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Abstract

This paper addresses the problem of DOA estimation using uniform linear array (ULA) antenna configurations. We
propose a new low-cost method of multiple DOA estimation from very short data snapshots. The new estimator is
based on the annihilating filter (AF) technique. It is non-data-aided (NDA) and does not impinge therefore on the
whole throughput of the system. The noise components are assumed temporally and spatially white across the
receiving antenna elements. The transmitted signals are also temporally and spatially white across the transmitting
sources. The new method is compared in performance to the Cramér-Rao lower bound (CRLB), the root-MUSIC
algorithm, the deterministic maximum likelihood estimator and another Bayesian method developed precisely for the
single snapshot case. Simulations show that the new estimator performs well over a wide SNR range. Prominently, the
main advantage of the new AF-based method is that it succeeds in accurately estimating the DOAs from short data
snapshots and even from a single snapshot outperforming by far the state-of-the-art techniques both in DOA
estimation accuracy and computational cost.
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1 Introduction
In recent years, there has been a surge of interest in
array signal processing applications in both military and
civil domains [1, 2]. The concept of direction of arrival
(DOA) estimation find its use in applications related to
radar or sonar systems. In addition, in modern mobile
communication systems, for example, based only on the
data received at the antenna array, estimating the DOAs
of the desired users and those of the interference signals
allows their extraction and cancellation, respectively, by
beamforming technologies [3, 4] in order to improve the
wireless systems’ performance.
Roughly speaking, depending on the a priori knowledge

of the transmitted signals, DOA estimators can be cate-
gorized as data-aided (DA) or non-data-aided (NDA). In
plain English, DA approaches base the estimation pro-
cess on a priori perfectly known symbols. Unfortunately,
although being simple and accurate, these approachesmay
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suffer from the major drawback of limiting the whole
throughput of the system by periodically sending a ref-
erence (known) signal [5]. It should be mentioned here
that superimposed pilots do not affect the throughput but
increase the complexity of the channel estimation process.
Hence, the ever increasing demand for channel bandwidth
spurred the more practically oriented minds to develop
new estimation techniques that rely on the received data
samples only and which are therefore commonly known as
NDA techniques. NDA estimators themselves are referred
to as deterministic or stochastic if the unknown transmit-
ted signal is assumed deterministic or completely random,
respectively. So far, from maximum likelihood-based to
subspace-based methods, many NDA DOA estimators
have been proposed and extensively studied in the litera-
ture [6–8]. The NDAmaximum likelihood approaches are
undoubtedly the most accurate, but unfortunately, they
are often computationally very expensive. To circumvent
this challenging problem, covariance-based estimators are
often a trend—in NDA estimation schemes—to alleviate
this burden of computational cost. Fortunately, usually,
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they also provide sufficiently accurate DOA estimates,
especially in the presence of sufficiently large number of
received samples. But in situations of short data snap-
shots, they may not be reliable and one would be obliged
to trade low complexity for more accurate estimation
by simply applying the maximum likelihood approaches.
Yet, the maximum likelihood estimators are analytically
intractable in the NDA case especially in the presence
of random transmitted symbols/signals. Therefore, they
are often tackled numerically via multidimensional grid
search approaches. Their accuracy/resolution is therefore
dictated by the discretization step of the grid. A very
dense discretization (small step) is able to provide very
accurate estimates even at low operational SNRs, but the
complexity of the underlying ML algorithm would be
extremely high and even prohibitive since its complexity
grows exponentially with the number of the parameters to
be estimated. Another alternative is to solve the ML cri-
terion using pilot/reference symbols/signals only where a
closed-form solution may be feasible. Unfortunately, this
approach is not able to provide in-service estimates as the
receiver is compelled to wait for the next pilot signals in
order to update the estimates.
Motivated by these facts, we develop in this paper a new

covariance-based DOA estimation method for ULA con-
figurations which succeeds in estimating the DOA from
very short data records. It is based on the annihilating fil-
ter technique: finding the roots of an annihilating filter
(AF) which are directly related to the unknown DOAs.
It should be noted that the AF technique has been well
known for a very long time in the mature field of spectral
estimation. About a decade ago, it was also used to suc-
cessfully develop the so-called finite-rate-of-innovation
(FRI) sampling method [9] where it led to signal sampling
and reconstruction paradigms at theminimal possible rate
(far below the traditional Nyquist rate). In this contribu-
tion, we apply for the first time the AF approach to DOA
estimation for ULA configurations and, therefore, we will
henceforth refer to our new technique as the AF-based
method. The coefficients of the corresponding AF are cal-
culated by the singular value decomposition (SVD) of a
matrix whose elements are built from second-order cross
moments across the receiving antenna elements of the
received samples. Interestingly, this matrix is of reduced
dimensions thereby yielding a very low computational
load of the SVD decomposition.
We propose two different versions of the new AF-based

solution1 depending on the SNR threshold. The first one,
referred to as “version I”, is more advantageous at high
SNR levels. It exploits each consecutive 2K + 1 corre-
lation coefficients along the columns and rows of the
covariance matrix (K being the number of sources). The
second one, referred to as “version II”, exploits the Toepltiz
structure of the covariance matrix in order to enhance

the estimation performance at low SNR levels. In both
versions, the obtained DOA estimates are then used to
find the unknown sources’ powers along with the noise
variance.
In the multiple snapshot case, both versions of the

proposed AF-based technique are compared in accuracy
performance to the Cramér-Rao lower bound (CRLB) [10]
and to the root-MUSIC algorithm—a popular and pow-
erful technique of DOA estimation for ULA systems—
which is also based on polynomial rooting [11]. In the
single-snapshot scenario, however, it is compared to
another Bayesian method that was designed precisely for
the challenging single-snapshot case [12] as well as the
deterministic ML (DML) estimator. Wemention here that
a more recent iterative technique that handles the single-
snapshot case has also been proposed in [13]. Unfortu-
nately, in its NDA version, it relies on the prior avail-
ability of an initial guess about all the unknown DOAs
whose accuracy affects the overall performance of the
method. Therefore, for the sake of fairness, this technique
is not considered since none of the considered techniques
(including our AF-based estimator itself ) requires an ini-
tial guess about the DOAs. Evenmore, it has been recently
recognized in a comparative study of various DOA esti-
mators [14] that DML is indeed the most attractive one if
the DOAs are to be estimated from a single snapshot. It
will be shown by Monte-Carlo simulations that the new
AF-based method is able to accurately estimate the DOAs
from short data snapshots and even from a single-shot
measurement. Furthermore, it outperforms the classical
Bayesian and DML estimators over a wide SNR range
with a slight performance advantage for the latter in the
low SNR region but at the cost of an extremely high
computational load.
We organize the rest of this paper as follows. In

