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Abstract

This paper focuses on the spotlight synthetic aperture radar (SAR) imaging for point scattering targets based on
tensor modeling. In a real-world scenario, scatterers usually distribute in the block sparse pattern. Such a distribution
feature has been scarcely utilized by the previous studies of SAR imaging. Our work takes advantage of this structure
property of the target scene, constructing a multi-linear sparse reconstruction algorithm for SAR imaging. The
multi-linear block sparsity is introduced into higher-order singular value decomposition (SVD) with a dictionary
constructing procedure by this research. The simulation experiments for ideal point targets show the robustness of
the proposed algorithm to the noise and sidelobe disturbance which always influence the imaging quality of the
conventional methods. The computational resources requirement is further investigated in this paper. As a
consequence of the algorithm complexity analysis, the present method possesses the superiority on resource
consumption compared with the classic matching pursuit method. The imaging implementations for practical
measured data also demonstrate the effectiveness of the algorithm developed in this paper.
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1 Introduction

Synthetic aperture radar (SAR) is an important detec-
tion system in many fields for decades, such as remote
sensing, environmental monitoring, and ground mapping
[1-4]. Imaging algorithm is the key point of SAR appli-
cation, which extracts the scatter coefficients of targets
and reconstructs the image of target scene from the radar
echoes [5, 6]. On the azimuth direction, a larger aperture
can be synthesized by the coherent processing and rel-
ative motions between the antenna and targets. For the
range direction, the pulse compression is usually applied
to obtain a good range resolution. However, the existing
methods encounter several challenges in practical applica-
tions. For instance, the overwhelming amount of resource
requests for storing and operating in receiver since the
high sampling rate; in addition, the conventional imag-
ing method, such as polar format algorithm (PFA), suffers
from the sensibility to sidelobe disturbance, which leads
to it being unsuitable for high-resolution imaging. For
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solving the problem of high demand on hardware, the
compressed sensing (CS) framework has been introduced
into SAR imaging [7-11], which can extract necessary
information at a lower sampling rate than Nyquist limit
[12-14]. Furthermore, the CS-based approach is able to
accomplish SAR imaging with the low sidelobe and pos-
sess the robustness to noise [15-20]. But the existing
methods only utilize the spatial sparsity of the observa-
tion without taking advantage of structural features of
target scene. In 2016, a sparse reconstruction SAR imag-
ing method was proposed by Zhao et al., which employed
structured sparsity constraint based on Bayesian learning
framework [21]. But this method requires rigid condi-
tions to ensure model matching; consequently, the imag-
ing quality may be worse if observations cannot perfectly
match the model selected.

For practical applications of SAR imaging, the scatterers
generally tend to be clustered together as blocks. In this
paper, a tensor-decomposition-based algorithm is devel-
oped to exploit such block sparsity of targets. Tensor
decomposition is a kind of higher-order data processing
framework which can make use of the multidimensional
and highly structured features in signal [22—24]. Recently,
combining tensor modeling with sparse reconstruction
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is becoming the focus of attention in signal processing.
In 2010, Lim and Comon proposed a sparse reconstruc-
tion method based on low-rank tensor decomposition and
analyzed the condition of uniqueness for decomposition
[25]. In 2011, Duarte and Eldar introduced the Kronecker
structure into dictionary constructing, proposing the
Kronecker-CS framework [26]. In 2012, Sidiropoulos
and Kyrillidis investigated CS theorem with regard to
low-rank tensor signal processing, proposing a two-step
sparse reconstruction algorithm [27]. In 2013, Caiafa and
Cichocki proposed two types of matching pursuit algo-
rithms based on tensor decomposition [28]. However,
there has been little work in SAR imaging based on sparse
reconstruction combined with tensor decomposition.
The higher-order CS approach in hyperspectral imag-
ing enlightens our study in signal modeling [26, 29, 30].
In this paper, an imaging algorithm is developed based
on higher-order singular value decomposition (HOSVD)
[31, 32] with the Kronecker constraint of reflected waves,
which can take advantage of the block sparse feature of
target scene to gain more robust high-resolution imag-
ing performance. The theoretical analysis and simulation
experiments verify that the developed algorithm is supe-
rior to the reference methods especially in severe condi-
tions, which demonstrates the practical significances.

