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Abstract

Binaural noise reduction, with applications for instance in hearing aids, has been a very significant challenge. This task
relates to the optimal utilization of the available microphone signals for the estimation of the ambient noise
characteristics and for the optimal filtering algorithm to separate the desired speech from the noise. The additional
requirements of low computational complexity and low latency further complicate the design. A particular challenge
results from the desired reconstruction of binaural speech input with spatial cue preservation. The latter essentially
diminishes the utility of multiple-input/single-output filter-and-sum techniques such as beamforming. In this paper,
we propose a comprehensive and effective signal processing configuration with which most of the aforementioned
criteria can be met suitably. This relates especially to the requirement of efficient online adaptive processing for noise
estimation and optimal filtering while preserving the binaural cues. Regarding noise estimation, we consider three
different architectures: interaural (ITF), cross-relation (CR), and principal-component (PCA) target blocking. An
objective comparison with two other noise PSD estimation algorithms demonstrates the superiority of the
blocking-based noise estimators, especially the CR-based and ITF-based blocking architectures. Moreover, we present
a new noise reduction filter based on minimum mean-square error (MMSE), which belongs to the class of common
gain filters, hence being rigorous in terms of spatial cue preservation but also efficient and competitive for the
acoustic noise reduction task. A formal real-time subjective listening test procedure is also developed in this paper.
The proposed listening test enables a real-time assessment of the proposed computationally efficient noise reduction
algorithms in a realistic acoustic environment, e.g., considering time-varying room impulse responses and the
Lombard effect. The listening test outcome reveals that the signals processed by the blocking-based algorithms are
significantly preferred over the noisy signal in terms of instantaneous noise attenuation. Furthermore, the listening
test data analysis confirms the conclusions drawn based on the objective evaluation.

Keywords: Equalization-cancelation, Noise estimation, Cue preservation, Binaural noise reduction, Real-time
listening test

1 Introduction difficult task, and the respective performance still remains

Hearing loss is a common sensory deficiency, as reported,
e.g., in [1]. Thus, hearing technologies should provide a
remarkable compensation of hearing deficits for people
with hearing loss. For instance, modern hearing aids uti-
lize a variety of techniques to enhance the quality and
intelligibility of the desired signal in the presence of ambi-
ent noise. However, noise reduction generally is seen as a
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quite limited in realistic scenarios.

Noise reduction algorithms can be categorized in dif-
ferent ways. The number of employed microphones is
a criterion used to classify such algorithms into single-
channel, dual-channel/binaural, and multi-channel algo-
rithms. In this study, we will address the binaural noise
reduction problem where the left and right microphone
signals interact to deliver a reliable noise reduction perfor-
mance. In contrast, bilateral signal processing refers to the
treatment of the left and right ear independently. Here, the
binaural cues, which are particularly important for sound
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localization, will be distorted. It has been reported in [2]
that if the noise reduction methods embedded in hearing
aids do not preserve the binaural cues, hearing-impaired
people prefer to disable the noise reduction option in their
hearing aids for the sake of better sound localization.

The preservation of the binaural cues, particularly the
interaural level difference (ILD) and the interaural time
difference (ITD), is an important issue that needs to be
treated properly in binaural signal processing in addition
to noise reduction and speech preservation. Thus, dif-
ferent noise reduction techniques have been proposed to
suppress noise while the spatial impression of the desired
and interference sources are kept undistorted. These tech-
niques can be effectively dichotomized into two main
categories.

The first category mostly consists of multichannel algo-
rithms, therein combining spatial and spectral filter-
ing, which attempt to reduce noise with an additional
constraint on auditory scene preservation [3-5]. These
algorithms are commonly designed by modifying the
noise-reduction-related cost functions such that the bin-
aural cues are kept undistorted [3, 6, 7]. It has been shown
that the binaural multichannel Wiener filter (MWF)
[8] and the binaural minimum-variance distortionless-
response (MVDR) beamformer [9, 10] can preserve the
binaural cues of the speech components, whereas the bin-
aural cues of the noise components will be distorted. To
preserve the binaural cues of a directional noise source,
the authors in [11] introduced a new parameter in MWF
to facilitate a trade off between noise reduction and noise
binaural cue preservation. Another extension of MWF
with partial noise estimation was proposed in [12, 13].
In [14], a term related to the interaural transfer function
of the noise source was integrated into the noise reduc-
tion cost function to preserve the binaural cues of the
noise source (MWE-ITF). Later, a simplified MWE-ITF
was proposed in [7] and offers a closed-form solution
for binaural noise reduction and noise cue preservation.
Moreover, additional linear constraints have been consid-
ered in the MVDR beamformer [10, 15] and the binaural
MWEF [16, 17] with the aim of preserving the binaural
cues of an interfering source. Nevertheless, the techniques
discussed so far are not well suited for the spatial preserva-
tion of diffuse noise. To preserve the interaural coherence
(IC) of the residual noise components of diffuse noise,
the binaural MWF is extended using additional IC-related
cost functions [18-21].

The second category of noise reduction techniques
includes algorithms that employ a real-valued common
spectral gain function [22-24]. The interfering signal,
including the ambient noise and reverberation, is assumed
to be spatially diffuse. Applying the zero-phase common
function to the signals of the left and right ears ensures the
preservation of the binaural cues. The common spectral
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gain function can be obtained by either minimizing the
spectral distance between the bilateral gain functions
[25] or computing the compound of the bilateral gains
heuristically [26—29]. For instance, [26] exploits the mini-
mum, maximum, and average of two independent single-
channel gain functions at the left and right ears to derive
a common gain. In this work, the minimum of the bilat-
eral gains in each frame and frequency bin was considered
to be the most efficient. The aforementioned common
spectral gain functions are conventionally adopted from
single-channel techniques. Therefore, they often suffer
from low noise reduction and potential speech artifacts,
although they can provide the perfect preservation of
spatial impressions. The suggested solutions are mostly
developed by heuristically combing the single-channel
gain functions and hence are not necessarily optimal. The
concept of a common spectral noise reduction filter is
also frequently found in the form of a spectral postfilter
to MVDR beamformers. In the postfiltering scheme, the
Wiener filter based on the mean-square-error (MSE) cri-
teria [30, 31] is often the starting point for variations and
modifications, e.g., [32—34]. For instance, in [35], a com-
mon spectral gain function controlled by a superdirective
beamformer design based on a head-related transfer func-
tion (HRTF) model was developed.

Different assumptions on noise statistics lead to var-
ious optimal filter coefficients. For instance, Zelinski’s
spectral postfilter [36] is derived assuming uncorrelated
noise in the channels. This assumption, however, has been
generalized to a low-frequency coherent noise using the
coherence model of spherically ideal diffuse noise [37].
Later, the authors in [28] proposed to take the average of
the left and right bilateral filters as a post-filter for dual-
channel noise reduction, where the ambient noise signals
are assumed to be spatially uncorrelated. It can be shown
that this averaging leads to a realization of Zelinski’s filter
provided that the noises received at the microphones are
uncorrelated and have identical power at all frequencies.

In many speech enhancement algorithms, such as
Wiener filtering, prior knowledge of the noise statistics
is a prerequisite for successful ambient noise reduction
[30, 38]. Recently, the target cancelation technique has
been employed in noise power estimation. For instance,
it has been proposed to use the blind source separation
(BSS) approach for canceling the target speech compo-
nents in a diffuse noise field and consequently to esti-
mate the noise power at the output of the blocking
system [39]. Later, the same approach was employed in
[40] to estimate the reverberation tail, which is consid-
ered as diffuse noise. A spectral correction gain func-
tion based on the BSS de-mixing matrix was derived
to reduce the bias of the estimated noise PSD. In [41],
we proposed a binaural noise PSD estimator based on
the equalization-cancelation technique. The target speech
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signal is equalized and canceled by two independent least-
mean-square (LMS)-type algorithms for the left and right
noise PSD estimation. A correction gain is then derived
using the estimated interaural transfer functions between
the left and right ears. In [42], we proposed to employ a
blind system identification approach based on the cross-
relation error minimization to estimate the noise PSD
using the cross-relation residual. The successful applica-
tion of the estimated noise power for speech enhancement
was initially demonstrated in [41, 42] with hearing aid
application.

In this contribution, a new binaural cue-preserving
noise reduction filter, yet based on the MMSE criteria,
is proposed (Fig. 1). The proposed noise reduction fil-
ter possesses properties such as optimality and ease of
implementation. Based on a common gain function, the
mean-square error is rigorously minimized jointly in the
left and right ear, thereby delivering optimal noise reduc-
tion with exact binaural cue preservation of the target
speech and residual noise.