Section 2, we introduce the systemmodel that will be used
throughout this article. Then in Section 3, we develop our
new AF-based DOA estimation technique. In Section 4,
we exploit these new AF-based DOA estimates to develop
new estimates for the channel powers. In Section 5, we
assess the performance of the new estimators. Finally, we
draw out some concluding remarks in Section 6.
Wemention beforehand that some of the common nota-

tions will be used throughout this paper. Vectors and
matrices are represented by lower- and upper-case bold
fonts, respectively. Moreover, {.}H and {.}T denote the
Hermitian (i.e. transpose conjugate) and transpose of any
vector or matrix, respectively. The operators {.}∗ and |.|
return the conjugate and amplitude of any complex num-
ber, respectively, and j is the pure complex number that
verifies j2 = −1. Moreover, Na refers to the number of
antenna elements in a uniform linear array (ULA). The
statistical expectation is denoted as E{.}, and the notation
� is used for definitions.
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2 Systemmodel
We consider a uniform linear array (ULA) of Na antenna
elements immersed in a homogeneous media in the far
field of K point sources that are transmitting multiple pla-
nar waves. We assume that the transmitted signals are
temporally white and uncorrelated between the radiating
sources. Assuming perfect frequency synchronization, the
received signal on the {ith}Na

i=1 antenna element, at the out-
put of the matched filter, can be modelled as a complex
signal as follows:

yi(n) =
K∑

k=1
hkej(i−1)π sin(θk)ak(n) + wi(n), (1)

where at time index n, ak(n)2 is the signal (or symbol)
transmitted by the kth source and wi(n) is the noise com-
ponent on the ith antenna branch that is modelled by a
zero-mean complex Gaussian random variable with inde-
pendent real and imaginary parts, each of variance σ 2.
The complex channel coefficients corresponding to the K
sources are assumed to be unknown, and they are denoted
by {hk = |hk|ejφk }Kk=1 where φk stands for any possi-
ble channel distortion phase. Moreover, {θk}Kk=1 are the
unknown DOAs (to be estimated) of the planar waves
impinging from the K sources.
Note here that the receiving antenna elements are sup-
posed to be spaced by half the wavelength, i.e. d =
λ/2 where d is the distance between two consecutive
antenna branches and λ is the carrier wavelength of the
signal. Note also that although the vector/matrix repre-
sentation of the received signals is more compact and
widely adopted in the open literature, we settle here on
the scalar form of the received signals (i.e. the elemen-
tary received signals on each antenna element).We believe
that this representation allows for an easy grasp of the
theoretical foundations of the new estimator since it is—
as will be seen later—based on the explicit expression for
each cross-covariance between the elementary received
signals.
We assume hereafter that at each time instant n the

transmitted signals, a(n) =[ a1(n), a2(n), · · · , aK (n)]T
and the noise components w(n) =[w1(n), · · · , wNa(n)]T
are each uncorrelated element-wise, i.e.

E{w(n)Hw(n)} = 2σ 2INa and E{a(n)Ha(n)} = IK , (2)

where in the last equality, we assume, without loss of
generality, that the energy of the transmitted signals are
normalized to one, i.e. E{|ak(n)|2} = 1. In fact, the trans-
mitted powers, Pk = E{|ak(n)|2}, can always be incor-
porated in the channel coefficients after being scaled by
the factor

√
Pk . Finally, the symbols, {ak(n)}Nn=1, transmit-

ted by source k over the observation time window are
assumed mutually independent. Then, we define the true
SNR of the kth source as follows:

ρk �
E{|hk|2|ak(n)|2}

2σ 2 = |hk|2
2σ 2 . (3)

3 Formulation of the new AF-based DOA
estimator

In few words, we mention that the new AF-based estima-
tor relies on a special property that is inherent to appropri-
ately selected sequences of second-order cross-moments
of the received signals. Therefore, we will simply begin by
deriving the explicit expression of the elementary cross-
covariances between the different antenna branches. To
that end, and by assuming a perfect knowledge of the
number of signals K, we gather for more convenience all
the unknown DOAs in one single parameter vector θ =
[ θ1, θ2, · · · , θK ]T . Then, the cross-covariances between
the received signals from any pair (i, l) of the receiving
antenna array can be defined as:

�y(i, l) � E{yi(n)y∗
l (n)}, i, l = 1, 2, · · · ,Na. (4)

Recall the fact that the transmitted signals and the noise
components are spatially and temporally white; hence,
Mθ (i, l) reduces simply to:

�y(i, l) =
{∑K

k=1 |hk|2 + 2σ 2 for i = l,
∑K

k=1 |hk|2ejπ(i−l) sin(θk) for i �= l.
(5)

In practice, all the cross-covariances, {�y(i, l)}Na
i,l=1, can

be easily computed together using the vector/matrix rep-
resentation of the received signals. Indeed, denoting by

y(n) =[ y1(n), y2(n), · · · , yNa(n)]T , (6)

the received vector at time instant n, �y(i, l), is noth-
ing but the (i, l)th entry of the covariance matrix, �y =
E{y(n)yH(n)}. The latter matrix is Toeplitz structured3
due to the use of an ULA antenna and can be estimated by
a simple sample mean as follows:

�̂y = 1
N

N∑

n=1
y(n)yH(n). (7)

We mention here that since �y
(
and �̂y

)
is a Hermitian

matrix (i.e. �y = �H
y ), then the strictly lower triangu-

lar matrix obtained from �y contains all the information
about the DOAs that would be extracted from the entire
matrix. Indeed, the diagonal elements do not depend on
the unknown DOAs, although they can be eventually used
to estimate the noise variance after estimating the chan-
nel coefficients from the off-diagonal entries as detailed
later. Consequently, from now on, the counters i and l
will always verify4 i > l. Then, using the notation uk =
ejπ sin(θk), we define the Na − 1 sequences—indexed by
the counter l—{r(l)θ [m] }Na−l

m=1 , each of which containing the
Na − l elements of the {lth}Na−1

l=1 column that are lying
strictly below the main diagonal as follows:
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r(l)θ [m] = �y(l + m, l), m = 1, 2, · · · ,Na − l, (8)

which is simply given by

r(l)θ [m] =
K∑

k=1
|hk|2umk , m = 1, 2, · · · ,Na − l. (9)

