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Abstract

The accelerated advancement in modeling, digitizing, and visualizing techniques for 3D shapes has led to an
increasing amount of 3D models creation and usage, thanks to the 3D sensors which are readily available and easy to
utilize. As a result, determining the similarity between 3D shapes has become consequential and is a fundamental task
in shape-based recognition, retrieval, clustering, and classification. Several decades of research in Content-Based
Information Retrieval (CBIR) has resulted in diverse techniques for 2D and 3D shape or object classification/retrieval
and many benchmark data sets. In this article, a novel technique for 3D shape representation and object classification
has been proposed based on analyses of spatial, geometric distributions of 3D keypoints. These distributions capture
the intrinsic geometric structure of 3D objects. The result of the approach is a probability distribution function (PDF)
produced from spatial disposition of 3D keypoints, keypoints which are stable on object surface and invariant to pose
changes. Each class/instance of an object can be uniquely represented by a PDF. This shape representation is robust
yet with a simple idea, easy to implement but fast enough to compute. Both Euclidean and topological space on
object’s surface are considered to build the PDFs. Topology-based geodesic distances between keypoints exploit the
non-planar surface properties of the object. The performance of the novel shape signature is tested with object
classification accuracy. The classification efficacy of the new shape analysis method is evaluated on a new dataset
acquired with a Time-of-Flight camera, and also, a comparative evaluation on a standard benchmark dataset with
state-of-the-art methods is performed. Experimental results demonstrate superior classification performance of the
new approach on RGB-D dataset and depth data.

Keywords: 3D descriptors, Shape signature, Geodesics, Weighted graphs, Object recognition, Classification, Machine
learning, Neural networks

1 Introduction
There has been an explosive growth in the usage of
3D models in recent years due to quantum jump in 3D
sensing technology to model, digitize, and visualize 3D
shapes. This digital revolution can be attributed to sub-
stantial and continuous improvements in microelectron-
ics, microoptics, and microtechnology. These expensive
3D sensors which were once only available for specialized
industrial applications are now commercially available for
research communities and general public for 3D recon-
struction, mapping, SLAM, human-machine interaction,

*Correspondence: vijaya.saarland@gmail.com
Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000
Clermont-Ferrand, France

service robotics, gaming, preserving cultural heritage,
security and surveillance, 3D printing, CAD, and others
[1]. As a direct result of this, there has been an expo-
nential increase in the amount of 3D models usage and
wherefore determining the similarity between 3D models
has become crucial and is also at the core of shape-
based object detection, recognition, and classification. In
order to compare similarity between two shapes, a suit-
able numerical representation of the shapes is necessary
to output a quantitative similarity score. A shape descrip-
tor is numerical representation of a 2D or 3D shape in
the form of vectors or graph data-structures and is exten-
sively used to extract and describe features at visually
important regions in the object. The distance between two
feature vectors quantitatively represents the dissimilarity
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between their corresponding shapes; the more similar the
objects are, the lower the dissimilarity score, and a score
of zero indicates that the two shapes are identical [2].
The dissimilarity measure can be formalized by a function
defined on pairs of descriptors indicating the degree of
their resemblance; a dissimilarity measure d on a set S is a
non-negative valued function d : S×S �→ R

+∪{0}. In gen-
eral, dissimilarity score follows the properties of identity,
positivity, symmetry, triangle inequality, and transforma-
tion invariance [3]. Many decades of active research has
been done on shape representation for object classifica-
tion, recognition, and detection. As a result, many differ-
ent approaches have been proposed to solve this problem,
and many taxonomical classifications of the basic idea
behind these approaches exist. An elementary classifica-
tion can be based on application to 2D or 3D shapes (see
Fig. 1). In existing literature, 2D shape descriptors are clas-
sified into two categories: contour-based, region-based,
and a hybrid of these two [4–6]. A very good generic clas-
sification of shape-feature extraction approaches is given
by Yang et al. [7]. And for matching 2D shapes involv-
ing non-rigid deformations, the methods involve finding

intrinsic near isometries [8–10] or perform shape match-
ing in appropriate quotient space, where the symmetry has
been identified and factored out [11]. The 3D descrip-
tors, on the other hand, exclusively depends on the object’s
surface properties or its interior rather than attributes
like color and texture [12] which are, otherwise, exten-
sively used in 2D image recognition and retrieval [13]. The
development of a good 3D shape descriptor poses several
technical challenges, including, in particular, the high data
complexity of 3D models [14–16] and their representa-
tions involving dynamism, shape flexibility and structural
variations [14, 16, 17], noise, occlusions, and incomplete-
ness present in them [12, 18]. Zhang et al. [13], Tangelder
et al. [19], Akgül et al. [20], and Kazmi et al. [4] have
broadly classified the 3D shape descriptor approaches
into three classes: feature-based, graph-based, and oth-
ers. Others are either geometry-based, 2D view-based, or
transform-based methods.

1. Feature-based [21–28]
2. Graph-based [29, 30]
3. Geometry-based [31–38]

Fig. 1 Taxonomical classification of shape analysis techniques. At the root, they can be classified based on dimensionality of the model (2D or 3D).
The proposed approach is a combination of region, feature, and graph-based method as highlighted with indigo font color
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Feature-based methods have gained prominence as a
consequence of SIFT invention by Lowe [39]. Since then,
they have become de facto standard in image process-
ing due to their good performance. The term features is
often used to refer to persistent elements in an image [26].
Zhang et al. [13] have classified feature-based approaches
into four types:

1. Local features;
2. Global features;
3. Distribution-based;
4. Spatial map.

Local features extract information around salient
regions (visually important) in the image, while global
features describe the whole image. This local or global
“description” of the image is called feature descriptors or
just descriptors. A shape descriptor is a numerical rep-
resentation of a 2D or 3D shape in the form of vectors
or graph data-structures. Graph-based shape analysis is
essentially different from vector-based feature descrip-
tors: they encode the geometrical and topological shape
properties in a more faithful manner than vector-based
descriptors, however, at the expense of their complexity
and difficulty to construct. Multi-resolution Reeb graphs
[29] and skeletal graphs [30] are the classic examples
of this type. On the contrary, geometry-based methods
either consider multiple views of the model or exploit the
geometric and spatial properties of the points and weigh
them. In general, they can be further classified into the
following types [19]:

• View-based. A descriptor of each 3D model is
constructed from multiple orthographic view
directions. Similarity search is done with either shock
graph matching [40, 41] or light-field descriptor
dissimilarity [31].