The following is the organization of the rest in this
paper: Section 2 illustrates the signal model for spotlight
SAR; Section 3 introduces the tensor modeling based on
HOSVD; Section 4 proposes the algorithm by introducing
the multi-linear block sparse reconstruction and the pre-
processing scheme for dictionary construction; Section 5
demonstrates several numerical simulations to verify the
effectiveness of the proposed algorithm; Section 6 con-
cludes this paper.

2 Problem formulation
First of all, several notions of this paper are stated as
follows.

e The scalar is indicated by italic letter, e.g., x.

e The vector and matrix are indicated by bold italic
letters, e.g., x, X.

e The tensor is indicated by calligraphic capital letter,
eg., X.

e The index of a set is indicated by script letter, e.g., Z .
l%]lo is the lo-norm which indicates the number of
nonzero elements in x.

® || X||f is the Frobenius norm of the tensor X,
denoting the square root of the sum of the absolute
squares of its elements.

e The operator ® denotes the Kronecker product
between matrices.

e The operator x, denotes the mode-n product
between tensor and matrix, where mode is
considered as the order of tensor data [33].
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e For a third-order tensor X € CM*N*P define X(;) as
a rectangular matrix combined all P slices of X under
mode-1,ie, Xy = [X1,Xo, .,.,XP]T e CPN)xM,
similarly, X (o) and X3y denote the unfolded matrix of
X along mode-2 and mode-3, respectively.

This paper considers spotlight SAR for capturing the
structural information of the SAR targets, which is a
beamforming-based observation system [34—36]. The
radio beam will be pointed to the observation scene con-
tinuously while the aircraft carrying SAR flying cross over
the target scene. The geometry of such model is shown in
Fig. 1. 6 and ¢ indicate the azimuth and pitch angles of
radio wave, respectively. R (xo, y0,z0) represents the dis-
tance between the antenna and target at (xo,%0,20); R¢
represents the distance between the antenna and the cen-
ter of the scene. Defining the speed of light as ¢, then
the corresponding propagation time can be written as
T, = 2Rc/c.

The received signal can be represented as

Y(50,¢) =) g®y2)st—T®y2) +e@®), (1)

X),Z

where g (x,9,2) is the scattering function of the scatterer
located at (x,%,z); s(¢) is the autocorrelation function
of transmitted signal; e(¢) is the additive noise. For the
simplicity, the noise item is not shown in the following
content. After transformation to frequency domain, the
phase history of the received signal can be represented as

Y (f’ 9? ¢) = C(f) Zg (x’y¢ Z) eXP (Hx,y,z (f1 9, ¢)) ’

x,9,2

(2)

where Hyy (f,0,¢) = —j%” (xf cos6 cos¢p + yf cos6
sin¢g + zf sin6) is the phase factor. The constant term
C(f) = S(f) exp (—j27f ) can be ignored in the following
discussion, where S(f) is the Fourier transform of s(z).
Because the parameters in the phase factor of the sig-
nal model (2) are coupled, it is needed to implement
an interpolation approach for decoupling [34]. Thus, the
coordinate conversion is done from polarization to Carte-
sian system [37]. Assume there are My, M, M3 grid points
in the directions of the axis of x, y, z, respectively, and
the numbers of grid points for f, 0, ¢ are Py, Py, P3, respec-
tively. Then, the steering vector of the scatterer located at

(xj,yk, zl) is

dii = [dixs (1, 1,1), ..., djss (P, Py, 1), .,

T 3)

dj,k,l (11 I;PS) P rdj,k,l (PltPZ;P?))] »
where djg; (pr.p2.p3) = exp(—jZ (xjup, + ykvp, +
zZWp,)). The steering matrix D € CP*M i defined

as [dl,l,li R dMl,Mz,l: ey dl,l,Ms’ R dMl,Mz,Mg]’ where
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Fig. 1 The geometry of spotlight SAR for point scatterers