To implement the proposed cue-preserving MMSE fil-
ter, this paper further investigates and compares a broad
range of subspace techniques for noise PSD estimation.
This includes the interaural transfer function blocking-
based noise PSD estimator (ITFB) [41] (Fig. 2a) and
the cross-relation-based noise PSD estimators (CRB) [42]
(Fig. 2b), which were previously evaluated under anechoic
conditions. They are evaluated here in a more realistic
acoustic environment. The comparison is conducted in an
ambient noise environment with moderate reverberation
such as in a cafeteria, outdoor street, or congress environ-
ment. Additionally, a new noise power estimation based
on speech blocking is investigated (PCAB, Fig. 2c). That
algorithm employs adaptive principle component analy-
sis (PCA) [43]. The adaptive PCA was previously used
for the blind channel identification and equalization in
hearing aids [44]. The speech components are canceled
in the error signals of the adaptive PCA-based blocking.
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A spectral correction gain derived using the estimated
impulse responses and the noise coherence is then applied
to correct the biased noise components remaining in the
blocking output.

In this paper, additionally, we develop a real-time
subjective listening test for the evaluation of binaural
noise reduction algorithms. The developed listening test
exhibits remarkable benefits for a valid assessment of
noise reduction algorithms such as (1) realistic exposure
to speech and noise; (2) natural speech performance, e.g.,
including the Lombard effect [45]; (3) different signal-to-
noise ratios (SNRs) and noise types (sensor noise, ambi-
ent noise, and reverberation); and (4) easy variations in
spatial cues.

The remainder of this paper is organized as follows.
In Section 2, we formulate the binaural signal model
and the noise reduction problem. The proposed binau-
ral cue-preserving MMSE filter is introduced in Section 3.
Section 4 presents the theory of subspace noise estima-
tion, and Section 5 introduces the instrumental evaluation
tools related to adaptive target blocking. In Section 6,
the performance of the proposed algorithms is evaluated
in terms of impulse response estimation, noise PSD esti-
mation, noise tracking, and speech enhancement. Finally,
Section 7 is devoted to the developed real-time listening
test and subjective evaluation of proposed blocking-based
algorithms.

2 Binaural signal model

Let y;(k), with i € {r,[}, denote the binaural microphone
signals at sampling time index k, which can be expressed
as

o0

yilky =Y stk — mhi(n) + mia(k), (1)

n=0

where s(k), h;(k), and n;,(k) are the target speech, the
binaural room impulse responses (BRIR), and the ambient
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Fig. 1 Schematic block diagram of the proposed binaural noise reduction system
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Fig. 2 Schematic block diagram of a ITF-blocking-based noise PSD
estimation, b CR-blocking-based noise PSD estimation, and
¢ PCA-blocking-based noise PSD estimation

background noises, respectively. In this study, we used
moderately reverberant BRIRs. Thus, the clean speech sig-
nal can be decomposed into the desired direct sound and
early reflection part, » = 0...L, and the undesired
reverberation componentsn = L+ 1...00,

L

yitk)y =) s(k — nyhi(n) (2)

n=0

+ Z stk — m)hi(n) + ni,(k),
n=L+1
= x;(k) + n;(k),

where the effective noise #;(k) consists of the moderate
reverberation and the ambient noise #7;,(k). The vectors
itk = [y yitk — 1)...y;(k —L + 1DT] of L suc-
cessive samples are also used, where the superscript (.)7
denotes the vector transposition. The other signal vec-
tors, e.g., X;(k) and n;(k), are defined in the same way as

Page 4 of 17

yi(k); thus, y; (k) = x;(k) + n;(k). The short-time Fourier
transform (STFT) [46] of (2) reads

Yi(h k) = Xi(Ah k) + Ni(%, k) (3)

where A = 0,...,Mand k € Z indicate the frequency bin
and frame indices, respectively.

The desired speech components X; are then retrieved in
the MSE sense by applying an optimal filter G(%, k) to the
noisy signal,

Xi(h k) = GO K)Yi(h ), (4)

which will be elaborated upon further in the next
section. The time-varying power spectral densities (PSDs)
of the noise and the noisy signals are defined as
(M) = E{INiMo)?}, and @y, (k) =
E {|Yi()\, /<)|2}, respectively, where E{.} denotes the statis-
tical expectation operator. We use a first-order recursive
system,

By Ay k) = @y, (i — 1) + (1 — @) [Y; (1)1, (5)

to estimate the auto-PSDs of the accessible signals with
a smoothing factor of 0 < « < 1. The cross PSDs
are estimated analogously. For the sake of simplicity, the
frequency index A and frame index « will be omitted here-
after unless they are needed for clarity. The enhanced
signals X;(M, k) are then transferred back to the time
domain by applying the inverse STFT and employing the
overlap-add (OLA) technique [47].

3 Binaural cue-preserving MMSE filter
In the following, we present a binaural cue-preserving fil-
ter based on the MMSE criterion. The noise reduction
problem is to find a statistically optimal filter G, that
jointly minimizes
J(G) = E{IX;0, k) — GG, 1) Yi(h, 1)1
+ X, (k) = GG, ) Y, (102 (6)

such that the optimal filter is

G, = argmin(J (GQ)). (7)
G

Assuming that the noise and speech signals are uncor-
related, i.e,, @,y = P4, the cost function simplifies
as

J(G) = Py + |G|2q>}’l}’l — 2@ G (8)
+ Dy, + G Dy, — 20y, G
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By taking the derivative of (8) with respect to real G,

1T (G)
9G = Gcbylyl

— Py + GOy, — Py, 9)

and equating the result to zero, the frequency response of
our proposed binaural cue-preserving MMSE filter reads
(48]

G, = q>x1xl + Dy, —1_
Dy, + Dy,y,

<Dnlnl + q)nrnr

. (10)
Dy, + Dy,

To attenuate musical noise introduced in the enhanced
signal and to balance the noise reduction and speech
distortion, an over-subtraction factor § > 1 [30] is
employed, and the filters are spectrally floored to Gpmin,
ie.,

q)nlnl + cbnrnr G >
. = min .
CDJ’IJ’I + (Dyryr

G, = max (1 - B
4 Noise PSD estimation via adaptive speech

blocking
The improvement in the speech quality and intelligibility
depends remarkably on the accuracy of the noise power
estimate. The estimators presented here are inspired by
the target cancelation technique, in which the coher-
ent target speech signal is blocked from the microphone
signals to retrieve the noise components. However, the
estimated noise components at the output of the blocking
system are always the filtered versions of the actual noise
signal. A spectral correction gain, obtained via the esti-
mated blocking filters, is thus employed in each case to
undo this filtering effect.

It should also be mentioned that the assumption of tar-
get speech cancelation would not be completely fulfilled
in the presence of the observation noise, which is the case
considered in this paper. Therefore, the residual speech
components (called speech leakage) leak into the esti-
mated noise, increasing the estimated noise power and
possibly leading to speech distortion in the enhancement
stage of Fig. 1. The speech leakage problem in blocking-
based-noise PSD estimators will be elaborated upon more
precisely in Section 6.2 of this paper.

The algorithms that will be elaborated upon in this
section are all based on square-error minimization. How-
ever, the filter structures are different for each method,
c.f, Fig. 2a, b, and c. All methods can be understood as
being different forms of subspace analysis, with different
origins in the signal or noise-subspace analysis; however,
they will all be cast into the common framework of a noise
PSD estimator here.
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4.1 ITF-based adaptive blocking (ITFB)
The interaural transfer function (ITF) estimation errors,
subject to minimization, are written as [41]

er(k) = yi(k — 5) — WL (K)y,(k),
er(k) = y,(k — 12) — W} (Dyi(k),

where the causality delay of 7, has been added to ensure
that the system identification problem is causal. The left-
to-right and right-to-left interaural impulse responses W,
with i € {/,r}, are then updated iteratively according to

witk + 1) = wi(k) + ke (k)y(k), (13)
Wr(k + 1) = Wr(k) + Mr(k)el(k)Yr(k),

where u;(k) = ,uo/yiT (k)yi(k) is the normalized stepsize
with a fixed stepsize of 0 < o < 1. This minimization
of the respective error signal powers is in accordance with
the sample-based normalized least-mean-square (NLMS)
algorithm as shown here in the time domain or alterna-
tively via the more efficient frequency-domain adaptive
filter (FDAF) [49]. In either case, two parallel adaptive fil-
ters are implemented to perform the minimization of the
left and right error signals independently. The presence
of observation noise will naturally affect the adaptive fil-
ter performance, but we will rely on the general insight
that the target cancelation error of LMS-type adaptive fil-
ters is theoretically several dB below the observation noise
level [30, 44]. Although the actual target cancelation error
depends on the stepsize of the LMS algorithm, we found
that the range of stepsize factors 0.01 < p < 0.1 to be suf-
ficient to deduce an accurate noise PSD estimation from
the error signal of the adaptive filters. With this argument,
we can characterize the error signals of (12) as

ei(k) =xi(k — ta)+ni(k — 7a)
—w] (kyx;(k)—w! (km;(k),
~nj(k —1,) —W]'T(k)nj(k),

(12)

(14)

i#jellr).