• Deformation-based. A pair of 2D/3D shapes is
compared by measuring the amount of deformation
required to register the shapes exactly. However,
Shape fitting [42] or Shape evolution [43] are difficult
for 3D shapes.

• Point set methods. Here, the descriptor of a shape is
given by weighted 3D points. In the first step, the
shape is decomposed into its components, and then
each component is represented using a weighted
point [37]. Curvature of points for example can be a
very good measure for weighing [38].

• Volumetric error. It is based on calculating a
volumetric error between one object and a sequence
of offset hulls of the other object [34]. Sánchez-Cruz
and Bribiesca [33] presented a method which relates
the volumetric error between two voxelized shapes to
a transportation distance measuring how many

voxels have to move, and how far, to change one
shape into another.

Shape analysis approaches can also be flattened into two
groups: heat diffusion [15, 17, 44, 45] and non-diffusion-
based [21, 24, 46] shape features, according to [47].
The proposed approach in this article can be distantly

related to Osada’s shape distributions method [21]. Shape
distribution is a feature-based idea which is a combination
of global and distribution-based methods. It is a simplis-
tic method which reduces the shape matching problem
to sampling, normalizations, and comparison of proba-
bility distributions. It represents the shape signature for
a 3D model as a probability distribution sampled from
a shape function measuring geometric properties of the
3D model. This generalization of geometric histograms
is called shape distribution (Fig. 2). Shape distributions
measure geometric properties relied on distance, angle,
area, and volume measurements between random surface
points. Osada et al. [21] have experimented five shape
functions (Fig. 3):

• A3: angle formed by three random surface points,
• D1: distance of a surface point to the center of mass

of the model,
• D2: distance between two random surface points,
• D3: square root of the area of the triangle defined by

three random points,
• D4: cube root of the volume of the tetrahedron

defined by four surface points,

which were chosen for their simplicity to compute and
understand, and also because they produce distributions
that are invariant to rigid motions and tessellation, insen-
sitive to small perturbation and scale invariant (in case
of A3).
However, sensor data is actually 2.5D, and it can only

give the partial view information of an object in single
acquisition. In order to recognize the object in any pose
in real world, it is necessary to have a complete 3D infor-
mation of the object or multiple complementary views
of the same object. As a result, the shape of an object
cannot be determined by a single view, and shape distri-
bution for the same object is completely different when
viewed from another pose. Interestingly, the 3D keypoints
are repeatable and consistent across different views. This
wonderful property of 3D keypoints has been realized, the
same five shape functions byOsada et al. [21] are analyzed,
and it has been found that the geometric distributions
of 3D keypoints are unique for individual object. Good
3D keypoints are like anchor points which are stable and
holds the object for any rigid deformation/transformation.
The shape distribution of them are similar across mul-
tiple views, and when trained using machine, learning
algorithms can efficiently classify the object’s instances or
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Fig. 2 Shape distribution-based similarity measurement [21]. The 3D models are represented as distribution of Euclidean shape functions and
similarity is measured using histogram-based fidelity scores

categories. In previous work, performance evaluation of
different 3D keypoint detectors was conducted on RGB-D
and depth data [48], and it has been observed that ISS3D
and SIFT3D are most repeatable keypoints and robust.
In this article, the PDFs of geometric/spatial distribution
of ISS3D keypoints has been analyzed and successfully
exploited to represent an object. Euclidean and topo-
logical space-based norms are considered to build these
distributions. KPD (KeyPoint Distribution) term is used to
refer the distributions that are based on Euclidean norms
and GKPD (Geodesic KeyPoint Distribution) is based on
shortest paths on object’s manifold.
GKPD is a combination of feature, graph, and geometry-

based methods. It capitalizes the pose invariance and
stability of feature detectors. With graph representation
of 3D points as nodes and geodesics between them as
edges, the GKPD exploits the surface and topological
information on the object’s manifold. And lastly, it consid-
ers the multiple complementary 2.5D views of the object
to be able to detect it in the real world in any pose
(a combination of view-based and point set methods in
geometry-based approaches).

Detecting objects and labelling the real world scene with
semantics (semantic mapping) are a must for future ser-
vice robots equipped with 3D sensors like Time-of-Flight
(ToF) cameras. The authors’ major contribution in this
paper is threefold. First, to build a robust yet simple shape
signature which considers the topography of an object and
is consistent all through pose variations while being easy
to implement. Second, to create a dataset of objects using
a SwissRanger ToF camera [49] and an electronic device to
measure pose changes. Third, to make a Machine Learn-
ing Model which learns these shape signatures and clas-
sifies the object instances or categories. The performance
of KPD and GKPD is also compared with other state-of-
the-art methods, utilizing the same Washington RGB-D
dataset [50]. The pipeline of the complete methodology is
shown in Fig. 4. The structure of the paper follows as a
brief introduction to the importance of 3D shape analy-
sis and different methods to represent shapes in Section 1.
In the same section, a taxonomical classification of shape
representation approaches and background for shape dis-
tribution is given. Related work is discussed in Section 2.
In Section 3, an explanation of the need for a novel

Fig. 3 Shape functions by Osada et al. [21]. All the distances are calculated on Euclidean space
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Fig. 4 Pipeline of the approach depicting different steps in it. The raw point cloud is filtered to make it noise-free. The filtered point cloud is then
converted into a graphical representation, where every node is connected with every other node within certain sphere around it. Geodesics and L2
norms are calculated using Dijkstra algorithm. A distribution is made for each view of the object based on these distances and normalized to a PDF.
In the last stage, these PDFs are fed into a classifier to build a hypothesis model

shape distribution signature is presented and definitions
of some important concepts used are given. In Section 4,
the description of the approach is presented with many
subsections for the best understanding. Section 5 intro-
duces few fundamental concepts about Machine Learning
and two different standard libraries used. In Section 6, the
utilized datasets are briefly described. In the last sections
(Sections 7 and 8), experimental results and conclusions
are presented.

