Q/2]
X[Q/2-1] 0) (@12 1)(P
x[Q-1] o—l—n/
Fig. 26 The (2 X %)—point RFFT after eliminating redundancy
x[0] o — X0
L X2
(Q/2)-point — X[4]
X1 WP HFFT
x[1+o/2]o—'i—n/ ——— X[Q-2]
X[(Q-2)/4]
X[(3Q-2)/4]
Fig. 27 Remove redundancy of the (2 X %)—pomt RFFT, when % is odd
x[0] © L X0]
/ L X2
_ WP/2 .
x[1] o g - 7 (@2)-point — X[4]
S HFFT
X[1+Q/2] o—
) . X[Q-2]
x[Q/4-1] .
x[3Q/4-1]o—-i—n/
x[Q/4] © V2

Fig. 28 Remove redundancy of the (2 X %))—pom RFFT, when % is even

Lao and Parhi EURASIP Journal on Advances in Signal Processing (2017) 2017:45 Page 18 of 23

X[0] —— — X[0]
3-point 0
Bl —| RFFT | — X[3]
0 —— s —
x[1] ——
3-point 1
X6 ——| RrrFT |
X[11] ——
— X[1]
xX[2] — — X[4]
0 | R e Spart —)
X[12] — f—— X[10]
p— X[13]
X3 —
3-point 3
X(8] RFFT |
X[13] —
X[4] —
3-point 4
Xl RFFT
x[14] —|
Fig. 29 A 15-point canonic RFFT, where P = 3,0 =5
X0 —— — XI[0]
0 3-point
S W RFFT X[8]
X[6] 5-p0int 0
RFFT
XQ —
— X[]
x[12] —— 3-point
FET [X6
X1 — . — X[11]
1
S = — x12]
-0 w2 .
X[7]] 5 pOInt P — 3-point
" RFFT Fp,:T > X7
X{10] — X[12]
X[13] ——
X2 ——— I
2
X[l —— ‘
x[8] — 5-point | :
RFFT
X[11] ——
x[14] —

Fig. 30 A 15-point canonic RFFT, where P = 5,0 = 3

Lao and Parhi EURASIP Journal on Advances in Signal Processing (2017) 2017:45

Page 19 of 23

x[0] — — XI0]
3-point Wo
X51 —| REFFT — X
5-point
REFFT X(6]
x[1] ——
3-point 1
X6l —— RFFT |
X[4] —
— X[1]
X2 —— — X[4]
3-point W2 5-point
o7 ° — point |, xy7
7 RFFT HFFT 7l
x[3] — — X[3]
— X[2]
Fig. 31 A 15-point canonic REFFT, where P = 3,0 =5

to eliminate redundancy. The canonic REFFT is shown
in Fig. 36. There are also only four signals at each stage.

6.3.4 N=P x Q,Piseven, Qiseven

All radix-2" RFFT structures fall into this category. For
example, a radix-4 16-point canonic RFFT is shown
in Fig. 37. At the first stage, there is one 4-point REFFT
and one 4-point RFFT. For the third 4-point RFFT, the
structure can be considered as a 2 x 2 structure. According
to Section 6.1.3, we only need to keep two signals. There-
fore, there are nine signals at the first stage in total. At the
second stage, the inputs of the first 4-point RFFT are even

symmetric, while the inputs of the second 4-point RFFT
are Hermitian symmetric. For the third 4-point FFT, we
could also reduce it to the structure only with two signals,
based on Fig. 28. The total number of signals at the second
stage is also 9. The canonic 16-point REFFT is shown
in Fig. 38.