These terms can be stacked together in a (Na − l)-
dimensional vector r(l)

θ —that will be used subsequently—
as follows5:

r(l)
θ =

[
r(l)θ [ 1] , r(l)θ [ 2] , · · · , r[l]θ [Na − l]

]T
. (10)

Now, we see from (9) that each sequence
{
r(l)θ [m]

}Na−l

m=1
is simply a weighted sum of exponentials. This interesting
property is very useful—when combined with the anni-
hilating filter technique—and is actually the main idea
behind this work as will be soon explained.
Generally speaking, a filter g[m] is called an annihilat-
ing filter of a signal or more generally a discrete sequence
{s[m] }m when

(g ∗ s)[m]= 0, ∀m ∈ Z, (11)

where ∗ stands for the discrete convolution. Usually,
the filtering operation is applied to signals. But in this
paper, we filter a sequence of cross-covariances by inter-
preting them as received samples. Therefore, the cross-

covariances sequence
{
r(l)θ [m]

}Na−l

m=1
will play the role

(interpreted as) of the signal sequence s[m] in (11).
Indeed, as shown subsequently, for such special sequences
(linear combinations of exponentials), the roots of the
corresponding annihilating filters are exactly the involved
elementary exponentials. More formally, consider the fol-
lowing filter:

g(z) �
K∏

k=1
(1 − ukz−1),

=
K∑

n=0
g[ n] z−n. (12)

Then, we have:

(
g ∗ r(l)θ

)
[m] =

K∑

n=0
g[ n] r(l)θ [m − n] ,

=
K∑

n=0

K∑

m=1
|hk|2g[ n]um−n

k

=
K∑

m=1
|hk|2

( K∑

n=0
g[ n]u−n

k

)

︸ ︷︷ ︸
A(uk)=0

umk ,

= 0. (13)

Therefore, g[ n]—as constructed in (12)—is indeed an
annihilating filter for the sequence

{
r(l)θ [m]

}Na−1

m=1
. Then,

if one is able to find the coefficients {g[ n] }Kn=0, the roots
of the corresponding polynomial g(z) in (12) would be
easily computed and then the DOAs can be easily esti-
mated from the arguments of the obtained roots. To that
end, we gather the desired coefficients, {g[ n] }Kn=0, in a
single unknown vector g = [

g[ 0] , g[ 2] , · · · , g[K]
]T and

describe below an easy SVD procedure that enables find-
ing g.
First notice that the unknown filter coefficients {g[ n] }Kn=0
in g(z) = ∑K

n=0 g[ n] z−n must be such that (11) is satisfied
for allm ∈ Z and in particular form > n:

K∑

n=0
g[ n] r(l)θ [m − n]= 0 ∀ m > n. (14)

Then, using the elements, r(l)θ [m − n], extracted from
the lth column of the covariance matrix, we estimate (as
described later) from (14) the K + 1 unknown filter coef-
ficients. In this way, it is clear that one needs K + 1 inde-
pendent equations—obtained by changingm—in order to
obtain at least one estimate, ĝ(l), of the desired vector g.
Therefore, if a column l is to be useful, the corresponding
vector r(l)

θ should contain at least 2K + 1 elements. Recall
from (10) that the size of r(l)

θ is Na − l, which results in
Na − l ≥ 2K + 1. Therefore, l must verify

1 ≤ l ≤ Na − 2K − 1, (15)

meaning that only the first Na − 2K − 1 columns of the
covariance matrix contain a sufficient number of cross-
covariances that enable having at least one estimate, ĝ(l)

of g, per-column
(
or per-vector r(l)

θ

)
. Observe also from

(15) that it is necessary to have at leastNa ≥ 2K+2 receiv-
ing antenna elements for K unknown sources. Thus, our
estimator needs more than twice the number of antennas
as the number of sources. Moreover, in addition to the
trivial initial estimate, ĝ(l)

0 , that is obtained using the first
necessary 2K +1 cross-covariances in r(l)

θ , we can actually

obtain Pl additional estimates
{
ĝ(l)
p

}Pl
p=1

for the unknown
g from each candidate column l. Here, Pl = Na−l−2K−1
is the number of samples exceeding these necessary first
2K + 1 cross-covariances. This means that we obtain
Pl + 1 = Na − 2K − l estimates for g from each eligible
column l. In fact, for a given l, the {lth}l≤Na−2K−1 vector
r(l)
θ contains 2K +1+Pl cross-covariances. Then, for each
p = 0, 1, 2, · · · ,Pl, consider 2K + 1 consecutive samples
of these second-ordermoments,

{
r(l)θ [mp + r]

}K
r=−K

, that
are centred aroundmp = K + 1 + p. Now, replacingm by
mp + r, the system in (14) yields
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K∑

n=0
g[ n] r(l)θ [mp+r−n]= 0, r = −K ,−K+1, · · ·,K−1,K .

(16)

Therefore, for each value of p (or equivalently mp), we
have K + 1 independent equations which can be more
conveniently written in the matrix/vector form as follows:

S(l)
p (θ)g = 0, (17)

where

S(l)
p (θ) =
⎛

⎜⎜⎜⎜⎝

r(l)θ [K + p + 1] r(l)θ [K + p] · · · r(l)θ [ p + 1]

r(l)θ [K + p + 2] r(l)θ [K + p + 1] · · · r(l)θ [ p + 2]
...

...
. . .

...
r(l)θ [ 2K + p + 1] r(l)θ [ 2K + p] · · · r(l)θ [K + 1 + p]

⎞

⎟⎟⎟⎟⎠
.