2 Related work
Since the introduction of Osada’s shape functions, there
were many improvements done and also new shape func-
tions have been implemented, whereas the authors of
[51] proposed D2a, an improvement of D2 by con-
sidering area ratio of surfaces as additional dimension,
whose of [52] split the D2 into three types of dis-
tances based on the geometric properties of the line
connecting two points (IN ,OUT , and MIXED) depend-
ing if the line lies completely inside the model or out-
side or both. They applied this method to compare
solid CAD models. They also extended this method to
automatically categorize a large model database [53].
A 3D histogram is implemented in [54]: two dimen-
sions are for local and global shape signature and the
third one is for distance between local shape pairs.
This is known as Generalized Shape Distributions.
Some shape histogram methods accumulate the sur-
face points in the bins [22], while density-based employ
richer sets of multivariate shape features with a ker-
nel strategy to estimate the distribution [20, 55].
Ohbuchi et al. [56] investigate shape histograms that are
discretely parametrized along the principal axes of iner-
tia of the model and also extended D2 shape function by
considering the angle between the surfaces on which two
random points are located [57]. This extension called as
Absolute Angle-Distance histogram (AAD) outperformed
the D2 shape function but at the cost of computation
time. Ohbuchi et al. further improved this method by
multi-resolution approach, computing a number of alpha-
shapes at different scales and computing AAD descriptor

for each alpha-shape. Liu et al. [58] proposed another vari-
ation of shape distribution function (thickness histogram)
estimating thickness of the 3D model from all directions.
Rea et al. [59] described a surface portioning spectrum
distribution, which measures the number of connected
regions against a range of tolerance values [59]. In [60],
they designed a shape descriptor based on the similar-
ity between two 3D models by measuring the similarity
of a series of 2D slices. They compared the similarity
between two 2D slices using a D2 shape function [19].
The proposed approach uses Euclidean norm as well as
geodesics, and it can be most closely related to the work of
[21, 61–63] in that the authors also use probability distri-
bution of geodesic distances as shape signature. However,
it significantly differs from the geodesics extracted, the
PDFs constructed, and the similarity measure considered
in order to compare shapes and the concerned 2D/3D
models themselves. A very good shape signature ϕ (Ω)

ought to be invariant to certain class R of deformations,
ϕ (RΩ) = ϕ (Ω) for any R ∈ R. Rabin et al. [61] consid-
ered for each point x ∈ S ⊂ Ω , the set

{
dΩ(x, y)

}
y∈E⊂Ω

⊂
R

+ of distances to a subset of E ⊂ Ω . The set S is a dis-
crete uniform sub-sampling of the manifold Ω obtained
using farthest sampling principle [64] (e.g., red, green, and
blue points in Fig. 5). The set E is equal to all points in
manifold (E = Ω) for 3D surfaces and boundary points
(E = ∂Ω) for 2D shapes. At each location x ∈ S, the local
geodesic descriptor px ∈ R

d is a vector of d quantiles,

px = (Qx (αl))1≤l≤d ∈ R
d , (1)

where ∀x ∈ S

Qx (α) = F−1(α) = max
{
δ ∈ R

+, Fx(δ) ≤ α
}

(2)

is statistical quantile measure, 0 ≤ αl ≤ 1 are equi-
spaced values, and Fx is cumulative distribution function
of the set

{
dΩ (x, y) , y ∈ E

}
. The global descriptor is then

defined as a uniform sampling of local descriptors of n
points on the manifold,

ϕ (Ω) = {
pxi

}
i∈I ⊂ R

d, I = {0, . . . , n − 1} . (3)



Ghorpade et al. EURASIP Journal on Advances in Signal Processing  (2017) 2017:52 Page 6 of 22

Fig. 5 Histogram of the distribution of the geodesic distance to several points [61]. The geodesics from seeds indicated by blue, green, and red
propagate to all the points in the image, and their individual histogram distribution is depicted on the right

Then, Wasserstein metric related to the Monge Kan-
torovich optimal transport problem was used as similarity
measure to compare ϕ (Ω) of different shapes. On the
other hand, Ion et al. [63] considered geodesic eccentric-
ity, i.e., quantile Qx(1), to construct a histogram-based
descriptor, which actually calculates maximum geodesic
distances corresponding to boundary points.
Hamza and Krim [62] calculated the geodesics on tri-

angular meshes and constructed geodesic shape distri-
butions which are then compared using Jensen-Shannon
divergence [65]. They calculated the geodesic distance
from the centroid of each triangle to all the centroids in
the mesh and integrated it to get a global measure, f : C ⊂
M → R,

f (ci) = 1
|C|

∫

cj
dM

(
ci, cj

)
dcj, (4)

where dcj is the area of the triangle having centroid cj and
|C| is the total area of the manifoldM.
Gal et al. [66] proposed pose-oblivious shape signature,

a 2D histogram which is a combination of two scalar func-
tions defined on the boundary surface of the 3D shape:
local-diameter measures the diameter of the 3D shape in
the neighborhood of each shape and centricity, which is
similar to D2, considers average geodesic distance instead
of Euclidean distance. Osada et al. [21] defined five shape
functions which basically calculate Euclidean distances
between the random points. They used their distributions
to retrieve similar shapes, thanks to a couple of statistical
dissimilarity measures.
All these approaches are applied to synthetic datasets

(Table 1), where 3D models or 2D shapes are manually
designed, hence, perfectly extracted, and do not represent
real world scenarios. Consequently, all the above men-
tioned approaches fail in performance due to the second
problem mentioned in Section 3.

3 Background
Shape distribution by Osada et al. [21] is a global feature-
based approach which utilize shape functions developed
on distance, angle, area, and volumetric measurements
between random points on the 3D model. Osada et al.
achieved very good classification results on the dataset
from 3D polygonal models and developed a web-based
search engine. However, shape distributions have some
shortcomings. The shape functions are built on L2 norms,
in Euclidean space, without considering the topological
information. As a result, two 3D models with different
surfaces have similar distributions (see Fig. 6).
The second problem arises from the fact that the sensor

data is 2.5D, and it can only give the partial informa-
tion of an object in single acquisition. As a result, the
shape of an object cannot be determined from shape dis-
tribution from a single view, as shape distribution for the
same object is completely different from those obtained
from different views (Fig. 7). Apart from these two flaws,
shape distribution is one of the basic methods to represent
shape. In this paper, a novel idea is suggested to represent
the shape of an object so as to recognize it in the real world
in any pose. Those two shortcomings mentioned are over-
come by considering the object manifold and efficient 3D
keypoint detectors. The presented approach is completely
different from Osada’s except the use of PDFs to represent
shape.