By computing the PSDs of the error signals according to
(5), a system of equations including the left and right noise
PSDs is obtained,

~ ~ 2 21
Peye; = Ppym; + |WV| Dy, n, — 2Re {e]MM” Wi ®un, t 5

o~

o

~ 2 2 ~
erer — q)nrnr + |Wl| chl”l —2Re ie]M)\Ta chbnll’lr} ’
(15)

with an STFT length of M. The PSD of the left and right
noise signals, 5,,1,,, and 6nrnr’ respectively, can then be
derived by solving the simultaneous equations in (15),
and consequently, the noise distortion due to the blocking
filters can be corrected. In this process, at least three dif-
ferent noise coherence models can be assumed: (1) uncor-
related noise, (2a) free-field spherically isotropic diffuse
noise, and (2b) measured or semi-analytical head-related
coherence.
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4.1.1 Uncorrelated noise
First, we assume that the noise signals in the left and right
microphone are uncorrelated ®,,,, = ®,,,, = 0 which

is a reasonable assumption for a diffuse noise field above a
cutoff frequency. Therefore, (15) will be a system of linear
equations. By solving the equations, the PSDs of the left
and right noise signals can be derived as

68[61 - |Wr‘2 66,6,

Dy, = P (16)
T w w
= _ 63767 - |‘%|266161
Hyly — ~ ~ .
1= WP | %[

Many practical noise signals exhibit high correlation in
the low-frequency range. Therefore, the premise that the
noise signal in real acoustic scenarios is fully uncorre-
lated is not true. Thus, the proposed solution with the
assumption of an uncorrelated noise model indeed leads
to noise PSD underestimation at low frequencies where
the noise signals are correlated (not shown here). The
low-frequency compensation of the noise PSD will be
addressed in the following section.

4.1.2 Diffuse noise

To overcome the underestimation of the noise power at
low frequencies, we employ the noise coherence func-
tion. The complex coherence between two noise signals is
generally defined as [50]

anlVly (}\,, K)
\/cpnlnl (A k)P, (A k)

where d>,,l.n/. (M k),i,j € {l,r} are the cross and auto-PSD
of the noise signals, which can be estimated using a first-
order recursive equation as in (5) when n;(k) and #,(k)
are available. Substituting (17) into (15) will lead to a
nonlinear system of equations. To simplify the equations,
the noise PSDs at the left and right ear are considered
to be equal. In [41], it was shown that for measured
noise signals, the assumptions of equal noise PSDs at the
two microphones are more plausible at low frequencies
than at high frequencies. Assuming equal noise PSDs, i.e.,
Dy = Py, = Py at the two microphones, the cross
PSD, ®,,,, in (15), consequently can be expressed based
on the left and right noise PSDs and the coherence func-
tion, i.e, @y, = Py, = T'iu, Py, therein considering
that the noise coherence of a diffuse noise field is real val-
ued. Therefore, the noise PSD estimates can be obtained
as

Chyn, (A 66) = 17)

-~

- 3
cD”l”l = o 3 (18)
~ 12 ‘Zl)\,f o~
L+ [ W, [* - 2Re [ W, T, |
~ 3
d)n,n, = e,

1+ |W|* - 2Re {efzﬁ””a v?,rm,,,]
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A spectral flooring of —20 dB is additionally used in the
denominator to avoid division by zero. Moreover, the fol-
lowing noise coherence models can be considered here:
(1) free-field diffuse noise coherence, (2) the head-related
coherence model [51], and (3) head-related coherence
estimates. It has been observed that an accurate estima-
tion of the noise PSD can be obtained if a good model
of the noise coherence is employed. Therefore, we sug-
gest using the 2D head-related coherence model proposed
in [51].

4.2 CR-based adaptive blocking (CRB)

The cross-relation (CR) error between the microphone

signal is given as, for instance [44],
e(k) = b} (k) — hf )y, (), (19)

where the left and right impulse responses Hi(k) =

-~ —~ T

[hi(O) hi(l) ... (L — 1)] can be determined by a stereo

normalized least-mean-square (NLMS) algorithm [42, 44]:

Wk + 1) =hk) + p®ey: k), (20)
h(k + 1) =h (k) — p®e®y k),
where the normalized stepsize
-1
nb = o (v/ oyt + v} oy, () 1)

governs the convergence rate of the algorithm.
The estimated impulse responses are further normal-
ized to unit norm in each iteration of the recursive

adaptation, i.e.,
b/ (o (k) + b} (b, (k) =1, (22)

to avoid trivial solutions. Substituting the binaural signal
model (1) into (19), we have

e(k) = hZ (k) (x; (k) + my(k)),
— 1] (k) (%, (k) + n, (k).

(23)

Because we expect that /I;rT (k)x;(k) ~ th(k)x,(k) after
the error signal minimization in cross-relation tech-
niques, the speech related part in (23) is canceled. Even
when the estimated channels are altered by an unknown
yet common convolutive operation, ie., #;(k) = f(k) *
h;(k) [52], the common convolutive error, which might be
a drawback in blind channel identification, does not seri-
ously affect the speech blocking performance because it
applies simultaneously to both the left and right estimated
impulse responses. Therefore, the error signal

e(k) ~ b (lony(k) — b ()n,(k), (24)

contains the filtered noise components of the left and
right microphone signals. Thus, although the error sig-
nal can be considered as an estimation of the noise signal,
this estimation is biased because the left and right noise
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signal components are filtered by the estimated impulse
responses. Transferring (24) into the PSD domain, we
obtain

6(3 = ‘ﬁr’2 chlm + |ﬁl|2 cbﬂrﬂr —2Re {ﬁlﬁj q)"l""} :
(25)

Moreover, the left and right noise PSDs are again
assumed to be identical to solve the single Eq. (25), i.e.,
Dy, &, = 4. The cross PSD of the left and
right noise signals is again replaced by the coherence of
the noise signals, i.e., ®,,,, = ®,I,. Thus,

&, = |H,|* ®,+|Hi|> &, —2Re {HH T, ) . (26)

The error PSD &, is obtained using the first-order
recursive averaging according to (5), with E(%, «) being the
STET of the cross-relation error signal e(k) according to
(19). By solving (26), the estimated noise PSD is obtained
as

~
~ o,

= — . (27)
"R+ | A - 2Re (BT, )

To avoid division by zero, a spectral flooring is applied
to limit the denominator to —20 dB.

4.3 PCA-based adaptive blocking (PCAB)

In this algorithm, the left and the right source-to-
microphone transfer functions are identified by minimiz-
ing the error signal between microphone signal and an
estimated source signal, i.e., (k) [43, 44, 53]

ei(k) = yi(k — L) — hI's(k),
er(k) = y,(k — L) — hI5(k).

(28)

The estimated source signal s(k) is a vector of L
recent successive samples s(k) = [s(kh)S(k—1)...
Sk — L 4+ 17 resulting in a matched filter operation,

3(k) = b < Kyik) + I Ry k), (29)

where (.)<~ denotes the time-reversed estimated impulse
response. The estimated left and right impulse responses
are updated according to the LMS style,

hy(k + 1) = hy(k) + pk)e (k)sk),
hy(k + 1) = hy(k) + p(k)e, (K)SK).

We can transfer (28) into the STFT domain,

(30)

Eylic, 1) = e MYy e, 0) — Hy(ke, 1)S(k, 1),
E (i, 1) = e T3 Y, (e, 1) — H, (c, )S(ic, 1),
and the matched filter output of (29) is

-~ .2 o~ L2 o~
S=e MY, + e MM Y,
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Assuming the proper transfer function estimation, i.e.,
H; = H;F, where F is a common filter error [52], (32) is
expressed as

S =S (| + A ) (33)

+ e LN + e MLN H.