M = My x My x M3, P = P; x Py x P3. Hence, the received
signal model (2) can be written as

y = Ds, (4)

where s=[g(x1,y1,20, - . - » &MY Ma> 215 - - - (X1, Y1, ZM3)
oo 80, Yoty Zm5)] L. Without loss of generality, con-
sidering the (p1paps, mimams)-th element of matrix D
is exp (=% (m Up, + YmyVpy + ZmsWps)), thus D =
D3 ® D, ® D1, by which the Kronecker structure can be
shown explicitly. As a consequence, the received signal
can be rewritten as

y=(D3Q®Dy®D)s. (5)

3 Tensor decomposition for SAR imaging

In signal processing field, a tensor indicates the multi-
linear data with more than two modes. This paper adopts
the HOSVD [24, 31], which can be represented as

Y =8 x1Dy x9Dy x3...xn Dy, (6)

where ) denotes the received signal tensor. For a HOSVD,
the operation criterion is

min ||y—S X1D1 X2D2 X3...XNDN||%«. (7)
SADal,

The one-dimensional expansion of a tensor is stacking
all elements along the mode-1, i.e,, y = vec (Y(1)). Thus,
(6) can be rewritten as

Yy=DnN®Dn-_1®...QD1)s. (8)

The equation above indicates that the HOSVD of a ten-
sor signal is equivalent to a linear representation with
Kronecker dictionary. It is defined that a K-sparse repre-
sentation of signal y is existed on a dictionary D, if the
following condition is true:

y=Ds, st |sllo <K, )
where K is named as sparsity. Because the rows of dictio-
nary is less than the columns, this is an underdetermined
system; hence, no unique solution of s exists. However, if

the signal possesses sparsity, a solution may be obtained
under the following condition [38],

1<<1(1+1)
2 nw(D))’

where u (D) =

(10)

mixf(di,dj) , representing the coher-
i

ence coefficient of dictionary D; here, (di, dj) denotes the
inner product of d; and d;. When the dictionary pos-
sesses Kronecker structure, i.e, D = Dy ® Dy_1 ®
... ® D, the coherence coefficient should be u (D) =
max {{1, u2,...,un}, with u, = u (D,), n=1,2,...,N.
It is demonstrated that the total coherence depends
merely on the factor matrix with the largest coherence
coefficient for a Kronecker dictionary [39, 40].

Definition 1 (Multi-linear block sparsity) A tensor
Y is defined as (K1,Ky,...,Kn)-block sparse, if only
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K,(n=1,...,N) columns in the factor matrices of its
HOSVD need to be computed, i.e.,

J/:leDl X2D2 Xg...XNDN,

s.t. Sit,in, i = ov (ib i2) ey lN) ¢ {jli jZ) ey jN} ’
where %), = [i}q, 2,..., if”] represents a subset of index

for mode-n (n =1,2,...,N).

The above definition demonstrates that the nonzero
elements of core tensor are included in a subtensor
S (A, S, ..., 9N). Here, F, = {i},, if,, ey if” is a sub-
set of the index set for mode-n (n=1,2,...,N). For
instance, given a tensor X € C>*°*°, 7] = 4, = J3 =
(2,4}, then Y = X (S, %, .#3) is a third order tensor
with a size of 2 x 2 x 2. And the first and second ele-
ments along each mode of ) are the second and fourth
elements along each mode of X, respectively, i.e., ) picks
the corresponding elements in X’ indexed by {.,}3_,. As
a consequence, y is K-sparse with regard to Kronecker
dictionary D = (Dy ® Dn-1® ... ® D1), where K =
KiK. ..Ky.It should be noted that the definition of block
sparse here is different from the conventional definition
of block sparse representation for one-dimensional signal.
For the latter, the data is distributed in adjacent data seg-
ments [41-43], which is not necessary at the situation of
block sparsity based on tensor frame. In 2009, Eldar and
Mishali introduced the concept of block sparsity in one-
dimensional signal [44]. For an underdetermined system
y = Dx, assuming that the coefficient vector x consists
of a series data segments with given length {d,, }],\n/I:1 and
denoting m-th segment as x[m], the segment is called
block. Define the block sparse [p-norm of x as ||x|lop =
Ziﬁ:lfb(nx[m] ll2 > 0), where ||x[ 7] ||2 is the [ norm of
the m-th data block; f; (]|®[ 7] ||2 > 0) is an indicator func-
tion which returns the value 1 if ||x[ m] |2 > 0, otherwise
returns 0. If ||x]lop < &, x is called block k-sparse. Dif-
ferent from this definition of conventional block sparsity,
the multi-linear block sparsity considers mainly the addi-
tion to the multi-linear structural restraint as interpreted
in Definition 1.