Table 1 Approaches and used standard databases

Database Approaches

Princeton Shape Benchmark [20, 51, 54, 66]

McGill 3D Shape Benchmark [61, 63]

CAD & VRML models [52, 56–59]

Internet WWW (Polygonal meshes) [21, 62]

MPEG7 [61]

ISDB, CDB, Sculpteur (SCU), SHREC Watertight (SHREC-W) [20, 66]
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Fig. 6 Similar D2 shape distributions for Swiss cheese and Gupta Socket [52]

Fig. 7 D2 shape distribution for two different guitar poses (captured using ToF camera). Left: b is rotated 30° from a. Right: top represents a, bottom
for b. The red points are actual D2 distribution of the views, and fitted with smoothing splines and polynomial curves (blue curves) of degree 9
instead of piecewise linear functions used by Osada et al. [21]
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3.1 Minimal paths
The first problem is solved using geodesics or minimal
paths instead of Euclidean distances; this preserves the
topological information of the object. The geodesic dis-
tance dΩ(xs, xe) between two points xs, xe is the length of
the geodesic curve γ ∗ on a Riemannian manifold � ⊂ R

2

associated to the surface S ⊂ R
3 [67]:

dΩ(xs, xe) = min
γ∈P(xs,xe)

L(γ ) = L(γ ∗) (5)

The length of the curve γ̄ :

L(γ̄ ) = L(γ ) =
∫ 1

0

∥∥γ ′∥∥
Tγ (t)

dt (6)

where Tx is a tensor field (Riemannian metric) being pos-
itive definite matrix Tx ∈ R

d×d and P(xs, xe) is a fixed pair
of start (xs) and end point (xe):

P(xs, xe) = {γ : [0, 1] → � |γ (0) = xs and γ (1) = xe }
(7)

Geodesics are easy to calculate on triangulated meshes
and on 2D images. However, point clouds are often noisy
and the data depend on physical properties like reflec-
tion and absorption of light by the objects (Fig. 8). As
a result, unconnected sets of point clouds for the same
object are frequently obtained. Triangulation of these
kinds of point clouds often leads to unconnected meshes,
on which calculating geodesics is not trivial. In this sce-
nario, graph theory comes to rescue. Generally, the word
“geodesic” is mostly used for surfaces and meshes; how-
ever, it is also commonly used for calculating the shortest
paths on graphs. The numerical computation of geodesic
distances has several applications including surface and
shape processing, particularly segmentation [68, 69], sam-
pling, meshing [70], and shape comparison [62, 63].

3.2 3D keypoints
The second flaw, shape variation due to pose changes, can
be tackled by considering efficient 3D keypoint detectors.
The 3D keypoints or interest points are stable, repeatable,
and consistent across different views. Good 3D points are
like anchor points which are stable and hold the shape

of the object for any rigid deformation or transforma-
tion [48]. Constructing shape functions on 3D keypoints
instead of all the points on the surface seems a good bet.

4 Approach
There are four stages in the proposed approach (see
Fig. 4). Firstly, the point cloud is pre-processed to obtain
noise-free object representation and then detect ISS3D
keypoints for every single view of all the objects. Then,
each view of the object is transformed into a graph and
the shortest paths between keypoints are calculated. Every
view is then represented as probability distributions of
geodesics. In the last stage, distribution learning and clas-
sification are carried out.

4.1 Point cloud filtering
The first step in the approach is to filter the point cloud
from systematic and non-systematic noise. This has been
achieved by using statistical outlier filters and jump edge
filters [71]. The noise-free point cloud is then utilized in
the next steps to construct graphs and distributions.

4.2 Intrinsic shape signatures
A meticulous experiment is conducted to determine the
most stable and robust 3D keypoints for Washington
RGB-D [50] data set and ToF dataset (Fig. 8). ToF dataset
is a collection of several household objects (Fig. 17)
obtained using a SwissRanger camera mounted on a
Cartesian robot (AFMA) (Fig. 9a, b). The absolute and
relative repeatability tests [72, 73] of several 3D key-
point detectors are calculated using the pose information
obtained from ICP [74] (augmented with AFMA pose
estimates and Washington pose files). It has been discov-
ered that intrinsic shape signatures, called here ISS3D,
are more robust against rigid deformations than other
detectors (see Fig. 10).
Indeed, the intrinsic shape signature proposed by [75]

characterizes the local/semi-local region of a point cloud,
consisting of an intrinsic reference frame and a highly
discriminative feature vector encoding the 3D shape char-
acteristics. It uses a view-independent representation of
the 3D shape to match shape patches from different
views directly and a view-dependent transform encoding
the viewing geometry to facilitate fast pose estimation.

Fig. 8 The four possible intrinsic reference frames as proposed and developed by [75]
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Fig. 9 a, b AFMA robot’s effector mounted with SR-4K camera and
focussed on the object

The ISS3D, Si = {Fi, fi} at a basis point pi, consists of
two components. First, Fi = {

pi,
{
exi , e

y
i , e

z
i
}}
, an intrin-

sic reference frame with pi as origin and
{
exi , e

y
i , e

z
i
}
as

set of basis vectors. Second, a 3D shape-feature vector,
fi = (

fi0, fi1, . . . , fiK−1
)
, a view independent representation

of the local/semi-local 3D shape. However, the basis spec-
ifies the vector of its axes in the sensor coordinate system,
hence view dependent, and directly encodes the pose
transform between the sensor coordinate system and the
local object-oriented intrinsic frame. The first compo-
nent, intrinsic reference frame Fi at basis point pi with a
supporting radius rframe, is defined using the eigen analysis
of the point scatter matrix as follows:

1. In the first step, each point pi is weighted with a value
inversely proportional to the number of points in its
spherical neighborhood of radius rdensity.

wi = 1
∥∥{

pj :
∣∣pj − pi

∣∣ < rdensity
}∥∥ (8)

Fig. 10 a Absolute repeatability and b relative repeatability w.r.t.
threshold ε (in m) for different 3D keypoint detectors for Washington
RGBD-D dataset and our depth data. A keypoint extracted from
modelMh , kih and transformed according to the ground-truth
rotation and translation, (Rhl , thl) is said to be repeatable if the
distance from its nearest neighbor, kjl , in the set of keypoints
extracted from the scene Sl is less than threshold ε

This criterion actually helps for uniform weighing of
the points, as some points are sparsely distributed.