Because the recursive algorithm in (30) can be observed
as a one-to-one translation of a frequency-domain (bin-
wise) representation of adaptive PCA [54], it provides
approximately a bin-wise unit norm, i.e., H, ’2 + ‘ﬁr ’2 ~1
when the convergence toward the principle components
is achieved. Thus,

S = e WM (F1S + N + N,HY). (34)

Again considering the binaural signal model (3) and
substituting (34) back into (31), the target signal will be
canceled out, and the error signals will consists of only the
filtered noise components as follows:

E = e M (Nl (1 - |ﬁ1|2) - Nrﬁlﬁj> , (35)
E =50 (N, (1= AL ) - AT

By transforming (35) into the PSD domain, we have
®, = AD, — 2Re {H/H,} @, H, (36)

where 63 = [661 66,]T and ¢, = [q)nznz dD,,r,,r]T are a
concatenation of the left and right error and noise PSDs,
respectively. The matrix A is defined as

(1= 1) (|

A= L, ~2\2 |’
A (S A

37)

while B/ = [1 - A 1- [B,]

Due to the bin-wise norm normalization, det(A) is very
small, and thus, A is singular, regardless of the position of
the target speaker. To solve the rank deficiency of A, the
noise PSDs at the left and right ear are again assumed to
be identical, i.e., ®,, = Py, = Py. Therefore, (36) is
rewritten as

®, = BD, — 2Re{H; H,) @y, H', (38)
with
~ 2~ N2
AP (1 ) -
AP+ (- AP) |
4.3.1 Uncorrelated noise

Assuming uncorrelated noise, i.e., ®,,,, = 0, (38) will be
simplified to

Delic, 1) = B, M) Dy (i, 1), (40)
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which is an over-determined problem. Thus, (40) can be
solved using least-squares [55],
3, = (BTB) BT, (41)
Many practical noise situations, however, have to be
modeled as diffuse noise [22], with high correlation in the
low frequencies. Therefore, the noise PSD is underesti-
mated especially at low frequencies.

4.3.2 Diffuse noise
Assuming an isotropic homogeneous noise field, the
noise will be correlated in low frequencies and uncor-
related in high frequencies. Under the assumption of
equal noise PSD at the left and right ear and substituting
Dyn, = Py = Dy, @y, into (38), we have

Dok, 1) =Bk, M) Dy (k, 1)

—2Re {H}H,} ®,Tyy, H.

(42)

The noise PSD then again can be estimated by solving
(42) in the least-squares sense [55] as

3, = (cTc) c’s,, (43)
where
C =B —2Re {H;H,} Iy, H. (44)

5 Instrumental measures related to adaptive
speech blocking

In this section, we will introduce and discuss the evalua-

tion tools utilized in this contribution.

5.1 Speech leakage ratio (SLR)

The performance of the described speech blocking-based
noise PSD estimators and, consequently, of the noise
reduction algorithms depends on the target speech can-
celation ability. The Hagerman method [56] is thus
employed to calculate an SLR, i € {/,r},

%Zlologm( )

L =1k=1

SLR; = (45)

with 673;' being the PSD of ¢; = e;_ + e; 4+, where the sig-
nal e;  is the blocking output when the noisy signal is
utilized as an input, i.e., y;+ (k) = x;(k) + n;(k), and e; _
is the blocking output when the input signal is composed
as yi— (k) = x;(k) — n;(k). Similarly, 5%. is computed as
the PSD of y; = y;— + yi+ The total number of frames
for averaging is given as /;. Thus, ¢ <I> can be considered
as the speech leakage PSD, while d> denotes the PSD of
the direct speech signal. This method is well known for
the separate evaluation of noise and speech components.
Lower SLR is better. More information can be found in
[56, 57].
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5.2 Noise PSD ratio (LogErr measure)

The efficacy of speech enhancement algorithms highly
depends on the accurate estimation of the noise PSD.
Thus, we have employed an intermediate measure for
evaluating the performance of the noise PSD estimators,
iellr}

n,n, (A k)
810 =

LogErr; = m
n,n,

(46)

*ZZ

L e=12=1

where ®,,,,, and 613,4,.,4,. are the true and estimated noise
PSDs. The true noise PSD is obtained according to (5),
therein employing the given true effective noise signals,
since algorithms based on short filters will attempt to
estimate the effective noise.

6 Instrumental evaluation results

6.1 Experimental setup

The experiments are performed with the BRIRs measured
in a reverberant “stairway” (direct-to-reverberation ratio,
DRR = 11 dB), taken from the Aachen room impulse
response database [58, 59], with a length of 5000 samples
at a sampling frequency of i = 16 kHz. The location of
the desired speaker can be between —90° < 6 < 90°, as
illustrated in Fig. 1.

The left and right microphone signals are then gen-
erated by convolving the target speech signal with the
binaural impulse responses. The clean speech signal is
a 60-s concatenation of the female and male sentences
taken from the TIMIT database [60]. A total of 30% of
the total length consists of speech pause. Moreover, no
initial noise-only frames have been utilized. Regarding
the additive noise, six different binaural noises, includ-
ing cafeteria noise, kindergarten noise, and Mensa noise,
from the ETSI database [61] were used. Moreover, the
computer-generated binaural babble noise and binaural
white Gaussian noise (WGN) [62] were also considered in
our evaluation.

It is furthermore instructive to investigate the perfor-
mance of the proposed noise PSD estimators in the pres-
ence of nonstationary noise. This investigation addresses
the capability of the proposed algorithm to track the noise
PSD. To provide a reliable comparison, a modulated dif-
fuse noise with different modulation frequencies with
iel{lr}

ni(t) = ng;(£)(1 + 0.8sin(2mfiut/fs)), (47)
is considered as a reproducible dynamic noise model,
where f;,; is the modulation frequency varying from 0.05
to 1 Hz. The ng;(t) is a computer-generated diffuse WGN
[62] such that its coherence function follows a 2D head-
related coherence model [51].
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6.1.1 Algorithm parameters

All considered signals are sampled at f; = 16 kHz
and are segmented into 50% overlapping frames of length
M = 512. The overlapping frames are then windowed
using a square-root Hanning window and transformed
into the frequency domain via the STFT of length M [46].
The smoothing factor for estimating the (cross-) power
spectral densities is set to = 0.8 if not stated otherwise.
The spectral correction gains are floored to —20 dB. The
causality delay 7, is set to 30 samples. The length of the
adaptive filters is L = 256, while the length of the RIRs
is 5000 samples. The stepsize o of ITBE, PCAB, and CRB
are setto 0.1, 0.2, and 0.1, respectively. Moreover, the over-
subtraction factor B and the spectral flooring Gmin of the
cue-preserving MMSE gain function in (10) are set to 1.4
and —20 dB, respectively. The adaptive speech blocking
filters are realized with the FDAF [49].

6.1.2 Selected algorithms for comparison

To investigate the performance of a wide range of sub-
space algorithms for noise PSD estimation, we compare
the performance of the principal-component-analysis
based estimator, i.e., (PCAB), with the noise PSD estima-
tor based on the interaural transfer function (ITFB), [41],
and with the noise PSD estimator relying on cross-relation
error minimization (CRB) [42], therein considering the
diffuse noise assumption.

Moreover, for the sake of completeness, the studied
speech and noise-subspace noise PSD estimators are com-
pared to other binaural and single-channel noise PSD
estimators available in the literature: the improved CPSD
method (ImCPSD) [22] and the single-channel SPP-based
method (SC-SPP) [63]. It should be mentioned that [22]
used the same error signals as described in (12). The noise
PSDs estimated by the different algorithms are then uti-
lized in the cue-preserving MMSE filter to deliver the
enhanced microphone signals. The enhanced signal using
a priori known “true” noise PSD is denoted as Ref.

6.2 Investigation of speech leakage
Due to the estimation error in the interaural and source-
to-microphone transfer functions, for instance, due to
noise or reverberation, the speech components will leak
to some degree into the blocking residual. These leaked
speech components hence result in noise power overes-
timation and consequently in speech distortion after the
enhancement stage. Therefore, it is crucial for blocking-
based noise PSD estimators to exhibit small speech
leakage.

Figure 3 shows the computed SLR according to (45) as
a function of input SNR for different blocking algorithms.
Here, “CS” denotes the input clean speech signal power.
It can be clearly observed that all algorithms in all SNRs
under consideration generally attenuate the input speech
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Fig. 3 SLR as a function of SNR for different algorithms, 6 = — 45°

power. The CRB achieves the lowest SLR. This is because
for CRB, the effective error of the channel identification
can be appropriately approximated by a common trans-
fer function. The SLR in ITFB at low SNR is large because
ITFB faces greater difficulties in the unbiased estima-
tion of interaural transfer functions. This is because the
respective Wiener solution of the filter is biased by the
noise PSD [30]. Due to the inverse filtering problem in
ITFEB, the SLR cannot be reduced even at high SNRs.

To better elaborate upon the differences in the stud-
ied algorithms in the blocking of the speech components,
Fig. 4 illustrates the SLR at different azimuth angles. Here,
apparently, the lowest SLR can be found in the frontal
direction. Moreover, the ranking of the speech and noise-
subspace noise PSD estimators in the residual speech
attenuation is preserved in comparison to Fig. 3.