Note that for each l, we have Pl+1 = Na−l−2K possible
linear systems (by varying p) that provide Pl + 1 estimates
for the same vector g—involved in these systems—as pre-
viously stated.
In practice, the system in (17) can be solved via a singu-
lar value decomposition (SVD) where the (K + 1×K + 1)
matrix S(l)

p (θ) is decomposed into:

S(l)
p (θ) = U(l)

p (θ)D(l)
p (θ)V (l)

p (θ)H . (18)

Then, for each l = 1, 2, · · · ,Na − 2K − 1 and p =
0, 1, · · · , (Na − 2K − 1)− l, we obtain an estimate, ĝ(l)

p , for
g as follows:

ĝ(l)
p = V (l)

p (θ)eK+1, (19)

where eK+1 is a vector with 1 at position K + 1 and 0 else-
where. Solving for the K roots of ĝ(l)

p , we obtain a set of
estimates for

{
uk = ejπ sin(θk)

}K
k=1. We denote these esti-

mates as
{
û(l,p)
k

}K
k=1

from which a set of estimates for the
unknown DOAs are obtained for each l and p as follows:

θ̂
(l,p)
k = 1

π
arcsin

(
∠û(l,p)

k

)
, k = 1, 2, · · · ,K , (20)

where ∠(.) returns the angle of any complex number.
Finally, recall that for the {lth}Na−2k−1

l=1 column, we have
Pl + 1 = Na − 2K − l estimates for the same DOA θk ,
which means that by considering all the eligible columns,
we have
Na−2K−1∑

l=1
(Na − 2K − l) = (Na − 2K − 1)(Na − 2K)

2
(21)

estimates for each DOA. Therefore, one can average over
all these estimates (obtained column wise) to obtain more
refined estimates for the unknown DOAs as follows:

θ̂column
k =

2
(Na − 2K − 1)(Na − 2K)

Na−2K−1∑

l=1

Na−l−2K−1∑

p=0
θ̂

(l,p)
k .

(22)

So far, we have used all the first Na − 2K − 1 columns.
Yet, the remaining columns (l ≥ Na − 2K) can also be
exploited to further refine the DOA estimates. This may
seem a priori impossible since these columns—or equiv-
alently the corresponding vectors

{
r(l)
θ

}Na

l=Na−2K
—do not

indeed contain the necessary 2K + 1 cross-covariances as
previously required. Yet, the elements of these columns
belong to the last Na − 2K − 1 rows that contain nec-
essarily more than 2K + 1 adjacent covariances. Indeed,
recalling that the covariance matrix �̄(y) is Toeplitz struc-
tured, it becomes clear that the last Na − 2K − 1 rows
can also be exploited in the same way providing thereby
a new set of estimates for the DOAs. To that end, for
the {lth}Na

l=2K+2 row, we construct the corresponding vec-

tors6, r′(l)
θ =

[
r′(l)θ (1), r′(l)θ (2), · · · , r′(l)θ (l − 1)

]T
whosemth

element is defined as

r′(l)θ [m] = �y(l, l − m), m = 1, 2, · · · , l − 1. (23)

Therefore, for each l = Na,Na − 1, · · · , 2K + 2, the
sequence {r′(l)θ [m] }l−1

m=1 inherits the important structure
of linear combinations of weighted exponentials. Then,
applying the same procedure using the vectors r′(l)

θ instead
of r(l)

θ , we obtain an additional row-wise refined estimate
for each DOA which we denote θ̂ rowk . Lastly, the final
estimates of the DOAs are obtained as

θ̂k = θ̂column
k + θ̂ rowk

2
, k = 1, 2, · · · ,K . (24)

Based on the analysis so far introduced, it may seem that
the new estimator works only if an extremely large num-
ber of snapshots are available at the receiver side. In fact,
all the derivations are based on the theoretical expression
of the elementary cross-covariances, �y(i, l), given in (5)
although in practice these elementary cross-covariances
are estimated by sample averaging as follows:

�̂y(i, l) = 1
N

N∑

n=1
yi(n)yHl (n), (25)

and this sample average does not coincide with the statis-
tical average given in (5) unless the observation window
size, N, is very large. Yet, we will see in the simulations
section that the new AF-based estimator performs very
well with very short-data records and even from a single
snapshot.
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3.1 Robustness to the presence of short data records
The resilience to the presence of short data records can
be proven theoretically. In this analysis, we considers the
case of short data records but it is also valid for the
single-snapshot scenario by simply takingN = 1. For con-
venience, we adopt the notation �̂l

y(i) for the estimated
elementary cross-covariances of (25) instead of �̂y(i, l),
which are given by

�̂l
y(i) = 1

N

N∑

n=1
yi(n)yl(n)∗, (26)

and we show that the unknown DOAs can still be esti-
mated from the roots of the corresponding annihilating
filter. In fact, we have for n = 1, 2, · · · ,N :

yi(n)yl(n)∗ =
( K∑

k=1
hkak(n)ej(i−1)π sin(θk)

)
yl(n)∗ + wi(n)yl(n)∗. (27)

Then, for medium and high SNR values, the noise com-
ponents are small compared to the useful signal compo-
nent, i.e. |wi(n)| 
 |∑K

k=1 hkak(n)ej(i−1)π sin(θk)|with very
high probability meaning that

∣∣∣∣∣

K∑

k=1
hkak(n)ej(i−1)π sin(θk)yl(n)∗

∣∣∣∣∣ 
 |wi(n)yl(n)∗|. (28)

Therefore, the second term in (27) (stemming from
the noise component) can be reasonably neglected, and
we obtain an approximate expression for the estimated
covariances between antenna element i and antenna ele-
ment l, as follows:

�̂l
y(i) = 1

N

N∑

n=1
yi(n)yl(n)∗,

≈ 1
N

N∑

n=1
yl(n)∗

( K∑

k=1
hkak(n)ej(i−1)π sin(θk)

)

= 1
N

N∑

n=1

K∑

k=1
yl(n)∗hkak(n)︸ ︷︷ ︸

gk,l(n)

ej(i−1)π sin(θk)

= 1
N

N∑

n=1

K∑

k=1
gk,l(n)ej(i−1)π sin(θk)

=
K∑

k=1

⎛

⎜⎜⎜⎜⎜⎝

1
N

N∑

n=1
gk,l(n)

︸ ︷︷ ︸
Gk,l

⎞

⎟⎟⎟⎟⎟⎠
ui−1
k .

=
K∑

k=1
Gk,lui−1

k . (29)

We observe from (29) that the second-order moments
estimated with short data records (or even a single snap-
shot) exhibit the interesting property of a “weighted sum
of sinusoids” and therefore the DOAs can still be accu-
rately estimated from the roots of their annihilating filter.