2. A weighted scatter or covariance matrix for pi using
all its neighbors pj within a distance rframe is
calculated:

COV (pi) =
∑

|pj−pi|<rframe
wj

(
pj − pi

) (
pj − pi

)ᵀ
∑

|pj−pi|<rframe
wj

(9)

3. The eigen values and eigen vectors are computed in
the decreasing order of magnitude.

4. A 3D coordinate system is constructed using pi as the
origin, and e1, e2, and their cross product e1 ⊗ e2 as
the x−, y−, and z− axes respectively. This reference
system is actually the intrinsic coordinate system, Fi,
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which is a characteristic of the local object shape and
indifferent to viewpoint. However, the basis specifies
the vector of its axes in the sensor coordinate system,
hence view dependent, and directly encodes the pose
transform between the sensor coordinate system and
the local object-oriented intrinsic frame. As the eigen
vector of the scatter matrix computes a direction in
the 3D space based on the amount of point position
variations, its orientation actually has 180° ambiguity.
Due to this, each axis has two possible orientations,
and therefore, the intrinsic reference frame at a basis
point has four variants as shown in Fig. 8.

Only those points with successive eigen values({
λ1i , λ2i , λ3i

})
below a certain threshold are retained after

eigen analysis. The geometric distribution of these points
on the surface is robust against view changes and acts
as anchor points. The geodesics between them maintain
a consistency and are of constant magnitude. A group
of ISS3D keypoints K ∈ S ⊂ Ω is detected, and a set
of

{
dΩ(x, y)

}
x∈K⊂Ω ,y,∈K⊂Ω ,∀x �=y ⊂ R

+ geodesics and L2
norms are calculated between them. It should be noted
that only ISS keypoints are considered, not the complete
ISS feature/descriptor, for building PDFs.

4.3 Graphmaking
Extracting geodesics on a single manifold (or mesh
representation) of an object is trivial. However,
polygonal mesh representation of object leads to
S1, S2, . . . , Sn ⊂ Ω((S1 ∪ S2 ∪ · · · ∪ Sn) 
 Ω) sub-
meshes, on which calculating minimal paths is not
easy. So, the point cloud is represented as a simple
undirected graph without self-loop and edge labels.
Given a point cloud V = (v1, v2, . . . , vn), a weighted
undirected graph G = (V ,E,W ) is constructed. E is the
set of edges, and W are weights on the edges, such that
for edge E(vi,vj), weight W(vi,vj) = L2(vi,vj) (where L2 is
Euclidean L2 norm between two vertices). However, G is
not a complete graph, where every vertex is connected to
every other vertex (otherwise the shortest path is equal to

the Euclidean distance itself ). But it is constructed in a
way that there exists a path to go from one node to any
other node such that no node (especially ISS3D keypoint)
is isolated to be traversed. This is achieved by designing
local complete graph.

4.3.1 Local complete graph
As the name suggests, it is a locally fully connected graph.
All the neighbors (v1, v2, . . . , vk) of a node vi are consid-
ered and connected with vi (Fig. 11b). Then, the graph
is made complete by interconnecting all the neighbors
(Fig. 11c). A k-d tree search is preformed to find the neigh-
bors within a sphere of radius (r = 3.5× average point
cloud resolution). Octree-based neighborhood search is
extremely expensive for graph making. The resultant
graph obtained after performing this local operation on V
is shown in Fig. 12d, e.

4.3.2 Shortest paths
Dijkstra algorithm [76] was used to calculate the shortest
paths from a source keypoint to all the vertices, by iter-
atively growing the set of vertices q until it returns the
shortest path. At each step, the next vertex added to q
is determined by a priority queue consisting of (V − q)
vertices prioritized by their distance label. The algorithm
then loops back, processing the next vertex at the top
of the priority queue. The algorithm finishes when the
priority queue is empty [77]. Figure 13a, b show the
shortest paths between two points. The edge weights for
Fig. 13a are just the Euclidean distances between two ver-
tices. However for Fig. 13b, the surface information was
taken into account for weighting the edges: W(vi,vj) =
C × L2(vi,vj), where C is a penalty factor which depends on
the angle θ between normals at points vi and vj: the higher
the difference in surface location of vi, vj, the higher the
difference in the normals and thus the greater the weight
between them (C=sin

(
arccos

(
vi · vj

))
).

W(vi,vj) =
{
C × L2(vi,vj), if θ �= 0
ε × L2(vi,vj), otherwise,

Fig. 11 Constructing a local “complete graph.” a Point cloud of the object. The neighbors around a point are highlighted inside the circle. b All the
nodes within a sphere of radius (r = 3.5× point cloud resolution) are connected to the parent node. c A “complete graph” is constructed within a
sphere, where every node is connected to another one by a unique edge
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Fig. 12 Graph making from point cloud. a Object (watering can) front view. b Top view. c Point cloud of the object. d Undirected graph constructed
from the point cloud. e Zoomed-in view of the part of graph. Every point in the point cloud is a node. All the nodes within a sphere around a node
are connected

where ε = 0.0001 is a very small value to handle points on
the same plane with zero curvature. As it can be seen, the
shortest path for Fig. 13b chooses the best path along the
handle of the watering can, thus having the fewest changes
(Fig. 12a, b). Figure 13c–e are Euclidean and geodesic
distance maps from the source to all other points.

4.4 KPD: keypoint distribution
As mentioned in Section 4.2, in previous work [48], it has
been discovered that ISS3D keypoints are most repeat-
able and stable keypoints across pose changes. These
keypoints have been extracted from multiple 2.5D views
of each of the several objects, and D2, D3, and A3 are
calculated on them, hereafter referred as KPD2, KPD3,
and KPA3 (KP=KeyPoints). A PDF representation is made
after binning into histograms and normalizing. A major
difference from Osada’s PDF calculation is that random
sampling of KPDs (KeyPoint Distribution) is not per-
formed. Osada evaluated N samples from shape distri-
bution and constructed a histogram by counting how
many samples fall into each of the B-fixed sized bins.
They also applied a costly, complex approach of select-
ing the random points from 3D model by triangulation
and random sampling from each triangle (see Eq. (10) and
Fig. 14). In this current article, a deterministic approach
by considering every possible pair (doublets (KPD2) and
triplets (KPD3 and KPA3)) from limited number of ISS3D
keypoints is carried out. This is much faster as the com-
putational complexity is of the order O(n2) and O(n3).

The computation time to generate single PDF for Osada is
around 50 s including time to random sampling of points,
random sampling of shape distribution, and calculating
shape functions. And for single KPD PDF for the same
object view, it is only 0.5 s (0.1 s for keypoint extraction
and 0.4 s for KPFs (KeyPoint Functions) calculation) on
the same computer. The KP PDF’s are generated by simple
histogram binning and normalization.