The performance of the blocking systems can be evalu-
ated additionally in terms of system identification. In this

0® L 4 L 4 @ /
2l - |
\
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-
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o

Fig. 4 Computed SLR as a function of azimuth angle for different
speech blocking algorithms, where SNR = —5 dB
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study, we have chosen not to present the related results
because the system identification problem in the presence
of ambient noise has been widely studied in the literature.
For instance, for ITFB, refer to [30]; for CRB, see [44, 52];
and for PCAB, more information can be found in [44, 54].
The results discussed in the aforementioned studies are
confirmed by our investigations.

6.3 Noise PSD estimation

To evaluate the performance of the studied algorithms
in highly non-stationary noise environments, the binau-
ral modulated babble noise (47) with different modulation
frequencies is employed. Figure 5 shows the computed
LogErr as a function of the modulation frequency for dif-
ferent algorithms. All the blocking-based noise PSD esti-
mators are apparently extremely robust against dynamic
noise conditions, in sharp contrast to SC-SPP. The esti-
mated noise PSD for the modulation frequency of 1 Hz
is illustrated in Fig. 6 as a function of time. It can be
confirmed here that the blocking-based noise PSD esti-
mators are able to track the noise power changes quickly,
whereas the SC-SPP cannot follow the time-varying noise
PSD properly.

Because more realistic noisy conditions are of great
interest in audio signal processing, the LogErr measure,
averaged over different realistic noise types, is presented
in Fig. 7. As can be observed from the experimental
results, all blocking-based algorithms yield smaller LogErr
in comparison to the SC-SPP. Among the blocking-based
estimators, ITFB is superior because it provides binau-
ral noise PSD estimation. It is followed by the ImCPSD
algorithm [22], which employs a similar error signal as
described in (12).
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Fig. 6 Comparison of estimated noise PSD as a factor of time at the
left ear by different algorithms. Here, f, = 1Hzand SNR = —5dB,

6 = —90° averaged over all frequencies

6.4 Noise reduction

The segmental SNR improvement [38] and the percep-
tual evaluation of speech quality (PESQ) [64] are used to
assess the overall speech enhancement performance of the
algorithm. The cue-preserving MMSE filter (10) is com-
puted using the estimated PSDs. For a fair comparison, the
smoothing factor in the PSD estimator was set = 0.8 in
all algorithms where was needed. All results are averaged
across the left and right ears and across all considered
noise types.

The results of the segmental SNR improvement in
Fig. 8a shows that the speech-blocking-based algorithms
obtain better improvements in segmental SNR at almost
all SNRs in comparison to the other studied algorithms.
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Fig. 5 Comparison of LogErr averaged over all frame indices and
frequency bins as a function of the modulation frequency of dynamic

noise. SNR=—5 dB,# = —90°
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Fig. 7 Comparison of LogErr according to (46) averaged over all
frame indices and frequency bins with different noise types and input
SNRs, where 8 = — 90°
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The ITEB achieves a superior noise suppression perfor-
mance because it provides binaural noise estimates as well
as a small error in the LogErr, as previously shown in
Figs. 7 and 5.

The results of the PESQ measure are presented in
Fig. 8b. Similarly, we can see that the ITFB and PCAB
improve the PESQ score at all SNRs. At high SNR,
e.g, SNR = 10 dB, all the studied algorithms could
achieve improved PESQ scores, except for SC-SPP. How-
ever, the differences in the PESQ scores between the
considered algorithms are small and not one-to-one
related to the LogErr results, as shown in Fig. 7. The
spectral flooring in the cue-preserving MMSE gain
(10), for instance, reduces the influence of the esti-
mated noise PSD on the PESQ score. The results from
all measures under consideration are slightly different
because each measure illustrates specific characteristics of
the signal.

The remaining gap between the best performing algo-
rithm and the “Ref’, i.e., given the true noise PSD, can
be explained by the fact that there is no speech leak-
age involved in the true noise PSD. Moreover, the ref-
erence case employs the true binaural noise PSD in the
left and right ear, which is of particular importance in
non-stationary noise frames. In other words, the afore-
mentioned gap can be reduced by employing precisely
estimated noise PSDs at the left and right ears and
by further reducing the speech leakage in the blocking
residual.

6.5 Binaural cue preservation

Binaural cue preservation is one of the main quality
factors that need to be considered in addition to noise
reduction and speech preservation in binaural speech

enhancement. Preserving the binaural cues of the speech
signal, particularly ILD and ITD, helps the listener to
localize the desired speaker more precisely.

The bilateral gain functions G; = 1— % withi e {/,r}
and the binaural cue-preserving MMSE filter in (10) are
compared in terms of binaural cue preservation. Here,
the ILD and ITD are estimated according to [65] using
the shadow-filtered clean signal. It should be noted that
only frequency ranges higher than 1.5 kHz and lower than
1.5 kHz are considered for the computation of the ILD and
ITD, respectively. The ambient noise is the isotropic dif-
fuse noise generated by the algorithm in [62] with the 2D
coherence model at 0 dB SNR.

The AILD and AITD are the deviations of the pro-
cessed ILD and ITD by the binaural and bilateral gain
functions from the ITD and ILD of the input clean speech
signal in each frequency and frame, respectively. The aver-
aged AILD and AITD over the frames and frequencies
are then reported in Fig. 9. As shown, the corresponding
errors in both the ILD and I'TD are higher for the conven-
tional bilateral gain functions, while the cue-preserving
MMSE filter keeps the binaural cues undistorted. The pro-
posed binaural cue-preserving MMSE filter preserves the
binaural cues with a slight loss in the noise reduction
performance. This is depicted in Fig. 10, where the true
noise PSDs are utilized. The noise reduction performance
degradation will be negligible when the estimated noise
PSDs are used (not shown here).

7 Subjective evaluation

A subjective listening test is the most appropriate way to
assess the effect of the speech enhancement algorithms
[66—69]. Thus, various methods and procedures have
been used and developed, for instance, for the assessment
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of the speech quality [70, 71], speech intelligibility [72],
and spatial cue preservation [73].

In this contribution, we also developed a listening test
based on a real-time signal-processing platform to eval-
uate the robustness and validity of the algorithms in
a realistic setting. However, the employed overlap-add
framework in the algorithm design and the utilized USB
sound card in the demonstration setup do not allow for
very small latencies for sound processing. Therefore, the
real-time listening processing here mainly implies the
online execution of the adaptive algorithms.

Because the employed real-time listening test is a new
procedure and because the exact form of the test for the
evaluation of the noise reduction algorithms is not yet
available, we developed a test procedure according to the
perceptual evaluation preparation process suggested in
[74]. However, the standardized methods recommended
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Fig. 10 Comparison of the proposed binaural cue-preserving MMSE

filter and the bilateral filter in segmental SNR improvement
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in [75-77] are accommodated in different stages of the lis-
tening test, as we wish to rely on proven methods as much
as possible.

The algorithms are implemented on a single-board
Raspberry Pi computer [78]. The implementation of the
considered algorithms is realized in Simulink [79], a
graphical programming and development environment.
Using a complementary support package for Simulink, the
Raspberry Pi is conveniently interfaced. Because the pro-
posed solutions suppress the noise without any assump-
tion on the noise PSD, target speaker location or voice
activity detection (VAD), they can be conveniently evalu-
ated and compared in real time [80].

7.1 Experimental setup

The experiment is conducted in a medium-sized room
with a reverberation time of approximately 200 ms at
the Institute of Communication Acoustics, Bochum. The
room schematic and the experimental setup are illustrated
in Fig. 11. The target speaker (operator) walks in front
of the Head-and-Torso Simulator (HATS) while speak-
ing. The path along which the operator (speaker) mostly
walks is also depicted in Fig. 11 as a dashed line. The
distance between the operator and the HATS is approxi-
mately 70 cm. The speech material consists of the natural
speech of the authors (female/male) for on the order of 15
min per subject. The target speech is superimposed with
an approximation of ideally diffuse background noise at
an SNR of approximately 6 dB according to the Lombard
effect. As shown in Fig. 11, four loudspeakers play four
independent babble noise signals to generate a diffuse
noise. The individual loudspeakers were calibrated to
deliver an equal noise level at the location of the HATS.
The microphones embedded in the Sony MDR-NC31EM
headset capture the noisy signals at the left and right ears
of the HATS. The captured noisy signals are then fed into

Noise Signal

((_;4 Noise mgm@

Listener

Raspberry Pi

Sound Card

Simulink
Host / Control .
Wi-Fi Q

W)
Noise Signal

Fig. 11 Schematic of the demonstration/evaluation room
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the Focusrite Scarlett 2i2 external USB sound card and
transferred to the Raspberry Pi for real-time processing.