3.2 Exploiting the Toeplitz structure of the covariance
matrix

When the propagation conditions are very harsh, the SNR
experienced at the receiver side can be very low. In this
scenario, the received signals are too much corrupted
by the noise components and therefore the estimated
cross-covariances are very noisy, especially from short
data records. Hence, exploiting the fact that the covari-
ance matrix is Toeplitz structured, one can average along
the secondary diagonals in order to obtain a set of more
accurate estimates for the cross-covariances. The DOA
estimation is then performed in the same way using the
new single sequence of more accurate Na covariances. In
fact, we see from (5) that form = 1, 2, · · · ,Na − 1

�y(l + m, l) = �y(1 + m, 1), l = 1, 2, · · · ,Na − m. (30)

Therefore, for each fixed lag m, {�̂y(l + m, l)}Na−m
l=1

can be averaged as follows to obtain the following more
refined statistics:

̂̄rθ (m) =
1

Na − m

Na−m∑

l=1
�̂y(l + m, l), m = 1, 2, · · · ,Na − 1,

(31)

from which we construct a single vector, ̂̄rθ =
[̂̄rθ (1),̂̄rθ (2), · · · ,̂̄rθ (Na−1)]T . Then, the same procedure
that was previously applied for all the eligible columns is
now applied to the single vector ̂̄rθ since it also inherits
the interesting property of weighted sum of exponentials.
For ease of notation, we simply refer to this procedure
as version II of the new AF-based estimator and we refer
to the procedure described previously (column-wise and
row-wise) as version I.
This operation of averaging over the secondary diagonals
is not only useful to combat the effect of the noise at low
SNRs but also expected to improve the DOA estimation
even for moderate SNR values whenever the number of
sources to be localized is large. In fact, when K is high,
the number Na − 2K − 1 of eligible columns in version
I can be limited. For instance, for Na = 8 and K = 3,
only the first column is eligible since Na − 2K − 1 = 1.
Consequently, a large part of the covariance matrix is
simply ignored although it carries a lot of information
about the unknown DOAs. Yet, by averaging over the
secondary diagonals, all the entries of the covariance
matrix are incorporated in the estimation process and the
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whole information is being exploited. Therefore, as long
as the SNR decreases or the number of sources increases
(for a fixed number of receiving antenna elements), it is
expected that the second version of the new estimator out-
performs its first version. However, for sufficiently high
SNR values, the estimated elementary cross-covariances
(without averaging) are already quite accurate and can
hence be reliably used to obtain more accurate7 DOA
estimates with version I. The latter is even more recom-
mended if the number of sources is also small since the
number of eligible columns (and consequently the num-
ber of exploited cross-covariances) would be sufficiently
high.

3.3 Complexity analysis
In this subsection, we assess the complexity of the new
estimator vs. the other single-snapshot techniques8. To
that end, we evaluate the number of operations (addi-
tions and multiplications) required by each estimator.
In particular, the new estimator involves two major
steps which are (i) the estimation of the covariance
matrix that requires NNa(Na − 1) operations and (ii)
the SVD decomposition and polynomial rooting proce-
dures which require 2(Na − 2K − 1)(Na − 2K)O(K3)
operations. Of course, it involves also at the very end
a simple step in which the individual estimates are
averaged requiring (Na − 2K − 1)(Na − 2K) extra
operations. On the other hand, the overall com-
plexities of the DML and Bayesian estimators are
RK (2N3

a + (N + 2K − 1)N2
a + (4Na − 1)K2 − (N + Na)

K + O(K3)
)

and RK ((4K + 3)N2
a + (12Na − 3)K2−

(3K − 2)Na + 3O(K3)
)
, respectively, where R is the

number of samples on the parameters grid corresponding
to a discretization step, s, of s = 180/R. Notice here
that the complexity of these two traditional estimators
grows exponentially with the number of unknown DOAs,
K, as reflected by the multiplicative term RK . It comes
clear now that increasing R (i.e. considering a denser grid
search for more refined estimates) increases prohibitively
their computational cost. Typically, for Na = 16, Ns = 2,
N = 1, and R = 100, the total number of operations
performed by our AF-based method, to estimate all the
DOAs, is about 2484 operations. However, to evaluate
their objective functions just at a single search point
(θi, θj) in the grid, the Bayesian and DML estimators
require about 3532 and 9442 operations, respectively,
i.e. already far more than the overall complexity of our
estimator. To find the estimates of the DOAs as the maxi-
mum of their objective functions over all the grid points,
these two classical estimators require in total as much as
1002×3532 = 35.32×106 and 1002×9442 = 94.42×106
operations against just 2484 operations with the proposed
estimator. Of course, the performance of these grid-
search estimators improves constantly as R increases,

but their computational load becomes prohibitively very
high. This is illustrated in Table 1 where we present the
computational load of the three estimators in different
setups by evaluating their complexities at various values
for the couple (K ,R) with a fixed array-size of Na = 16.
It is clearly seen from this table that our estimator is
far less computationally expensive than both existing
single-snapshot techniques. Moreover, it will be shown
later through computer simulations that it outperforms
both of them in accuracy over a large SNR range.

4 Per-source channel power estimation
The per-source estimation of the channel power (or signal
power) is very useful in wireless communication systems.
In fact, in a multi-user mobile communication system—
where each active user can be seen as an active source—
the knowledge of this parameter is used to manage the
interference. For instance, a well-known scheme formulti-
user detection is the successive interference cancellation
(SIC). The scheme is based on demodulating the strongest
interferer and removing its effect from the received sig-
nal [15] and then continuing this procedure for the next
strongest user. Because of its simplicity and also its capa-
bility in combating strong interferers [15], SIC is the
subject of great attention for practical systems design; see
[16–18] and references therein. Clearly, SIC requires the
power of the strongest interferer at each stage of inter-
ferer cancellation. There are of course many other useful
applications beyond this example that justify the need
of properly estimating both the source and noise powers
and the SNR. Motivated by this fact, we exploit the DOA
estimates provided by our AF-based technique in order
to estimate the individual channel powers almost instan-
taneously over a very short data records (N < 10 for
instance). To that end, we take the first K averaged covari-
ances in (31), r̄θ [m]= ∑K

k=1 |h(k)|2umk , m = 1, 2, · · · ,K ,
from which we write the following matrix system:

⎛

⎜⎜⎜⎝

r̄θ [ 1]
r̄θ [ 2]
...

r̄θ [K]

⎞

⎟⎟⎟⎠

︸ ︷︷ ︸
r̄θ

=

⎛

⎜⎜⎜⎝

u1 u21 u31 · · · uK1
u2 u22 u32 · · · uK2
...

...
. . . . . .