P = (1 − √
r1)A + √

r1(1 − r2)B + √
r1r2C (10)

4.5 Shape distribution vs KPD
The major difference between the two being is that KPD
does not describe the shape of the object like shape dis-
tribution rather distribution of anchor points on objects.
The point cloud views of the object are essentially 2.5D.
As a result, we have only partial view information from
each frame. For the object to be recognized in real world
in any pose, this single view information is far from being
sufficient. Moreover, the shape of an object cannot be
determined by a single view, and shape distribution for
the same object varies when pose is changed. In Fig. 15,
it can be seen that the shape functions become more dis-
similar as the change in the pose is increased. Ten views of
an object (guitar) have been considered, the consecutive
views differ by 5° rotation along y-axis, and after generat-
ing distributions from three shape functions (D2, D3 and
A3) and same three KPFs and analyzing them, it has been
observed that KPFs are more rotation and pose invariant

Fig. 13 Geodesics and geodesic distance maps. a Geodesic path (black line) from the source (red circle) to the end (green circle), with no curvature
weights on edges (red line is the Euclidean shortest path). b Geodesic path from source to end with curvature weights on the edges. c Euclidean
distance map from source to all the points. d Non-weighted geodesic map from source to all the points. eWeighted geodesic map from source to
all the points. The point cloud color follows the magnitude of distance proportional to wavelengths in visible spectrum (violet (minimum), red
(maximum))
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Fig. 14 Random selection of a point in a triangle after triangulation of
3D model [21]. r1 and r2 are two random numbers ∈ [ 0, 1] which sets
the percentage distance from vertices A and B, and P is the point
(Eq. (10))

than shape functions. D2 and D3 are greatly affected as
it can be seen in Fig. 15, whereas KPD2 and KPD3 are
more stable and have consistent distribution. It has also
been found that the PDF dissimilarity measure between
the first view and the next consequent views increases by
great amount for shape distributions than KPD, as seen
in Fig. 16a, b. For KPA3 and D3 (Fig. 16c), the dissimi-
larity measure criss-crosses, and KPA3 and D3 shoots up
after certain threshold, it may be due to the 3D keypoints
that might have slightly changed their position but yet
retaining inter-keypoint distance. The graphs in Fig. 15 are
generated by smoothing splines and polynomial curve fit-
ting of degree 9 in contrary to piecewise linear functions
in [21]. It should be also noted that for D2 and D3 the
points did not follow a particular distribution after certain
threshold in pose change, so it was difficult to construct
a curve fitting the points, so they are smoothed to large
extent (Fig. 19b). However, for KPD2, the form of the dis-
tribution is consistent even after 45° rotation of the object
(see Fig. 19a).

4.6 Geodesic keypoint distribution
The following three types of GKPD functions are consid-
ered and evaluated:

• GKPD1: geodesic distance from the graph centroid
to all the keypoints,

• GKPD2: geodesic distance between two keypoints,
• GKPCD2: weighted shortest path magnitude

between two keypoints.

GKPCD2 is the GKPD2-version for a graph weighted by
curvature factor C, and while back-propagating Euclidean
distances are integrated instead of actual edge weights,
curvature-induced edge weights do not follow symme-
try property. Each object view is then represented as a
probability distribution function of GKPD1, GKPD2, and
GKPCD2 values.

4.7 Hybrid keypoint functions
The combination of the Euclidean and topological KPFs
has also been experimented, as the authors hypothesize
that hybrid KPFs capture both the geometrical structure
of the object as well as the surface information. However,
individual KPFs are not strong enough discriminative for
each object category. This hypothesis is tested on object
classification accuracy.

5 Learning and classification
For classification, ensemble method and neural networks
are considered. Both of them are supervised learning
versions, where we present set of training examples of
the form {(x1, y1), . . . , (xm, ym)} for some unknown func-
tion y = f (x). The xi are typically vectors of the
form

〈
xi,1, xi,2, . . . , xi,n

〉
, also called the features of xi and

xij refer to the j-th feature of xi. In this approach, xij
represents the probability value of KPF or shape func-
tion in j-th bin. Concatenating the feature vectors of
Euclidean and geodesic distribution is also experimented,
to get a more robust and distinct feature vector as
this leads to more discriminative feature space for each
class. The y values are typically drawn from a discrete
set of classes {1, . . . ,K} in the case of classification.
Given a set S of training examples, a learning algo-
rithm outputs a classifier, hi from the hypothesis space.
In ensemble methods, a set of classifiers’ individual deci-
sions are combined in weighted or unweighted voting
fashion to classify new examples. The ensembles are quite
often more accurate than the individual classifiers that
make them up. In neural networks, the function f (x) is
composition of other functions gi(x) which are also com-
position of other functions like a network structure with
non-linear weighted sum as the type of composition in
general, f (x) = K

(∑
i wigi(x)

)
, K is an activation func-

tion. Two popular libraries which implement these two
learning methods: XGBoost and Keras, have been consid-
ered.

5.1 Gradient Boosting
Gradient boosting produces a prediction model in
the form of an ensemble of weak prediction mod-
els. XGBoost (eXtreme Gradient Boosting) library
[78] is based on boosted trees by Gradient Boosting
Machine (GBM) [79] and is a highly sophisticated
algorithm robust against all kind of data irregularities.
It has many advantages including regularized boosting,
parallel processing, tree pruning, handling missing val-
ues, and built-in cross-validation. For the evaluation,
multi:softmax model with default booster parameters
and tree-specific parameters is used. Although, several
experiments were carried out on hyper-parameters to
achieve the best performance. The dataset PDFs are split
into training and test sets with the last column being the
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Fig. 15 Shape distributions and KPD’s of multiple views of guitar (taken at 0°, 5°, 10°, 15°, 20°, 25°, 30°, 35°, 40°, 45°). It can be seen that KPD-D2’s and
KPD-D3’s PDF are consistent across pose changes, whereas D2 and D3 have changed their form with pose change of the object

class label. The features being the probability values in
particular range (bin) in KPF. The performance greatly
depends on the bin size of the histograms (PDF) and can
lead to over-fitting with increasing the number of features
as they become redundant and does not convey extra
information.

5.2 Neural networks
Keras deep learning library [80] which is capable of run-
ning on top of either Theano [81] or TensorFlow numer-
ical libraries [82] has been used. It is a minimalist, highly
modular neural network library as the authors say. A
Sequential model is adopted having linear stack of 2D
layers (Dense). The output class values are one hot encoded

adhering to good practice protocols. The baseline neural
network constructed is a simple fully connected network
with one hidden layer containing 200 neurons. Rectifier
activation function is used for hidden layer and sigmoid
for the output layer. For reproducibility of the results, seed
number is set to seven and 10-fold cross-validation with
shuffling.