The processed signals are presented to the sub-
jects (listeners) over a passive sound-isolated headphone
(Sennheiser HDA200) at a sound level that the subjects
find convenient, approximately 70 dB SPL when the noise
level is 65 dB SPL. As shown in Fig. 11, the host computer
offers the operator the possibility to alternately provide
the listener with the processed signal by different binau-
ral noise reduction algorithms, including ITFB, CRB, and
PCAB, in addition to the unprocessed signal.

7.2 Subjective listening test

A total of 14 normal-hearing subjects, including 11 males
and 3 females, from 25 to 40 years old, participated in
this real-time assessment of the binaural noise reduc-
tion algorithms. Although the normal-hearing people and
the hearing-aid users would perceive the enhanced sound
quality differently [81], in this work, we only rely on
normal-hearing subjects. The participants were asked to
sit right behind and close to the HATS, keeping the direc-
tion of their head and of their body similar to the that of
the HATS if possible (Fig. 11).

To simulate a realistic noisy condition that occurs in
daily life, a conversational test [82] has been employed
here. A scientific discussion is conducted between the
operator (speaker) and the listener, who wears the head-
phones during the conversation and hence is virtually in
the position of the HATS. However, due to the effect of
the delayed auditory feedback [83], which makes the lis-
tener hear his/her own voice, the conversation is mostly
one-sided. The stimulus is the operator speech signal
superimposed with the diffuse noise. The location of the
operator is varied to evaluate the robustness of the stud-
ied algorithms to time-varying BRIRs and hence varying
binaural cues.

The processed sounds are presented to the listener by
switching among the considered noise reduction algo-
rithms. In the training phase, the listener has to listen to all
processed signals at least once to appreciate the context of
the presented audio signals. Following the training phase,
the evaluation stage is started, and the listener is asked to
evaluate the signals on a continuous scale between 0 and
100 [66]. The audio signals are presented to the listen-
ers repeatedly if requested. A more detailed specification
of the available scores employed in this listening test is
presented in Table 1.

7.3 Investigated attributes

The subjects were all expert listeners, and the train-
ing phase was conducted by briefing the listeners on
the meanings and possible impairments of the attributes
in the processed signal. The studied quality attributes,
together with possible impairments per attribute, are
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Table 1 Score specification for rating the binaural noise
reduction algorithms

Score Explanation

80-100 Excellent No impairment is audible, great performance

60-80 Good Nice utility that mostly meets expectations

40-60 Fair Mostly acceptable, but some undesired
impairments are already detected

20-40 Poor Presence of harsh impairments that leave no
doubt of insufficiency

0-20 Bad No utility

summarized in Table 2. The listeners received an instruc-
tion sheet including the score specifications (Table 1),
and the attribute definitions with related impairments
(Table 2) before the test was started. Moreover, the clean
speech was presented to the subjects in the briefing ses-
sion as a part of the training phase before the test began.
This was done to equalize the subjects’ opinions on the
perceived quality with respect to the available attributes
and the rating scale as much as possible. The listening test
was found to be a very realistic representation of a daily
noisy situation by the operator and listeners.

The hypothesis that the listening test results follow a
normal distribution is rejected by the Anderson-Darling
test [84]. Because the data were not normally distributed,
we used the Kruskal-Wallis test [85] for variance analy-
sis. We compared the performance of the algorithms with
respect to each attribute. For example, for background
noise attenuation, this comparison was meant to examine
whether there were significant differences between differ-
ent blocking-based algorithms and the noisy signal. For
the speech quality assessment, the significant differences
between the unprocessed and processed signals were not
expected, as the speech signals should be kept undistorted
through the processing.

The results of the listening test are summarized in
Fig. 12, including the estimated median values indicated in

Table 2 Explanation of investigated attributes of the processed
signal along with possible related impairments

Attribute Meaning Possible impairment

Speech quality Utilitarian comparison
of the speech quality
w.rt. the assumed

original

Speech onset
suppression, artificial
reverberation, or

speech spectral smearing

Background Noise attenuation

noise attenuation

Noise level was annoying
or unacceptably loud

Naturalness of the
residual noise

Residual noise
naturalness

Musical noise perception

Speech spatial
sound cues

Consistency of speech
spatial cues w.r.t.
simultaneous visual
cues

Spatial desynchronization
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noted that one asterisk corresponds to p < 0.05, while
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It is observed from Fig. 12a that all algorithms achieved
a very good perceived speech quality. Due to the high
amount of ambient noise, the listener had difficulty focus-
ing on the speech signal in the evaluation of the speech
quality. Therefore, the variance is high in the speech
quality of the unprocessed signal.

The comparison of algorithms in terms of background
noise attenuation is presented in Fig. 12b. As can be seen,
the listeners rated the processed signals as significantly
superior to the noisy signal in terms of noise attenuation.
The ITFB and PCAB were perceived to have performed
similarly well in suppressing the background noise accord-
ing to the median values.

In terms of the residual noise naturalness, presented
in Fig. 12c, the unprocessed noise was rated significantly
more natural in comparison to the processed noise by
different algorithms. However, this is not surprising con-
sidering noise artifacts; for instance, musical noise is one
of the well-known drawbacks of the Wiener-type noise
reduction methods [30]. With respect to median values,
the ITFB was perceived to be slightly more aggressive
toward the noise signals, which can be additionally con-
firmed by the objective evaluation results presented in
Fig. 8a.

The speech spatial cue rating is presented in Fig. 12d. As
can be seen, the algorithms are rated similarly according
to the median values, and there are no significant dif-
ferences between the unprocessed and processed signals.
The listeners rated the speech spatial cue preservation
by how consistent they perceived the spatial cues with
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respect to the visual cues. Because the listeners were wear-
ing headphones at all times during the test, some of the
listeners did not experience natural speech cue perception
due to the use of the headphones. Therefore, there is a
considerably high variance in all the signals.

8 Conclusions

In this contribution, a binaural cue-preserving gain func-
tion based on the MSE criterion is proposed for binaural
noise reduction. A comparison of the proposed gain func-
tion and a bilateral Wiener filter has been conducted and
shows that the binaural cues, particularly ILD and ITD,
can be remarkably preserved by applying the proposed
gain function without experiencing a considerable loss in
noise reduction performance.

Moreover, a class of binaural noise PSD estimators
based on speech blocking has been discussed. The noise
PSD estimators rely on adaptive target speech cancela-
tion. The comparison reveals individual strengths and
weaknesses. For instance, ITFB provides binaural noise
estimation, which is one of the key factors toward achiev-
ing a performance similar to the ideal reference noise
reduction. The CRB, in turn, provides the lowest speech
leakage, which is another key factor. These factors are in
line with our observations from the real-time evaluation.

Furthermore, a real-time subjective listening test has
been developed to assess the performance of blocking-
based algorithms in a realistic acoustic environment. The
listening test data analysis verifies the objective evaluation
outcomes.

Acknowledgements
The authors acknowledge Prof. Rainer Martin for his valuable feedback.

Authors’ contributions
All the contributions are by the authors. Both authors read and approved the
final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 27 March 2017 Accepted: 15 June 2017
Published online: 10 July 2017

References

1. CMathers, A Smith, M Concha, Global burden of hearing loss in the year
2000. World Health Organization (2000)

2. TVD Bogaert, TJ Klasen, M Moonen, LV Deun, J Wouters, Horizontal
localization with bilateral hearing aids: without is better than with.

J. Acoust. Soc. Am. 119(1), 515-526 (2006)

3. SDoclo, R Dong, TJ Klasen, J Wouters, S Haykin, M Moonen, in Proc. IEEE
Intl. Workshop on Acoustic Echo and Noise Control (IWAENC). Extension of
the multi-channel Wiener filter with localization cues for noise reduction
in binaural hearing aids, (Eindhoven, 2005), pp. 221-224

4. Y Suzuki, S Tsukui, F Asano, R Nishimura, New design method of a
binaural microphone array using multiple constraints. IEICE Trans.
Fundamentals Electron. Commun. Comput. Sci. 82(4), 588-596 (1999)

20.

21.

22.

23.

24.