It has been demonstrated that the recovery method
based on Kronecker dictionary has much less strict
requirements for coherence than the classic matching pur-
suit method with the same sparsity in regard to signal
reconstruction, and it is deduced that the former has
the higher successfully recovery bound [28, 45]. In addi-
tion, by utilizing the structural information in each mode,
the method based on tensor decomposition can perform
robustly under the condition of high coherence [46].

4 The proposed algorithm
In higher-order signal processing, taking advantage of
sparsity is becoming a research trend due to the curse
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of dimensionality problem [24, 47, 48]. Recently, apply-
ing CS scheme is rising in high-resolution radar imag-
ing field, which can reconstruct the source signal from
the undersampled measurements. The CS-based imaging
method must solve an ill-posed linear inverse problem
by using the sparsity of targets [12, 49-51]. However, for
the large-scale data case, the classic /p algorithm has to
encounter many computing problems. For instance, con-
sidering a scene of 1024 x 1024 observation points, the
classic sparse reconstruction method must process the
data up to 1,048,576 length, which is a large-scale linear
system demanding numerous computational resources. A
more efficient approach is investigated in this paper to
ameliorate the above problems. As mentioned previously,
the SAR imaging model maintains Kronecker structure
and the scatterers in target scene are usually clustered
together as blocks. As a result, we can take advantage of
the block sparsity feature, building a sparse reconstruction
SAR imaging algorithm based on Kronecker dictionary.

After decoupling procedure, the reflected signal can be
formulated in the tensor form as explained in (8). Then,
the nonzero scatter coefficients need to be recovered
from the received signal ), i.e., finding a (K1, Ky, ..., Kn)-
block sparse representation corresponding to dictionar-
ies D, (n=1,2,...,N). According to the compressed
sampling theory, only a few rows need to be randomly
extracted from the dictionary.

To begin with, we adopt a preprocessing approach for
constructing the dictionaries from observation data. Let
E =Y -8 x1D; x2Dy x3...xy Dy, then we have

IENZ = IVIZ+ ISI12
—2<y X1 DlT XzDg X3 ... XND}\},S>; (11)

thus, (7) can be rewritten as

max (12)

2
nylD{ XzDg X3...XND17\}H .
{Dalh_y F

By utilizing alternating least squares (ALS) algorithm,
(12) can be solved in an iterative scheme. Such algorithm
fixes (N — 1) factor matrices in each iteration and updates
the remaining component via least square approach, then
repeats this process until the condition of convergence is
satisfied.

For instance, fixing {D,,};\[:2 first, the estimation of D,
can be obtained:

f)l = max HD{Z(D H2 ) (13)
Dy F

where Z = ) x» D2T X3 ... XN D{,. Applying SVD on

Z(1) and ensuring that the singular values are arranged

in descending order, then the first M; left singular vec-

tors of Z(;) give the estimation of D; [52]. Next, fixing

{Dn}fy=3 and Dj, the estimation of Dy can be obtained in
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the same way. Repeat this procedure until all dictionaries
are obtained.
Then, let B, = D, (;,.%,), n = 1,2,...,N, then the
received signal model can be rewritten as
j=BN®BN-1®...®Bl)suz, (14)
where s,, € RK denotes the vector of nonzero coeffi-

cients. As a consequence, the solution of the problem can
be presented as

Syz = argmin ||(BN®BN,1 ®...®Bl)s—y||§.
s

(15)