6 Datasets
To test the performance of KPD and GKPD for object
classification, both RGB-D datasets by Lai et al. [50] and
new depth dataset (SR4K-D1) (see Fig. 17) of household
objects created using a SR-4000 Time-of-Flight camera
[83] and an electronic turntable for recording accurate

a b c

Fig. 16 Dissimilarity measure between the first view and the consecutive views acquired with 5° of rotation increment. Bhattacharya distance has
been used to measure the dissimilarity. It can be seen that Osada’s shape functions (D2 and D3) have higher dissimilarity measures compared to
KPD2 and KPD3 (see a, b), and shape distributions change as the object is subjected to increase in pose change from master view (c) KPA3 and A3
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Fig. 17 SR4K-D dataset made from SwissRangers Time-of-Flight camera with different household objects

pose information are taken into account. TheWashington
dataset contains around 51 object classes. For each object,
there are three turntable sequences captured from differ-
ent camera elevation angles (30°, 45°, 60°). The sequences
were captured with an ASUS Xtion Pro Live camera in
both RGB and depth channels. For experiments, already
segmented, extracted RGB point cloud representation of
objects are used. For evaluation, 31 geometrically differ-
ent objects are considered, each class has at least 800
instances of the object captured at 3 elevation angles.
The ISS3D keypoints are extracted, and KP PDFs are
calculated for every single instance of every class. The
SR4K-D dataset consists of 17 different household objects
captured by a SwissRanger sensor. The camera is fixed
on a tripod, the objects are placed on a turntable con-
nected to electronic device which measures accurately
the amount of rotation. At every 5° rotation, data is
recorded. The raw point clouds have been processed to
remove background, jump edges, and noise to extract
objects using plane detection, PCL SOR (Statistical Out-
lier Removal) [84], and LOS method [71]. For evaluation,
only 12 geometrically different objects from SR4K-D are
considered.

7 Results, evaluation, and discussion
7.1 Evaluation
The results from the two learning methods are shown
in Table 2. For the gradient boosting-based method, the
results are converted from classification error to accu-
racy rate. For neural nets, they are summarized as the
mean and standard deviation of the model accuracy. It
can be seen that the combination of angular (KPA3),
Euclidean (KPD2), and topological distribution (GKPD2
and GKPDC2) of key points clearly outperformed and
almost reached 100% accuracy.While considering individ-
ual distributions, KPD2 and GKPCD2 have highest accu-
racy, and logically, GKPCD2 should be better thanGKPD2
as it considers surface information; however, it must be
noted that dΩ(xs, xe) �= dΩ(xe, xs), as curvature weighted
path does not follow symmetry, but GKPD2 does. Cal-
culating geodesics from the centroid of the model to all
the keypoints does not seem a good approach either, as
the centroid shifts when the object’s view changes and
that explains bad performance of GKPD1 compared to
GKPD2. It can be also seen that A3 is better for RGB-
D dataset for both learning methods. However for depth
data, it is KPD2 and KPD3 that provide better results.
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Table 2 Classification accuracy rate in percent with shape keypoint functions

Keypoint functions Washington RGB-D SR4K-D

Multiclass classification Neural networks Multiclass classification Neural networks

KPD2 93.093 93.380 ± 0.730 90.643 82.570 ± 3.340

KPD3 87.535 87.350 ± 1.630 90.059 83.710 ± 4.010

KPA3 85.212 80.220 ± 1.090 83.041 71.180 ± 5.790

GKPD2 91.228 90.030 ± 0.960 91.328 88.380 ± 4.410

GKPD1 88.110 84.100 ± 0.890 79.532 78.980 ± 5.310

GKPCD2 86.900 83.530 ± 0.810 81.870 81.300 ± 1.940

KPD2 + KPA3 97.9801 97.15 ± 1.46 95.3215 97.15± 1.46

KPD2 + GKPD2 96.961 97.07 ± 0.49 92.3977 94.76 ± 3.30

KPD2 + GKPCD2 97.9926 97.06 ± 3.49 95.9064 93.39 ± 2.90

KPD2 + GKPD2 + GKPCD2 97.824 97.32 ± 0.43 94.7638 94.99 ± 2.96

KPA3 + KPD2 + GKPD2 + GKPDC2 98.4863 98.0448± 1.83 97.274 96.58 ± 2.38

Maximum values are in bold

This performance variance can be explained from that
the RGB-D data has higher resolution (1280 × 1024) [85]
than depth data (176 × 144) [83]; hence, the keypoints
are more probable to be positioned almost at the same
position and the angle between three random keypoints
does not change much. However, for the depth data,
the keypoints are still maintaining their inter-keypoint
distance, so KPD2 and KPD3 are better for depth data,
this can also be confirmed and justified from Fig. 16a–c.
Figures 18 and 19 show the robustness of geodesic D2
against pose changes; however, Osada’s D2 performs
poorly as explained in Section 3. The graphs in Figs. 18
and 19 are generated by smoothing splines and poly-
nomial curve fitting of degree 9 contrary to piecewise
linear functions in [21]. It should be also noted that for
D2 the points did not follow a particular distribution
after a certain threshold in pose change, so it was diffi-
cult to construct a curve fitting the points, so they are
smoothed to a large extent (Fig. 19b, right). However for

KPD2 and GKPD2, the form of the distribution is con-
sistent even after 45° rotation of the object (see Fig. 19,
left).
We also compared our results with other state-of-

the-art methods (Table 3) which used Washington
RGB-D dataset. Our results obtained from the gra-
dient boosting and neural network methods outper-
formed the state-of-the-art classification approaches.
The bin/feature size has reasonable impact on the results
obtained using individual KPFS, as it might lead to over-
fitting or under-fitting (Fig. 20). The PDFs for certain
objects have sparse distribution while for others they
are densely distributed. On a positive note, sparsity can
help to create distinct-features, but objects with similar
shapes/size cannot be distinguished with perfection. In
order to discover the best bin size, a rudimentary set
of experiments is carried out to find the best bin size
which gives better performance. However, when hybrid
KPFs are used, the redundancy in features seemed to be