6.4 Summary

Based on the discussion above, we summarize the types
of FFTs for the four different cases in Table 4. There
are mainly three types of generated subcomponents, i.e.,
REFFT, RFFT, and HFFT, which is less than the number

X0 —— — X[0]
0 o
3 e N
X[6] 5-p0int 0
REFFT
— X[1]
3-point
weer [X6l
x[1] — —— X[5]
1
Sl » —— X2
. 2
x[7] ———{ S-point We— . 3-point
. RFFT HFFT X[7]
S — x4
X2 ——
Fig. 32 A 15-point canonic REFFT, where P =5,Q =3

Lao and Parhi EURASIP Journal on Advances in Signal Processing (2017) 2017:45

Page 20 of 23

x[0] ———

x[2] —

X[4] —

3-point
RFFT

X[0]

x[1] —

x[3] ——

x[5] —

3-point
RFFT

| X[3]
N > X[1]
o > X[4]

‘ 1

Fig. 33 Flow graph of a canonic 6-point RFFT, where P = 3,0 = 2

X[0] —

X[2] —

3-point
REFFT

X[3] ——

X[1] —

3-point
REFFT

X[0]

X[3]

X[1]

X[2]
LN

Fig. 34 Flow graph of a canonic 6-point REFFT, where P = 3,Q = 2

* ><
X[3]

o
x[4]

5

)

X[0]

X[Z] ><
x[5]

Fig. 35 Flow graph of a canonic 6-point RFFT, where P = 2,0 = 3

3-point

RFFT > X(2]
X[3]

3-point

REFT > X0

Lao and Parhi EURASIP Journal on Advances in Signal Processing (2017) 2017:45

Page 21 of 23

Fig. 38 A 16-point canonic REFFT, where P = 4,0 = 4

x[0] :>< X[0]
3-point
X3] REFFT [X2
! ><
x[2] — X[3]
3-point
REFFT X[
Fig. 36 Flow graph of a canonic 6-point REFFT, where P = 2,0 =3
X[0] —— X[0]
X[4] ———{ 4-point X[4]
x[8] — RFFT X[8]
X[12] —
x[1] —— X[1]
x[6] —{ 4-point X[5]
x[9] —— RFFT X[9]
X[13] —— X[13]
x[2] —— X[2]
X[6] —1 4-point X[6]
x[10] ——— RFFT
X[14] —
X[3] ——
X[7] ——| 4-point
Xx[11] ——{ RFFT
X[15] —
Fig. 37 A 16-point canonic RFFT, where P = 4,0 = 4
x[0] —— X[0]
x[4] —— 4-point X[4]
x[8] — REFFT X[8]
X[1] — X[1]
X[5] ———| 4-point X[3]
x[7] — RFFT X[7]
X3 — X[3]
x[2] X[2]
X[6] S 2 X[6]

Lao and Parhi EURASIP Journal on Advances in Signal Processing (2017) 2017:45

Table 4 FFT types for canonic REFFT

Page 22 of 23

Pis odd, Qis odd Pisodd, Qis even

Piseven, Qis odd Piseven, Qis even

P-point Q-point P-point Q-point P-point Q-point P-point Q-point
HREFFT 1 1 2 1 1 2 1 1
#RFFT e 0 o 0 vt 0 e 0
#HFFT 0 = 0 Bt 0 b2 0 .
#(5x2) 0 0 0 0 0 0 1 0
#(2x9) 0 0 0 0 0 0 0 w

of types of subcomponents in the dataflow derived alge-
braically in [14]. Any composite length canonic REFFTs
can be obtained by applying the proposed methods for
P x Q decomposition iteratively.

The canonic ROFFT for any composite size can be
obtained similarly by following these steps described in
this section. We do not discuss these designs in detail in
this paper due to lack of space. The only difference is that
we need to make sure there are only (%1 — 1 signals for an
N-point ROFFT instead of L%J + 1.

7 Performance
In this section, we discuss the performances of the canonic
REFFT/ROFFT.

There are less signals in the canonic REFFT/ROFFT,
compared to FFT, RFFT, or canonic RFFT, as we remove
the redundant inputs from the beginning. Furthermore,
the number of butterfly operations in the REFFT/ROFFT
flow graph is also reduced, as we remove the butterfly
operation if the two inputs of the butterfly operation have
the same value or opposite values, as described in Fig. 7
or Fig. 13, respectively. Consequently, the number of twid-
dle factor operation is also reduced for a power-of-two
size RFFT, as one quarter of the datapaths are eliminated
when we extend a canonic N-point REFFT/ROFFT from
a canonic %—point REFFT/ROFFT. Moreover, from the
third stage to the last stage, there is one twiddle factor

N
W,& before the stage is replaced by a multiplication by +/2.
Thus, for an N = 2”-point RFFT, when n > 2, there will

Table 5 Performance comparison for N = 2"-point FFT algorithms

be n — 2 multiplications of +/2 in the flow graph. Note
that we do not consider the multiplications of 2 in the
flow graph which are generated by the operations of Fig. 7
and 13 as multipliers, since these only involve 1-bit left
shift.