If B = By ® By_1 ® ... ® Bj, then the solution
of (15) can be deduced as s,;, = (BTB)f1 BTy. For
simplicity, assume that K, = Ko,n = 12,...,N,
then a sparse representation can be guaranteed if
(Ko D)N < 2— (1 + (Ko — 1) u (D)N [28], where D =
(DN®DN-1®...Q D).

In addition, a more efficient calculation step can be
employed. The relationship between S,, and ) can be
described as

Sanl(B{Bl) X« -XN<B{[BN) = yXIB{X2~ . ~XNBII\},
(16)

where S, is the tensor reshaping form of s,,. Defining
Q = Sy x11I x2 (BIBy) x3 -+ xn (BYBn), R =
Y x3 BIT xq -+ xn BL, then we have BlTBlQ(l) = Rq).
Because B{Bl is a self-adjoint matrix, there exists a fast
algorithm which can obtain the solution of Q by utiliz-
ing Cholesky decomposition [53]. Next, unfold Q to a
rectangular matrix along mode-2:

Qu = (BzT 32) Snz(2) [(BEBN> ® (31{[_131\171)

(17)

®--© (BB ®1],
by defining W = S,;; x1 I xo I x3 (BSTB?,) X4 - XN
(B{,BN), similar to the above analysis, then we have
BIB,W (5 = Q(2)- The solution of W can be found by
utilizing Cholesky decomposition likewise. In accordance
with this scheme, after N steps, the estimation of S, will
be obtained.

The algorithm flow is shown in Algorithm 1. During
iterations, it is necessary to guarantee that the nonzero
elements of core tensor are concentrated within a sub-
set of index. When the convergence criterion is achieved,
all nonzero elements and the corresponding index set
can be obtained as the results, and the expected scatter
coefficients will be recovered as well.
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Algorithm 1 Higher-order SVD-based SAR imaging
algorithm

Require: observation data Y; the number of grid points
{Mn,Pn}L\[:l; the number of maximum nonzero
entries K,4x; the threshold of error €.

Ensure: scatter coefficient estimation 5’; dictionaries
(D))

1: Initialize the dictionaries
2: Decouple the observation signal and construct the
tensor data ).

: Yoy =U,2,VE, n=1,2,...,N;

D, < U,(,1: M), n=1,2,...,N.

: Dictionaries construction

. forn=1,2,...,Ndo

Z <« Y x1 DlT X9 .o. Xp_1 DZ;_I Xp+1 DZ;H X 42

XN DT,

~e~~T
5

. Zy=USV
9. D, < U(1:M,).

10: end for

11: Initialize the index set {fn}yzl <~

12: 5<—y,$‘<—0,k<—1.

13: while [[E]l > € && [T2; |7l < kiax do

JN . .
14: {lﬁ}nzl « argmax|€ x1 DT (;,i1) x2 DY (,iz) x3
{in ¥y
<. xn DL Gin) |;
15:  Update the index set .9, <« ., U {iﬁ}, n =
1,2,...,N;

16 B,<«< D, %), n=12,...,N;

17:  Substitute {B,,}J,L1 into (15) and obtain the esti-
mates of nonzero coefficients s,, by utilizing
Cholesky decomposition (16), (17);

18:  Reshape s, to the tensor form S,,;;

19:  Compute the residual £ < Y —S,;;, X1 By X2 By X3
oo XN BN;

20:. k<« k+1;