...
uK u2K · · · · · · uKK

⎞

⎟⎟⎟⎠

︸ ︷︷ ︸
U(θ)

⎛

⎜⎜⎜⎝

|h1|2
|h2|2
...

|hK |2

⎞

⎟⎟⎟⎠

︸ ︷︷ ︸
h

. (32)

Table 1 Complexity of the three single-shot techniques with
Na = 16 receiving antenna branches

K = 2 K = 4

R = 100 R = 500 R = 100 R = 500

Bayesian method 35.32 × 106 8.83 × 108 7.9200 × 1011 4.95 × 1014

DML 94.42 × 106 2.3605 × 109 1.1244 × 1012 7.0275× 1014

AF-based 2484 2484 7464 7464
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Now injecting the estimated DOAs, θ̂k , in uk instead
of the true DOAs, θk , we construct an estimated matrix,
Û(θ), using ûk = ejπ sin(θ̂k), to substitute U(θ) in the
system (32) in which the only remaining unknowns are
{|hk |2}Kk=1. Thus, by inverting Û(θ) and using ̂̄rθ instead
of r̄θ , one can easily obtain a joint estimate, ĥ =
[ |̂h1|2, |̂h2|2, · · · , |̂hK |2]T , for the channel powers, h =
[ |h1|2, |h2|2, · · · , |hK |2]T , as follows:

ĥ = Û(θ)−1r̄θ . (33)

Note that Û(θ) is a Vandermonde matrix and therefore
its inverse always exists as far as the DOAs are different
(resolvable DOAs). Now after obtaining the estimates of
{|hk |2}Kk=1, we extract an estimate of the noise power from
the main diagonal elements of the covariance matrix. In
fact, we see from (5) that for the {lth}Na

l=1 diagonal element,
we have

2σ 2 = �y(l, l) −
K∑

k=1
|hk|2. (34)

Therefore, using the estimates |̂hk|2 of |hk|2 obtained
in (33), we obtain an estimate σ̂ 2

l of σ 2 for each l =
1, 2, · · · ,Na as follows:

σ̂ 2
l = 1

2

(
�̂y(l, l) −

K∑

k=1
|̂hk|2

)
, l = 1, 2, · · · ,Na, (35)

which can be averaged over all the possible values of l to
obtain a more accurate estimate of the noise variance:

σ̂ 2 = 1
Na

Na∑

l=1
σ̂ 2
l = 1

2Na

Na∑

l=1
�̂y(l, l) − 1

2

K∑

k=1
|̂hk|2. (36)

Finally, using (33) and (36), an estimate of the SNR of
each source is simply given by

ρ̂k = |̂hk|2
2σ̂ 2 . (37)

5 Simulation results
In this section, we assess the performance of the newDOA
estimator using the mean square error (MSE) as a perfor-
mance measure. The MSE is computed for each estimator
θ̂k of the kth DOA, θk , as follows:

MSE(θ̂k) = 1
Mc

Mc∑

q=1
(θ̂

(q)
k − θk)

2, (38)

where Mc is the number of Monte-Carlo simulations
which is set to Mc = 1000 in all simulations and θ̂

(q)
k

is the estimate of θk from the qth Monte-Carlo run. We
also consider the well-known root-MUSIC (RM) estima-
tor and the Cramér-Rao lower bound (CRLB) [10] as a
benchmark against which we compare the performance
of our newly developed method in the case of a large
number of snapshots. In the case of short data records,

we also add the Multi-Task Bayesian Compressed Sensing
(MT-BCS) technique [19] as a benchmark. We propose
also another performance metric where we show the res-
olution probabilities for the AF-based and root MUSIC
techniques. In the more challenging case where a sin-
gle snapshot is available at the receiver side, we compare
our method to the Bayesian estimator [12] and the Single
Task Bayesian Compressed Sensing (ST-BCS) technique
[19] that are both specifically designed to cope with this
extreme scenario. We also compare it to the deterministic
ML estimator that is recognized to be the most accurate
in this case [14]. For the sake of conciseness, we consider
without loss of generality the case of equipowered sources
and provide simulation results only for the first source
(DOA and channel power). Yet, we emphasize the fact that
the same performance behaviour can be observed from
the other sources. For the channel power estimator, we
adopt the normalized root mean square error (NRMSE) as
a performance measure defined as

NRMSE(|̂hk|2) =

√
MSE

(
|̂hk|2

)

|hk|2 .

The NRMSE for the SNR estimator is defined like-
wise. DOA estimation will be basically organized in three
subsections: (i) the case of multiple snapshots (including
short-data records), (ii) the case of a single-shot measure-
ment, and (iii) the case of time varying DOAs. Channel
powers and SNR estimation will then follow.

5.1 Multiple and short-data records: comparison against
root-MUSIC

In Fig. 1, we plot for the three estimators (version I and
verion II of the AF-based and root-MUSIC) the MSE of
the DOA estimates for the first source obtained from
N = 1000 received samples, with Na = 8 and Na = 16
receiving antenna elements, versus the SNR of the same
source.
We see that the two versions of the new estimator pro-

vide sufficiently accurate DOA estimates over the entire
SNR range. In such comfortable situation where a very
large number of measurements can be used in the estima-
tion process, the classical root-MUSIC technique outper-
forms the two AF-based versions. It is also seen that as
Na increases, version I of the AF-based estimator exhibits
a performance gain against its version II at low SNR val-
ues. Actually, this is only true when the window size is
large enough (e.g. N = 1000 as considered in this figure)
so that the elementary cross-covariances are quite accu-
rate and therefore the elementary estimates θ̂ (l,k) are also
sufficiently accurate. Indeed, since the number of these
elementary estimates (Na − 2K − 1 eligible columns and
rows) also increases withNa, this leads to a more accurate
final averaged estimate than the single estimate obtained
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a b