Page 15 of 17

J Szurley, A Bertrand, BV Dijk, M Moonen, Binaural noise cue preservation
in a binaural noise reduction system with a remote microphone signal.
|IEEE/ACM Trans. Audio, Speech Lang. Process. 24(5), 952-966 (2016)

S Haykin, KIR Liu, in Handbook on Array Processing and Sensor Networks, ed.
by S. Doclo, MMS Gannot, A Spriet. Acoustic beamforming for hearing
aid applications (Wiley, New York, 2008), pp. 269-302

B Cornelis, S Doclo, TV den Bogaert, M Moonen, J Wouters, Theoretical
analysis of binaural multimicrophone noise reduction techniques. IEEE
Trans. Audio, Speech, Lang. Process. 18(2), 342-355 (2010)

S Doclo, TJ Klasen, TV den Bogaert, J Wouters, M Moonen, in Proc. Int.
Workshop Acoustic Echo Noise Control (IWAENC). Theoretical analysis of
binaural cue preservation using multi-channel Wiener filtering and
interaural transfer functions, (Paris, 2006)

M Azarpour, G Enzner, R Martin, in Proc. Int. Conf. on Acoustics, Speech, and
Signal Processing (ICASSP). Adaptive binaural noise reduction based on
matched-filter equalization and post-filtering, (Vancouver, 2013), pp. 1-4
E Hadad, D Marquardt, S Doclo, S Gannot, Theoretical analysis of binaural
transfer function MVDR beamformers with interference cue preservation
constraints. [EEE Trans. Audio, Speech, Lang. Process. 23(12), 2449-2464
(2015)

MH Costa, PA Naylor, in in Proc. IEEE Signal Processing Conf. (EUSIPCO). ILD
preservation in the multichannel Wiener filter for binaural hearing aid
applications, (Lisbon, 2014)

TJ Klasen, TV den Bogaert, M Moonen, J Wouters, Binaural noise reduction
algorithms for hearing aids that preserve interaural time delay cues. IEEE
Trans. Signal Process. 55(4), 1579-1585 (2007)

TV den Bogaert, S Doclo, J Wouters, M Moonen, The effect of
multimicrophone noise reduction systems on sound source localization
by users of binaural hearing aids. J. Acoust. Soc. Am. 124(1), 484-497
(2008)

TVD Bogaert, J Wouters, S Doclo, M Moonen, in [EEE Int. Conf. on Acoustics,
Speech and Signal Processing (ICASSP). Binaural cue preservation for
hearing aids using an interaural transfer function multichannel Wiener
filter, vol. 4, (Honolulu, 2007), pp. 565-568

E Hadad, S Doclo, S Gannot, The binaural LCMV beamformer and its
performance analysis. IEEE/ACM Trans. Audio, Speech, Lang. Process.
24(3),543-558 (2016)

D Marquardt, E Hadad, S Gannot, S Doclo, Theoretical analysis of linearly
constrained multi-channel Wiener filtering algorithms for combined
noise reduction and binaural cue preservation in binaural hearing aids.
|EEE Trans. Audio, Speech, Lang. Process. 23(12), 2384-2397 (2015)

D Marquardt, V Hohmann, S Doclo, in IEEE Int. Conf. on Acoustics, Speech
and Signal Processing (ICASSP). Binaural cue preservation for hearing aids
using multi-channel Wiener filter with instantaneous ITF preservation,
(Kyoto, 2012), pp. 21-24

D Marquardt, V Hohmann, S Doclo, in 2014 IEEE Int. Conf. on Acoustics,
Speech and Signal Processing (ICASSP). Perceptually motivated coherence
preservation in multi-channel Wiener filtering based noise reduction for
binaural hearing aids, (Florence, 2014), pp. 3660-3664

D Marquardt, V Hohmann, S Doclo, in IEEE Int. Conf. on Acoustics, Speech
and Signal Processing (ICASSP). Coherence preservation in multi-channel
Wiener filtering based noise reduction for binaural hearing aids,
(Vancouver, 2013), pp. 8648-8652

D Marquardt, V Hohmann, S Doclo, in Proc. IEEE Int. Conf. on Acoustics,
Speech and Signal Processing (ICASSP). Interaural coherence preservation
in MWF-based binaural noise reduction algorithms using partial noise
estimation, (Brisbane, 2015), pp. 654-658

D Marquardt, V Hohmann, S Doclo, Interaural coherence preservation in
multi-channel Wiener filtering-based noise reduction for binaural hearing
aids. IEEE Trans. Audio, Speech, Lang. Process. 23(12), 2162-2176 (2015)
AH Kamkar-Parsi, M Bouchard, Improved noise power spectrum density
estimation for binaural hearing aids operating in a diffuse noise field
environment. IEEE Trans. Audio, Speech, Lang. Process. 17(4), 521-533
(2009)

N Yousefian, JHL Hansen, PC Loizou, A hybrid coherence model for noise
reduction in reverberant environments. IEEE Signal Process. Lett. 22(3),
279-282 (2015)

M Jeub, M Schéfer, T Esch, P Vary, Model-based dereverberation
preserving binaural cues. [EEE Trans. on Audio, Speech, Lang. Process. 18,
1732-1745 (2010)



Azarpour and Enzner EURASIP Journal on Advances in Signal Processing (2017) 2017:49

25.

26.

27.

28.

29.

30.
31
32.

33

34.

35.

36.

37.
38.

39.

40.

41.

42.

43.

45.

46.

47.

48.

49.

50.

F Mustiére, M Bouchard, H Najaf-Zadeh, R Pichevar, L Thibault, H
Saruwatari, Design of multichannel frequency domain statistical-based
enhancement systems preserving spatial cues via spectral distances
minimization. Signal Process. Elsevier. 93(1), 321-325 (2013)

A Tsilfidis, E Georganti, ] Mourjopoulos, in IEEE Int. Conf. on Acoustics,
Speech and Signal Processing (ICASSP). Binaural extension and
performance of single-channel spectral subtraction dereverberation
algorithms, (Prague, 2011), pp. 1737-1740

B Kollmeier, J Peissig, V Hohmann, Real-time multiband dynamic
compression and noise reduction for binaural hearing aids. J. Rehab. Res.
Dev. 30(1), 82-94 (1993)

M Dorbecker, S Ernst, in Proc. of European Signal Processing Conf.
(EUSIPCO). Combination of two-channel spectral subtraction and
adaptive Wiener post-filtering for noise reduction and dereverberation,
(Trieste, 1996), pp. 995-998

AH Kamkar-Parsi, M Bouchard, Instantaneous binaural target PSD
estimation for hearing aid noise reduction in complex acoustic
environments. IEEE Trans. Instrumentation Meas. 60(4), 1141-1154 (2011)
P Vary, R Martin, Digital Speech Transmission. Enhancement, Coding and
Error Concealment. (John Wiley & Sons, Ltd, Chichester, 2006)

N Wiener, Extrapolation, Interpolation and Smoothing of Stationary Time
Series. (John Wiley & Sons, New York, USA, 1949)

JS Lim, AV Oppenheim, Enhancement and bandwidth compression of
noisy speech. Proc. IEEE. 67(12), 1586-1604 (1979)

JHL Hansen, MA Clements, Constrained iterative speech enhancement
with application to speech recognition. IEEE Trans. Signal Process. 39(4),
795-805 (1991)

Y Ephraim, D Malah, Speech enhancement using a minimum
meansquare error short-time spectral amplitude estimator. IEEE Trans.
Acoust. Speech, Signal Process. 32(6), 1109-1121 (1984)

T Lotter, P Vary, Dual-channel speech enhancement by superdirective
beamforming. EURASIP J. Adv. Signal Process. 2006, 1-14 (2006)

R Zelinski, in IEEE Int. Conf. on Acoustics, Speech and Signal Processing
(ICASSP). A microphone array with adaptive post-filtering for noise
reduction in reverberant rooms, vol. 5, (New York, 1988), pp. 2578-2581
IA McCowan, H Bourlard, Microphone array post-filter based on noise
field coherence. IEEE Trans. Speech Audio Process. 11(6), 709-716 (2003)
PC Loizou, Speech Enhancement: Theory and Practice, 1st edn. (CRC Press,
Inc., Florida, 2007)

L Wang, T Gerkmann, S Doclo, in Proc. Int. Workshop on Acoustic Signal
Enhancement (IWAENC). Noise PSD estimation using blind source
separation in a diffuse noise field, (Aachen, 2012), pp. 1-4

KReindl, Y Zheng, A Schwarz, S Meier, R Maas, A Sehr, W Kellermann, A
stereophonic acoustic signal extraction scheme for noisy and reverberant
environments. Comput. Speech Lang. 27(3), 726745 (2013)

M Azarpour, G Enzner, R Martin, in Proc. Int. Conf. on Acoustics, Speech, and
Signal Processing (ICASSP). Binaural noise PSD estimation for binaural
speech enhancement, (Florence, 2014)

M Azarpour, G Enzner, in Int. Workshop on Acoustic Signal Enhancement
(IWAENC). Fast noise PSD estimation based on blind channel
identification, (Antibes Juan les Pins, French Riviera, 2014), pp. 223-227
A Hyvarinen, J Karhunen, E Oja, Principal Component Analysis. (John Wiley
& Sons, New York, 2001)