21: end while

22: Reconstruct the scatter coefficients & from S,z and

index set . = {9, %,..., 9N} , satisfying that
S (A1, Iy, IN) = Sy

The key step of Algorithm 1 is estimating the nonzero
coefficients by least squares procedure, which needs
no more than (2Nk (kN +P+1)+ Nkz) operations. By
contrast, the orthogonal matching pursuit (OMP) algo-
rithm [38, 54] needs kN (PN + 3k") operations in this
step. And in the residual update step, it is required
to calculate S, x1 By X3 By X3 ... Xy By and sub-
tract it from ), which needs PN (2k + 1) operations
for the present algorithm, whereas the requirement for
OMP algorithm is PN (2kV + 1). Consequently, for a
multi-linear (Ko, Ko, . . ., Kp)-block sparse reconstruction
problem described in Section 3, the maximum number
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of iteration of the present algorithm is NKy. By con-
trast, OMP algorithm requires K7\ iterations for the same
condition. The complexity analysis results indicate that
the present algorithm can be used to estimate the scat-
ter coefficients with much lower computational resource
requirement compared with classic matching pursuit
algorithm.

5 Experiments and discussion

This section will provide several numerical experiments
to verify the effectiveness and performance of the pro-
posed algorithm. The experiments include two parts:
(1) SAR imaging realizations for ideal point scatter-
ing model and practical measured data and (2) perfor-
mance comparisons between the proposed algorithm and
the existing algorithms, including PFA [55, 56], OMP
[38], and CoSaMP [57]. The PFA method is a kind of
classic SAR imaging method which has good real-time
response, although susceptible to the sidelobe effect.
OMP and CoSaMP are both sparse reconstruction algo-
rithms which can achieve the super-resolution perfor-
mance, but they need to pay much more computational
cost. The hardware configuration for the simulation sys-
tem is Intel Core i7-5500U 2.4GHz CPU, 8GB RAM,
Windows 10 OS.

5.1 SARimaging realizations

Two groups of numerical experiments are demonstrated
in this section. One tests the SAR imaging for ideal point
targets, and the other investigates the effectiveness of real-
world conditions. The simulation scenario is configured
as follows: the center frequency is 9 GHz; the bandwidth
is 1 GHz; the frequency resolution is 0.01 GHz; the angle
aperture is 5°; the angle resolution is 0.05°; the sampling
rate is 50%.
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5.1.1 Ideal point targets

Different SNRs Firstly, the imaging results under dif-
ferent SNRs are presented to confirm the feasibility of
the proposed algorithm. Twenty ideal point scatterers are
deployed in this simulation scenario, located along the
diagonal line of the target scene randomly and clustered
as three blocks. Corresponding to the settings of the SNR
as 3 and 30 dB, the SAR imaging realizations are shown in
Fig. 2.

The simulations under different SNRs show the imag-
ing qualities of the proposed algorithm and the reference
algorithms. When SNR is low, the imaging results of clas-
sic matching pursuit algorithms exhibit distinct outliers,
and PFA shows severe noisy ambiguity at the same time.
As a contrast, the proposed algorithm performs much
better under the low SNR condition. When SNR is high,
the results of all methods indicate the congruent imaging
quality.

Different number of scatterers In this simulation sce-
nario, we consider the influence caused by the number of
scatterers. The configuration is the same as the previous
section, other than fixing the SNR at 10 dB. When the
number of scatterers is set to 30 and 150, the SAR imaging
realizations are shown in Fig. 3.

It is shown from the simulations that when the num-
ber of scatterers is not large, all the methods are able to
achieve an acceptable imaging resolution; contrastively,
the proposed algorithm can obtain a neater imaging
result. However, the scatterers located near the edge of the
scene may obscure as the number of scattering points is
increasing. The reconstructed scene for the PFA method
show more obvious image noise than the matching pur-
suit algorithms, and the proposed algorithm can achieve
the most accurate images under the same condition.