Fig. 1MSE for the first DOA versus the SNR with K = 2 sources, N = 1000 snapshots, θ1 = 18°, and θ2 = 36°: (a) Na = 8 antenna elements and (b)
Na = 16 antenna elements

by applying version II. The same observation holds for
sufficiently high SNR values even if Na is small (Na = 8).
In Fig. 2, we simulate a more adverse situation in which

the DOAs are estimated from a very limited number of
snapshots (N = 3 for example). The major advantage
of our new estimator is now revealed. In fact, both ver-
sions of the new technique outperform by far, in terms of
estimation accuracy, the RM estimator with an advantage
for version II over version I (the advantage of exploiting
the Toeplitz structure is now clearer). Yet, the former’s
performance saturates at very high SNR values whereas
the latter’s improves linearly with the SNR. The MT-BCS
technique shows in Fig. 2 good performance in the case of
short data records (i.e. N = 3). Unfortunately, its compu-
tational complexity is dictated by the grid discretization

step, and a trade-off between complexity and performance
must be made.[19].
In Fig. 3, we provide the probability of separation ver-

sus the angular separation and the SNR. The probability
of separation, as defined in [20], states that two signals
are said to be resolved if their respective DOA estimates,
θ̂1 and θ̂2, are such that |θ̂1 − θ1| < |θ1 − θ2|/2 and
|θ̂2 − θ2| < |θ1 − θ2|/2. The root-MUSIC technique
outperforms the two versions of the annihilating filter
technique at extremely low angle separations. However,
the AF technique succeeds in resolving over 95% of the
possible cases starting from a separation of 	θ = 10°.
Clearly, AF-version II has a better resolution performance
with closely spaced angles. Figure 3b depicts the probabil-
ities of resolution as function of the SNR values. Both AF
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Fig. 2MSE for the first DOA versus the SNR with K = 2 sources, N = 3 snapshots, θ1 = 18°, θ2 = 36°, and Na = 8 antenna elements

techniques succeed in resolving the sources in 90% of the
cases starting from the SNR value of 3 dB.

5.2 Single-shot case: comparison against the DML and
Bayesian methods

Now, we consider a situation which is evenmore challeng-
ing where we assume that the receiver needs to estimate
the DOAs from a single snapshot. In this situation, we
compare the performance of our method against that of
three estimators that are tailored specifically to the single-
shot case: the Bayesian method of [12], the single-shot
DML estimator [14], and ST-BCS. We recall that, accord-
ing to the recent survey of [14], the DML technique stands
as the most accurate among various single-shot estima-
tors. We plot in Fig. 4 the MSE for the four estimators for
N = 1 (i.e. only one sample is available at the receiver side)
and Na = 16 receiving antenna branches.
The three existing estimators were simulated using a

discretization step s = 180/100 (in the remainder of this
paper, we will characterize the grid step, s, by the integer
number R where s = 180/R). We observe from this figure
that both versions of the newly developed AF-based esti-
mator are still able to estimate the DOAs over a wide SNR
range.
We see also from Fig. 4 that for sufficiently high SNR
values the MSE of version II saturates, contrarily to ver-
sion I. This is because in this SNR region the signals

are almost noise-free and therefore the elementary cross-
covariances’ estimates are already noiseless. They can be
thus exploited as they are (as done in version I) to pro-
vide a large number of sufficiently accurate estimates
θ̂

(l,p)
k without prior averaging (as done in version II). In
fact, averaging along the secondary diagonals would sim-
ply provide a number of statistics that are as accurate as
the elementary cross-covariances themselves, and hence,
the performance in terms of DOA estimation does not
improve (saturation).
On the other hand, the existing single-shot techniques
(Bayesian, DML estimators and ST-BCS) exhibit a slight
advantage at low SNR levels, but their computational load
is extremely much higher. In fact, in light of the complex-
ity analysis presented in Table 1 at the end of Section 3.3,
the complexities of the DML and Bayesian algorithms are,
respectively, in the order of NBayesian

oper = 35.32 × 106 and
NDML
oper = 94.42×106 operations against onlyNAF

oper = 2484
operations for the proposed estimator. This amounts to

complexity ratios in the order of NBayesian
oper
NAF
oper

≈ NDML
oper

NAF
oper

≈ 104.
Yet, even at these extremely high computational loads, the
traditional single-snapshot algorithms are not able to out-
perform the new estimator for medium to high levels. Of
course, as stated previously, for extremely large values of R
(very dense grid search), these two estimators would ulti-
mately outperform our new method over the entire SNR
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a b

Fig. 3 Probability of resolution (a) versus angular separation (N = 3 and SNR = 15 dB) and (b) versus SNR (	θ = 15°and N = 3)

range, but unfortunately their complexities become even
more prohibitive9. For example, under the same simula-
tion setup of Fig. 4 (in particular Na = 16 and K = 2),
these two estimators will outperform the AF-based tech-
nique, over the entire SNR range, by setting R = 500
(i.e. estimating the DOAs at a grid resolution of 0.36°).
However, the complexity ratios become in the order of
NBayesian
oper
NAF
oper

≈ NDML
oper

NAF
oper

≈ 106.
The new method is therefore very useful (in terms of

accuracy/complexity trade-offs) in applications where a
single snapshot is to be used. This is encountered in
many situations where a very high estimation update
speed is required. These applications can be indeed
enhanced by providing a DOA estimate once a sin-
gle sample is acquired instead of waiting for a larger
number of measurements. Furthermore, in many other
practical situations, the DOAs may change apprecia-
bly from one snapshot to another due to the fast
motion of the sources. For all these systems, our new
AF-based estimator offers the best accuracy/complexity
trade-offs.

5.3 Time-varying DOAs
To illustrate the time-varying DOA tracking capability of
the new AF-based estimator, we plot in Fig. 5 the esti-
mated DOAs using its version II and the DML algorithm
for two moving sources and an SNR level of 15 dB .
The DOAs were generated assuming that both sources
increase linearly from −60° and −30°, respectively, with
a radial speed θ̇1 = θ̇2 as high as 1.175° per sample, over
80 data snapshots. Both estimators were applied using
N = 1 (i.e. single snapshot). It is seen that both AF
and DML estimates follow accurately the trajectories of
the two time-varying DOAs. Yet, as depicted in Fig. 6,
the AF-based estimator exhibits lower tracking error at
significantly much less computational cost. Furthermore,
since the new estimator performs well with a single data
snapshot, its tracking performance will prove the same
no matter the angular speed ranges of the DOA time
variations reach.
Now coming back to the root-MUSIC estimator, recall

that it was assessed from Fig. 1 to outperform our newAF-
based estimator for large window sizes. This was for con-
stant DOAs. Actually, for time-varying DOAs, depending
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Fig. 4MSE for the first DOA versus the SNR with K = 2 sources, N = 1, θ1 = 20.7°, θ2 = 40.5°, Na = 16 antenna elements, and 16−QAM