Fig. 18 Splines of Osada’s D2 shape distribution and GKPD2. Shape distributions and GKPDs of multiple views of a guitar (taken at 0°, 5°, 10°, 15°, 20°,
25°, 30°, 35°, 40°, 45°). It can be seen that GKPD2 is consistent across pose changes, whereas, D2 has changed its form with pose change of the object
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Fig. 19 Probability distributions for the master view of a guitar (left figures) and its view after 45° rotation (right) (Fig. 7). It can be seen that D2 (d
right), after 45° rotation) is very hazy and noisy and far from being similar to its unchanged pose view’s PDF (d left). But KPD and GKPD shape is still
consistent (left, right of a–c). KPDs maintain better consistency than GKPDs when it comes to retaining geometric structure. a Left KPD of master
guitar view. Right KPD of the same guitar after rotation. b Left GKPD of master guitar view. Right GKPD of the same guitar after rotation. c Left
Weighted GKPD of master guitar view. RightWeighted GKPD of the same guitar after rotation. d Left Shape distribution D2 of master guitar view.
Right Shape distribution D2 of the same guitar after rotation
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Table 3 Comparison of classification rate on Washington RGB-D
Objects database

Methods Classification accuracy in %

RGB-D Only D

Random Forest [50] 79.600 ± 4.001 66.8 ± 2.5

Lai et al. [50] 81.9 ± 2.8 53.1 ± 1.7

Non-linear SVM 83.8 ± 3.5 64.7 ± 2.2

IDL [87] 85.4 ± 3.20 70.200 ± 2.001

CNN-RNN [88] 86.8 ± 3.3 78.9 ± 3.8

Bo et al. [89] 87.5 ± 2.9 —

Schwarz et al. [90] 89.4 ± 1.3 —

KPD2 + GKPD CD2 97.980 95.906a

Proposed method 98.486 97.274a

aResult on depth data from a SwissRanger ToF camera

diminished, and the model is at its best. A proper feature-
selection technique and a dimension reduction should
solve this issue.

7.2 Parameter tuning
In order to obtain the optimal results, couple of, if not
several parameters, must be set for both multiclass and
neural network learning algorithms. A series of meticu-
lous experiments were conducted, by tuning these hyper-
parameters. Some of the parameters were set with trial
and error methodology, as they do not have proper
equation with accuracy.

7.2.1 Multiclass classification
Learning parameter (α or eta) Also called as regular-
isation parameter usually takes values from 0.01 − 0.3 in
XGBoost. It determines how fast the cost-function is

Fig. 20 Bin size vs performance. Accuracy depends on feature size; a
suitable bin size must be selected to avoid over-fitting or under-fitting

minimized. A smaller value leads to slower convergence,
and a larger value leads to overshooting of global mini-
mum and eventually diverges. It can be seen in Fig. 21a
that the accuracy is almost constant after certain optimal
learning rate. It should be also noted that the next series
of experiments were carried out, taking the optimal values
from the previous parameter tuning. This is the general
strategy to find the best-set of parameters.

Tree depth (max-depth) The maximum depth of the
tree in GBM is used to control over-fitting as higher depth
values will allow model to learn relations very specific to a
particular sample. Usually, it takes a range of values from
1 − 10. An optimal value of 12 is found to be the best for
the SR4K-D data (with α = 0.20 from previous experiment)
(Fig.21b).

Number of rounds Number of rounds helps the model
to learn from previous errors. It usually does not affect
much the performance, as can be seen in Fig. 21c. The rest
of the booster parameters (Gamma(minimum loss reduc-
tion for split), subsample(= 1), random column samples
for each tree and lambda) are default values, as they do not
affect the performance much. Both multi:softmax and
multi:softprob have been tried.
As it is observed in Fig. 21, hyper-parameter tuning has

little effect once the optimal feature size has been found.

7.2.2 Neural nets
Most of the parameters in Deep Learning or Neural Net-
works are tuned with trial and error, as they does not seem
to have an equation with performance or rather being
chancy.

Number of neurons The first input layer has been tried
out with different number of neurons, all of the neurons
being fully connected (Dense). It can be seen that there is
slight change in the accuracy: it increases as the number
of neurons are increased (Figs. 22a and 23a). The number
of neurons also has significant effect on the computation
time for training. These experiments are carried on SR4K-
D data, as the dataset is not humongous and also the
results are almost similar with RGB-D (see Table 2).

Hidden layers The hidden layers are gradually increased,
with constant neurons in each layer (input = 200, hidden
= 100). The number of layers has minuscule impact on
performance (Figs. 22b and 23b). One single hidden layer
seems to be optimum, which is what has been evaluated
in this work.

Dropout Dropout is a regularization technique for neu-
ral network models proposed by Srivastava et al. [86],
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Fig. 21 a Learning rate with accuracy of model. bMax tree depth with accuracy. c Booster round iterations with accuracy
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Fig. 22 Effect of parameters on KPD2 + GKPD2 KPF. a Number of
neurons in the first hidden layer versus the accuracy of the model.
The standard deviation is shown as vertical lines. b Number of layers vs
the accuracy. c Dropout with accuracy

it is a technique where randomly selected neurons are
ignored during training. They are dropped-out randomly.
This means that their contribution to the activation of
downstream neurons is temporally removed on the for-
ward pass and any weight updates are not applied to the

Fig. 23 Effect of parameters on KPA3 + KPD2 + GKPD2 + GKPCD2
KPF. a Number of neurons in the first hidden layer versus the accuracy
of the model. The standard deviation is shown as vertical lines. b
Number of layers vs the accuracy. c Dropout with accuracy

neuron on the backward pass. A series of experiments is
conducted, by dropping out the neurons in the first and
single hidden layer. It can be seen that, as the number of
dropped neurons is increased, the performance decreases;
however, a percentage of 10 seems to give the best results.
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8 Conclusions
In this paper, an innovative approach for shape repre-
sentation has been presented. The new method simpli-
fies object shape representation in the form of simple
probability distribution functions which can be easily
and quickly computed and which are robust against real
word pose variances. It is paramount to recognize objects
which undergo pose transformation in the real world,
unlike other approaches which perform well on synthetic
datasets but not on real sensor data. The 3D keypoints act
as stable anchors on the surface of the object and remain
intact even if the object undergoes rigid transformation.
These properties of keypoints have been exploited, their
geometric and spatial distribution are analyzed through
some keypoint functions, and it has been observed that
their distribution is consistent even after view changes.
A new dataset of objects from a SwissRanger Time-
of-Flight camera has been created for experimenting
object classification and applied some of the best of
the machine learning methods and neural networks with
hyper-parameter tuning. Superior classification results
are obtained compared to the other state-of-the-art meth-
ods on the same dataset. Future research could open
up a better GKPD CD2, by considering an effective
back-propagation strategy and better feature-selection
techniques.
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