Real OMP CoSaMP Proposed
= —~ 2, s . =20
E 2 £ £ E E 2
SR [0} [0} ) © 0 -25
2 2 2 2 2
g2 i g g g2 90
-4-2 0 2 4 -4-2 0 2 4 -4-2 0 2 4 -4-2 0 2 4 -4-2 0 2 4
Azimuth (m) Azimuth (m) Azimuth (m) Azimuth (m) Azimuth (m)
Real PFA CoSaMP Proposed ”
E 2 E 2 E E E o
S0 S0 S o o} -15
c c c c c -20
g -2 g -2 @ o} o} -25
4 4 4 4 i %0
-4-2 0 2 4 -4-2 0 2 4 -4-2 0 2 4 -4-2 0 2 4
Azimuth (m) Azimuth (m) Azimuth (m) Azimuth (m) Azimuth (m)
Fig. 2 SAR imaging for ideal point scatterer model under different SNRs. a SNR =3 dB, b SNR =30 dB
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Real PFA OMP CoSaMP Proposed 20
g > g g, g, g, N
€ 2 & S -2 52 5 -2 -30
4-2 02 4 -4-2 02 4 4-2 02 4 4202 4 4-2 0 2 4
Azimuth (m) Azimuth (m) Azimuth (m) Azimuth (m) Azimuth (m)
a
Real PFA OMP CoSaMP Proposed 0
—~ —~ —~ — —~ _5
E 2 E E 2 E 2 E 2 -10
$ 0 S $ 0 S o g o ]
§ -2 5 § -2 g -2 g -2 -25
o o o (14 o 230
-4-2 0 2 4 -4-2 0 2 4 -4-2 0 2 4 -4-2 0 2 4 -4-2 0 2 4
Azimuth (m) Azimuth (m) Azimuth (m) Azimuth (m) Azimuth (m)
Fig. 3 SAR imaging for ideal point scatterer model under different number of scatterers. a 30 scatterers. b 150 scatterers

5.1.2 Practical measured data

In this part, a set of experiments based on practical mea-
sured data are demonstrated to verify the practicability
of the proposed algorithm. The observation target is a
crawler-type vehicle. There are three observation angles
of a spotlight SAR:

77.5° ~ 82.5°, the central angle is 80°
87.5° ~ 92.5°, the central angle is 90°
97.5° ~ 102.5°, the central angle is 100°

The center frequency and bandwidth are 9 and 1 GHz.
As the results, when the central angles are 80°, 90°, and
100°, the SAR imaging realizations are shown in Figs. 4, 5,
and 6, respectively.

The imaging results show the availability and superior-
ity of the proposed algorithm in real SAR imaging. It is
demonstrated that all the sparse reconstruction methods
can achieve the higher resolution images than PFA. The
latter can merely obtain fuzzy images, especially when
the observation angle is not perpendicular to the target
scene. Although OMP and CoSaMP are able to achieve the
high-resolution results, there exist some problems with
these classic matching pursuit techniques. For instance,
when the observation angle is 90°, there is a distinct bright
streak that appears on the edge of the target in the imag-
ing result of CoSaMP. As indicated by the arrows in Figs. 4
and 6, CoSaMP shows raster lines over the target image
at the central region, which will severely influence the
recognition of target. In addition, OMP may result in
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Fig. 4 SAR imaging for practical measured data, ¢ = 80°
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Fig. 5 SAR imaging for practical measured data, ¢ = 90°
outliers on the sides of the target, which are marked by  5.2.1 RMSE

white circles in each images. In comparison, the proposed
algorithm overcomes such defects and performs much
better under the same scenario.

5.2 Performance comparison

Two performance indicators, root mean square error
(RMSE) and computational cost, are discussed for both
the proposed algorithm and the reference algorithms in
this section.

The RMSE of spotlight SAR model is defined as

XL: |y DS1||2

I=1 |y||2

RMSE = (18)

0

where §; denotes the estimate of scatter coefficient in the
[-th Monte-Carlo independent trial. The configuration of
this experiment is the same as Section 5.1.1. Two set of
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Fig. 6 SAR imaging for practical measured data, ¢ = 100°
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Fig. 7 RMSE comparison for different number of scatterers versus SNRs, by 500 Monte-Carlo trials

simulations for different number of scatterers are imple-
mented. The SNR range is 3 ~ 30 dB; the numbers of
independent trials L is set to 500. The RMSE curves are
shown in Fig. 7, where the solid lines and dashed lines
indicate the experimental scenarios for 20 scatterers and
100 scatterers, respectively.