Table 5 compares the performance of the proposed
canonic REFFT/ROFFT with FFT, RFFT, and canonic
RFFT. Note that we consider a complex butterfly opera-
tion as two real butterfly operations.

It can be seen that the proposed canonic
REFFTs/ROFFTs have less signals, less butterfly opera-
tions, and less twiddle factor operations. Due to the fact
that the canonic ROFFT has less signal values at each
stage compared to canonic REFFT, the canonic ROFFT
also requires less butterfly operations.

8 Conclusions

This paper has proposed novel algorithms to design
canonic FFT flow graphs when the inputs are real and
even/odd symmetric. A canonic N-point REFFT/ROFFT
can be extended from a canonic %—point REFFT/ROFFT.
Twiddle factor transformatior}vs are neeNded if there are

twiddle factors other than W,; and W,§ before the last
stage. The design of canonic REFFT for any compos-
ite length has also been presented. Future work will be
directed towards designing efficient architectures for any
composite length RFFTs with real-valued even/odd sym-
metric inputs based on the canonic dataflow developed in
this paper.

FFT algorithm #Signal values at each stage #Real butterfly operation #Twiddle factor operations
Complex FFT 2N Nlog,N nx2"1 =242

[6] DIF RFFT >N (¥ =1)logoN+1 (h—2)x 22 4n—1
[11] Canonic DIT RFFT N Yog,N — & +1 (n=3)x 22 +1

[11] Canonic DIF RFFT N Ylog,N — 5 +1 (n=4)x 2" +n
Canonic REFFT N (4 +1)10gN - ¥ L L

Canonic ROFFT %’ -1 %\092/\1 - % 272 —n412

aWhen n > 2, there will also be n — 2 multiplications of 4/2 in the flow graph

Lao and Parhi EURASIP Journal on Advances in Signal Processing (2017) 2017:45

Acknowledgements
KP thanks Dr. Maureen P. Quirk for suggesting him to work on this problem at
the 2015 IEEE ICASSP conference.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 22 November 2016 Accepted: 12 May 2017
Published online: 14 June 2017

References

1. HV Sorensen, DL Jones, M Heideman, CS Burrus, Real-valued fast Fourier
transform algorithms. IEEE Trans. Acoustics Speech Signal Process. 35(6),
849-863 (1987)

2. H-F Chi, Z-H Lai, in [EEE International Symposium on Circuits and Systems
(ISCAS). A cost-effective memory-based real-valued FFT and Hermitian
symmetric IFFT processor for DMT-based wire-line transmission systems
(IEEE, Kobe, 2005), pp. 6006-6009

3. MAyinala, Y Lao, KK Parhi, An in-place FFT architecture for real-valued
signals. IEEE Trans. Circ. Syst. II: Express Briefs. 60(10), 652-656 (2013)

4. Y Voronenko, M Puschel, Algebraic signal processing theory:
Cooley-Tukey type algorithms for real DFTs. IEEE Trans. Signal Process.
57(1), 205-222 (2009)

5. M Garrido, KK Parhi, J Grajal, A pipelined FFT architecture for real-valued
signals. IEEE Trans. Circ. Syst. I: Regular Papers. 56(12), 2634-2643 (2009)

6. M Ayinala, M Brown, KK Parhi, Pipelined parallel FFT architectures via
folding transformation. IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
20(6), 1068-1081 (2012)

7. CCheng, KK Parhi, High-throughput VLSI architecture for FFT
computation. IEEE Trans. Circ. Syst. II: Express Briefs. 54(10), 863-867 (2007)