on the angular speed range, the AF-based estimator might
outperform root-MUSIC even when data records are not
short. In fact, when the DOAs are not constant over a
time period, applying the root-MUSIC algorithm locally—
over an observation window of short size—would simply
return an estimate of the average DOAs over this consid-
ered window. Clearly, in this case, the performance of the
root-MUSIC algorithm is affected by the size of the local
window and the DOAs speed. Indeed, as speed increases,
the DOAs tend to vary appreciably within the process-
ing window duration and, hence, the performance of the
root-MUSIC estimator degrades as the approximation of
locally constant DOAs becomes increasingly inaccurate.
Our new estimator, however, does not suffer from this
drawback since it succeeds in accurately estimating the
DOAs from very short data records and since it is also very
robust to fast DOA time variations (as seen from Figs. 2
and 5). This behaviour is illustrated in Fig. 7 where we
show the operational regions, in terms of window sizes
(N) and DOA speeds (θ̇ ), for the two estimators. A region
is attributed to a given estimator when this estimator
shows lower MSE for all the couples (N, θ̇ ) in this region.
We see that when the DOAs vary so rapidly, our new esti-
mator outperforms the RM technique even in the case of
multiple snapshots (upper right corner of Fig. 7) contrar-
ily to what was observed in Fig. 1 where the DOAs where
assumed constant (which corresponds to θ̇ = 0°/sample
and N = 1000).

5.4 Performance of the channel powers and SNR
estimators

Here, we assess the performance of the channel power
estimator derived in section IV. For two different values
of the observation window sizes, namely N = 10 and
N = 1000, we plot in Figs. 8 and 9, respectively, the
NRMSE for the channel power estimator using both ver-
sions I and II as a function of the true SNR. First, notice
from Fig. 8 that the channel power is estimated quite accu-
rately using only few received samples,N = 10 snapshots,
especially in the moderate/high experienced SNR values.
Naturally, the estimation accuracy is enhanced in Fig. 9 for
a larger window size, i.e. N = 1000 where both versions
provide very accurate estimates for the channel power, a
key parameter that is often used for the design of wire-
less communication schemes. We also observe from these
two figures, for these large antenna array-sizes (Na = 16
and Na = 32), the performance improvements of version
I against version II at low SNR values, a fact that is mainly
due to the improvements in DOA estimation in this region
as explained previously (see comments on Fig. 1).
Lastly, Fig. 10 depicts the NRMSE for both SNR esti-

mators as function of the true SNR values for different
values of Na. It is seen from this figure that performance
improves by increasingNa, which is hardly surprising. Yet,
the SNR estimates are not as quite accurate as those of
the channel strength. This stems mainly from the estima-
tion error on the noise variance. At a first sight, one would
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a b

Fig. 5 True DOAs and their estimates with QPSK, K = 2 sources, N = 1, θ̇1 = θ̇2 = 1.175°/sample, R = 100, Na = 16 and SNR=15 dB: (a) AF-based
(version II) and (b) DML

Fig. 6 Tracking error of both estimators with QPSK, K = 2 sources, N = 1, θ̇1 = θ̇2 = 1.175°/sample, R = 100, Na = 16, and SNR= 15 dB
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Fig. 7 Operational regions for the AF-based (white surface) and the root-MUSIC (black surface) estimators with K = 2, Na = 8, and SNR = 25 dB

argue that since the channel strengths are increasingly
more accurate at higher SNR values, then the estima-
tion error on the noise power should also remain con-
stant and so does the SNR estimates. This is simply not
true because as the true SNR increases, the true channel
strength increases as well (for a fixed true noise vari-
ance) and the relative estimation error εk = |ĥk|2 − |hk|2
is higher although the normalized error ε̃k = εk/|hk|2

remains constant in average (i.e. the channel estimates’
NRMSE remains constant). Consequently, larger {εk}Kk=1
yields a higher estimation error on the noise power (or
equivalently the SNR); εk can be even larger than 2σ 2

to be estimated itself. For a larger number of receiving
antenna elements (Na = 32 for example), the SNR esti-
mates are, however, reliable for the entire considered SNR
region.

Fig. 8 NRMSE of the channel power estimators (versions I and II) with N = 10, θ1 = 18°, θ2 = 36°, K = 2, Na = 16, 32, and σ 2 = 2
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Fig. 9 NRMSE of the channel power estimators (versions I and II) with N = 1000, θ1 = 18°, θ2 = 36°, K = 2, Na = 16, 32, and σ 2 = 2

6 Conclusions
In this paper, we derived a new DOA estimation method
for multiple planar waves impinging on a ULA antenna
array. The transmitted sources and the noise components
are assumed to be spatially and temporally white. The new
method is based on the annihilating filter technique. It

was seen that the new method exhibits accurate statisti-
cal performance while having a low computational cost.
Its major advantage is its capability of accurately resolving
DOAs as close as 10°from short data snapshots and even
from a single snapshot. This capability makes this new
estimator well geared toward applications that require

Fig. 10 NRMSE of the SNR estimators (versions I and II) with θ1 = 18°, θ2 = 36°, K = 2, Na = 8, 16, 32, and N = 1000
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DOA estimation of fast moving sources or require up-to-
date estimates for the DOAs over very short observation
windows. The estimated DOAs were then used to easily
estimate the channel powers and SNRs for each source (or
user).
Endnotes

1 Extensions of the proposed AF-based technique to the
problem of joint angle and delay estimation (JADE) [21]
falls beyond the scope of this paper.

2 The signal ak(n) can be complex symbols taken from
any constellation such as QPSK, M-PSK and M-QAM or
simply complex Gaussian.

3This is because all the cross-covariances that belong
to any given secondary diagonal of the covariance matrix
have the same expression.

4One could decide to consider the upper-triangular
matrix, i.e. i < l. But this does not change the estimator,
as seen from (5), since this will only introduce a negative
sign in the exponential argument.

5Note that the vector r(l)
θ contains all theNa−l elements

of the lth column that are lying under the main diagonal of
the covariance matrix.

6We mention here that r′(l)
θ plays the role of r(l)

θ that
was previously used when the estimation process was
performed column-wise.

7 This is because this version provides a larger num-
ber of estimates for each DOA, which can be averaged to
obtain a more refined final estimate.

8 Please note that the root-MUSIC techniques has
almost the same complexity of the our AF-based estima-
tor since it involves similar operations of SVD decompo-
sition (but with different matrices sizes) and polynomial
rooting. Also note that we evaluate and refer to the com-
plexity of version I of the new AF-based estimator since it
is more computationally expensive than version II.

9 Their complexities also increase exponentiallywith the
number of unknown DOAs, K, contrarily to the proposed
estimator whose complexity increases only polynomially
with K (see Table 1 for K = 4).
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