The simulation results indicate that the proposed algo-
rithm performs superiorly compared with the reference
methods for both the cases about the small and large num-
ber of scatterers. It can be seen that even if the SNR is low,
the performances of sparse reconstruction schemes are
more robust than conventional PFA method. As a result
of the sensitivity to noise, the RMSE curve of PFA shows
conspicuous precipitous variation as the SNR is less than
18 dB. Considering the classic matching pursuit meth-
ods, since there are merely 2k;,,, atoms to be chosen in
each iteration, CoSaMP runs faster than OMP for SAR
imaging, which is indicated by the statistical results of the

Table 1 Average running time of imaging algorithms versus
different SNRs

computational cost in Section 5.2.2. However, the sim-
ulation results for RMSE show that the performance of
CoSaMP is slightly worse than OMP. As a consequence,
the existing SAR imaging methods are always difficult
to achieve both the high speed and large success ratio
of recovery. In contrast, by exploiting the multi-linear
block sparsity of targets, the proposed algorithm can gain
satisfactory performances on the both aspects.

5.2.2 Computing resources requirement
This section investigates the requirements for computa-
tional cost. The configuration of this part is the same as
Section 5.1.1 and the evaluation is done in terms of CPU
time. The statistical results of running time for the case of
different SNRs are shown in Table 1.

For the case about different numbers of scatterers, set
the configuration to be the same as Section 5.1.1. The
statistical results of running time are shown in Table 2.

Table 2 Average running time of imaging algorithms versus
different numbers of scatterers (indicated by N;)

Time (s) SNR=3dB SNR=12dB SNR=21dB SNR=30dB  Time (s) Ns =20 Ng =50 Ng =100 Ns =150
PFA 0.01736 0.01658 0.01564 0.01279 PFA 0.01716 0.01832 0.02437 0.04121
OMP 498.83 459.18 45861 450.89 OMP 51967 52562 537.96 568.34
CoSaMP 1.1292 1.0759 1.0303 0.9784 CoSaMP 0.95787 0.96073 098114 1.2098
Proposed 0.03719 0.03332 0.03135 0.03005 Proposed 0.04519 0.04651 0.04762 0.05133
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The statistical data of Tables 1 and 2 indicate that there
exist noteworthy differences of computational cost among
these algorithms. The fastest two algorithms are PFA and
the proposed algorithm, followed by CoSaMP and OMP
in sequence. Nevertheless, the PFA cannot provide robust
performance, as the RMSE comparison in the previous
section. On the other hand, although the classic matching
pursuit methods have high-resolution performance, the
requirements to computing resources are considerable,
especially for OMP algorithm. In each iteration, OMP
must match every atom, which results in a high time
consumption. As a contrast, the proposed algorithm can
obtain the optimal RMSE performance and achieve a run-
ning speed faster one order of magnitude than CoSaMP,
which makes it suitable for the real-time applications.

6 Conclusions

In a practical scenario, the block sparse distribution of
targets is a common assumption for SAR imaging. Nev-
ertheless, the existing methods seldom take advantage
of such geometrical feature. In this paper, a Kronecker
constrained spotlight SAR imaging algorithm based on
tensor decomposition is developed, which exploits the
block sparsity of the target scene. HOSVD modeling of
the decoupling signal received is employed by introduc-
ing a preprocessing scheme for dictionary construction.
Then, a multi-linear sparse reconstruction algorithm is
deduced to obtain the estimation of scatter coefficients.
Since the proposed algorithm utilizes the structural infor-
mation of targets, a more robust performance can be
achieved for imaging quality. A group of numerical exper-
iments based on practical measured data are presented to
verify the effectiveness of the developed method. In addi-
tion, the complexity analysis indicates that the algorithm
reduces the demand for computational cost comparing
with the classic matching pursuit methods. The statisti-
cal results of simulations confirm the superiority of the
present algorithm as well, which is vitally important in
real-time applications of engineering technique.
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