8. M Garrido, J Grajal, M Sénchez, O Gustafsson, Pipelined radix-2%
feedforward FFT architectures. IEEE Trans. Very Large Scale Integr. (VLSI)
Syst. 21(1),23-32 (2013)

9. SA Salehi, R Amirfattahi, KK Parhi, Pipelined architectures for real-valued
FFT and Hermitian-symmetric IFFT with real datapaths. IEEE Trans. Circ.
Syst. I: Express Briefs. 60(8), 507-511 (2013)

10. M Ayinala, KK Parhi, FFT architectures for real-valued signals based on
radix-23 and radix-2% algorithms. IEEE Trans. Circ. Syst. I: Regular Papers.
60(9), 2422-2430 (2013)

11. M Parhi, Y Lao, KK Parhi, in 48th Asilomar Conference on Signals, Systems
and Computers. Canonic real-valued FFT structures (IEEE, Pacific Grove,
2014), pp. 1261-1265

12. P Duhamel, Implementation of “split-radix” FFT algorithms for complex,
real, and real-symmetric data. IEEE Trans. Acoustics Speech Signal Process.
34(2), 285-295 (1986)

13. SA Martucci, Symmetric convolution and the discrete sine and cosine
transforms. IEEE Trans. Signal Process. 42(5), 1038-1051 (1994)

14. M Puschel, JM Moura, Algebraic signal processing theory: Cooley-Tukey
type algorithms for DCTs and DSTs. IEEE Trans. Signal Process. 56(4),
1502-1521 (2008)

15. J Astola, D Akopian, Architecture-oriented regular algorithms for discrete
sine and cosine transforms. IEEE Trans. Signal Process. 47(4), 1109-1124
(1999)

16. X Shao, SG Johnson, Type-II/Ill DCT/DST algorithms with reduced number
of arithmetic operations. Signal Process. 88(6), 1553-1564 (2008)

17. AV Oppenheim, RW Schafer, Discrete-time signal processing. (Pearson
Higher Education, Upper Saddle River, 2009)

18. JW Cooley, JW Tukey, An algorithm for the machine calculation of
complex Fourier series. Math. Comput. 19(90), 297-301 (1965)

19. RCSingleton, An algorithm for computing the mixed radix fast Fourier
transform. IEEE Trans. Audio Electroacoustics. 17(2), 93-103 (1969)

20. GD Bergland, A fast Fourier transform algorithm using base 8 iterations.
Math. Comput. 22(102), 275-279 (1968)

21. P Duhamel, H Hollmann, Split radix FFT algorithm. Electron. Lett. 20(1),
14-16 (1984)

Page 23 of 23

22. SHe, M Torkelson, in Proceedings of the Custom Integrated Circuits
Conference. Design and implementation of a 1024-point pipeline FFT
processor (IEEE, Santa Clara, 1998), pp. 131-134

23. Y Lao, KK Parhi, in Proceedings of IEEE Workshop on Signal Processing
Systems. Data-canonic real FFT flow-graphs for composite length (IEEE,
Dallas, 2016), pp. 189-194

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

	Abstract
	Keywords

	Introduction
	Background
	FFT
	Real-valued FFT
	Canonic RFFT
	REFFT/ROFFT

	Canonic REFFT for power-of-two length
	4-point REFFT
	8-point REFFT
	16-point REFFT
	Generalization to N=2n-point DIF REFFT

	Pre-processing
	Canonic property
	Pull the twiddle factors

	Canonic ROFFT for power-of-two length
	REFFT for any composite length
	Subcomponents
	FFT with Hermitian symmetric inputs (HFFT)
	RFFT with odd P and inputs xP[k]=xP[P-1-k]
	RFFT with even P and inputs xP[k]=xP[N-1-k]

	Canonic REFFT generation
	Examples
	N=PQ, P is odd, Q is odd
	N=PQ, P is odd, Q is even
	N=PQ, P is even, Q is odd
	N=PQ, P is even, Q is even

	Summary

	Performance
	Conclusions
	Acknowledgements
	Competing interests
	Publisher's Note
	References