G Enzner, | Merks, T Zhang, in Proc. of the 20th European Signal Processing
Conf. (EUSIPCO). Adaptive filter algorithms and misalignment criteria for
blind binaural channel identification in hearing-aids, (Bucharest, 2012),
pp.315-319

JC Junqua, The Lombard reflex and its role on human listeners and
automatic speech recognizers. J. Acoust. Soc. Am. 93(1), 510-524 (1993)
JB Allen, Short term spectral analysis, synthesis, and modification by
discrete Fourier transform. IEEE Trans. Acoust Speech, Signal Process.
25(3),235-238(1977)

AV Oppenheim, RW Schafer, Discrete-Time Signal Processing. (Prentice Hall,
Englewood Cliffs, 1989)

G Enzner, JSM Azarpour, in Proc. Int. Workshop on Acoustic Signal
Enhancement (IWAENC). Cue-preserving MMSE filter for binaural speech
enhancement, (2016)

S Haykin, Adaptive Filter Theory. (Prentice Hall, Upper Saddle River, New
Jersey, New Jersy, 2001)

H Kuttruff, Room Acoustics, 5th edn. (Spon Press, Abingdon, 2009)

51

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

Page 16 of 17

M Jeub, M Dorbecker, P Vary, A semi-analytical model for the binaural
coherence of noise fields. IEEE Signal Process. Lett. 18(3), 197-200 (2011)
D Schmid, G Enzner, Cross-relation-based blind SIMO identifiability in the
presence of near-common zeros and noise. [EEE Trans. Signal Process.
60(1),60-72 (2012)

J Benesty, MM Sondhi, YA Huang (eds.), Springer Handbook of Speech
Processing (Springer, Berlin Heidelberg, 2008)

E Warsitz, R Haeb-Umbach, Blind acoustic beamforming based on
generalized eigenvalue decomposition. IEEE Trans. Audio, Speech, Lang.
Process. 15(5), 1529-1539 (2007)

JH Wilkinson, C Reinsch, Linear Algebra. (Springer, Berlin Heidelberg, 1971)
B Hagerman, A Olofsson, Nastén: Noise reduction measurements in
hearing aids. Presentation at IHCON (2001)

H Bjorn, O Ake, A method to measure the effect of noise reduction
algorithms using simultaneous speech and noise. Acta Acust United Ac.
90, 356-361 (2004)

M Jeub, M Schéfer, P Vary, in Proc. of Int. Conf. on Digital Signal Processing
(DSP). A binaural room impulse response database for the evaluation of
dereverberation algorithms, (Santorini, 2009), pp. 1-4

M Jeub, M Schifer, H Kriiger, CM Nelke, C Beaugeant, P Vary, in Int.
Congress on Acoustics (ICA). Do we need dereverberation for hand-held
telephony? (Sydney, 2010), pp. 1-7

JS Garofolo, LF Lamel, WM Fisher, JG Fiscus, DS Pallett, NL Dahlgren,
DARPA TIMIT Acoustic-phonetic continuous speech corpus CDROM. (NIST,
1993). http//www.ldc.upenn.edu/Catalog/LDC93S1.html

ETSIEG 202 396-1: Speech quality performance in the presence of
background noise; Part 1: Background noise simulation technique and
background noise database (2009)

EAP Habets, | Cohen, S Gannot, Generating nonstationary multisensor
signals under a spatial coherence constraint. J. Acoustic Soc. Am. 124(5),
2911-2917 (2008)

T Gerkmann, RC Hendriks, in IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics (WASPAA). Noise power estimation based
on the probability of speech presence, (New Paltz, 2011), pp. 145-148
AW Rix, JG Beerends, MP Hollier, AP Hekstra, in Proc. IEEE Int. Conf. Acoustic
, Speech, Signal Processing (ICASSP). Perceptual evaluation of speech
quality (PESQ)— a new method for speech quality assessment of
telephone networks and codecs, vol. 2, (Salt Lake City, 2001), pp. 749-752
T May, S van de Par, A Kohlrausch, A probabilistic model for robust
localization based on a binaural auditory front-end. [EEE Trans. Audio,
Speech Lang. Process. 19(1), 1-13 (2011)

S Bech, N Zacharov (eds.), Perceptual Audio Evaluation—Theory, Method
and Application (John Wiley & Sons, Chichester, England, 2006)

E Parizet, VN Nosulenko, Multi-dimensional listening test: selection of
sound descriptors and design of the experiment. Noise Control Eng. J.
47(6), 1-6 (1999)

E Parizet, N Hamzaoui, G Sabatie, Comparison of some listening test
methods: a case study. Acta Acustica U Acustica. 91(2), 356-364 (2005)

P Hatziantoniou, J Mourjopoulos, J Worley, in 118th Audio Engineering
Society Convention. Subjective assessments of real-time room
dereverberation and loudspeaker equalization, (Barcelona, 2005)

Y Hu, PC Loizou, Subjective comparison and evaluation of speech
enhancement algorithms. Speech Commun. 49, 588-601 (2007)

K Kondo, Subjective Quality Measurement of Speech, Its Evaluation,
Estimation and Applications. (Springer, Berlin Heidelberg, 2012)

PC Loizou, G Kim, Reasons why current speech-enhancement algorithms
do not improve speech intelligibility and suggested solutions. IEEE Trans.
on Audio, Speech, and Lang. Process. 19(1), 47-56 (2011)

H Wang, R Hu, W Tu, C Zhang, The perceptual and statistics characteristic
of spatial cues and its application. Int. J. Comput. Sci. Issues. 10(3),
621-626 (2013)

S Bech, N Zacharov (eds.), Perceptual Audio Evaluation—Theory, Method
and Application (John Wiley & Sons, Chichester, England, 2006), pp. 29-38.
Chap. Fundamentals of experimentation

[TU-R. Recommendation BS.1534-1, Method for the Subjective Assessment of
Intermediate Quality Level of Coding Systems. (International
Telecommunications Union Radiocommunication Assembly, 2003)
[TU-T. Recommendation P.835, Subjective Test Methodology for Evaluating
Speech Communication Systems that Include Noise Suppression Algorithm.
(International Telecommunications Union, Telecommunications
Standardization Sector


http://www.ldc.upenn.edu/Catalog/LDC93S1.html

Azarpour and Enzner EURASIP Journal on Advances in Signal Processing

77.

78.

79.

80.

81.

82.

83.

84.

85.

ITU-T. Recommendation P.800.1, Mean Opinion Score (MOS) Terminology.
International Telecommunications Union, Telecommunications
Standardization Sector, 2003)

G Halfacree, E Upton, Raspberry Pi User Guide, 1st edn. (John Wiley & Sons,
Chichester, 2012)

Mathworks: MatLab & Simulink: Simulink Reference R2016a. The
MathWorks Inc. (2016). The Mathworks Inc. http://www.mathworks.com/
M Azarpour, J Siska, G Enzner, in Proc. Int. Conf. on Acoustics, Speech, and
Signal Processing (ICASSP). Realtime binaural speech enhancement demo
on Raspberry Pi, (New Orleans, 2017)

H Levitt, M Bakke, J Kates, A Neuman, T Schwander, M Weiss, Signal
processing for hearing impairment. Scand. Audiol. Suppl. 38, 7-19 (1993)
ITU-T Recommendation P.832, Subjective performance evaluation of
hands-free terminals (05/2000) (2000)

MJ Ball, C Code (eds.), Instrumental Clinical Phonetics (Whurr Publishers,
London, 1997)

NM Razali, YB Wah, Power comparisons of Shapiro-Wilk,

Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. J. Stat. Model.

Anal. 2(1), 21-33 (2011)
WH Kruskal, WA Wallis, Use of ranks in one-criterion variance analysis.
J. Am. Stat. Assoc. 47(260), 583-621 (1952)

(2017) 2017:49 Page 17 of 17

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com



http://www.mathworks.com/

	Abstract
	Keywords

	Introduction
	Binaural signal model
	Binaural cue-preserving MMSE filter
	Noise PSD estimation via adaptive speech blocking
	ITF-based adaptive blocking (ITFB)
	Uncorrelated noise
	Diffuse noise

	CR-based adaptive blocking (CRB)
	PCA-based adaptive blocking (PCAB)
	Uncorrelated noise
	Diffuse noise


	Instrumental measures related to adaptive speech blocking
	Speech leakage ratio (SLR)
	Noise PSD ratio (LogErr measure)

	Instrumental evaluation results
	Experimental setup
	Algorithm parameters
	Selected algorithms for comparison

	Investigation of speech leakage
	Noise PSD estimation
	Noise reduction
	Binaural cue preservation

	Subjective evaluation
	Experimental setup
	Subjective listening test
	Investigated attributes

	Conclusions
	Acknowledgements
	Authors' contributions
	Competing interests
	Publisher's Note
	References

