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Abstract

The total variation (TV) denoising method is a PDE-based technique that preserves the edges well but has undesirable
staircase effect in some cases, namely, the translation of smooth regions (ramps) into piecewise constant regions
(stairs). This paper introduces a novel mesh-free approach using TV (ROFmodel) regularization and radial basis function
(RBF) for the numerical approximation of TV-based model to remove the additive noise from the measurements. This
approach is structured on local collocation and multiquadric radial basis function. These features enable this strategy
not only to eliminate noise from images and preserve the edges but also has the advantage to minimize the staircase
effect substantially from real and artificial images which cause the image to look blocky. Experimental results
demonstrate that the proposed mesh-free approach is robust and performs well in visual improvement as well as
peak signal-to-noise ratio compared with the recent partial differential equation (PDE)-based traditional methods.

Keywords: Image denoising, Total variation (TV) filter, Radial basis functions (RBF), Restoration equation, Mesh-based
methods, Mesh-free method

1 Introduction
Image denoising is an inverse problem and is a very active
area in the fields of image and signal processing that has
been studied for the last three decades. Although there
exist different types of noise, here we consider only mod-
els for removing additive, zero-mean Gaussian noise. This
can be modeled as

z = u + η, (1)

where z is the given noisy image containing the unknown
additive noise (Gaussian noise) η and u is the known
actual image, all of which are defined on a domain � ∈
R2. In literature, there are many effective numerical tech-
niques have been utilized to tackle suchmodels connected
with image denoising having additive noise, for instance,
in [1, 4, 13, 37, 44, 45].
The TV filtering [38] has proved to be one of the most

successful tool in image processing for the solution of vari-
ational based partial differential equation (PDE) restora-
tion problems. In this method, it is supposed that the
images are defined on a continuous domain, which results
in continuous functional. This functional then leads to
a Euler-Lagrange equation. The resulting PDEs are then
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discretized by existing classical numerical methods on a
regular grid for smooth solutions. For more details about
the TV filtering, see [22, 38, 39]. The first TV-based
model for image restoration having additive noise was
proposed by Rudin et al. (ROF) [38]. This model yields
very satisfactory results for removing image noise while
preserving edges, see [7, 37]. However, it also processes
some unfavorable properties like staircase effect, loss of
image contrast and in time computation due to its non-
linearity and non-differentiability [5, 32, 33, 38]. In [38],
the authors proposed an artificial time marching method
to the associated Euler-Lagrange equation. This strategy
is slow due to its strict stability constraints in the time
steps. Also, the artificial time marching method computes
the approximate solution, not the exact solution. Recently
different procedures have been used to overcome this dif-
ficulty and hence some good results have been obtained,
for instance, see [14, 18, 29–31, 43, 46]. But still, there
is space for improvement. So, in this work, we adapt the
mesh-free BRF collocation method to reduce these issues.
During the past decade, RBFs have been observed to

be active techniques for the interpolation and approxi-
mation of multi-variable smooth functions on scattered
data sets [3, 6, 12]. More recently, an increasing attention
has been given to the development of mesh-free methods
using RBFs for the numerical solution of PDEs.Most PDEs
results have concerned steady state problems with smooth
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solutions. Recently there has been a growing interest in
applying RBF methods to time-dependent PDE problems,
again to problems with sufficiently smooth solutions.
The RBF techniques have more points of interest and
have exhibited superior accuracy as compared with tradi-
tional numerical strategies, for example, finite difference
method (FDM) [20, 23, 47], finite element method (FEM)
[23], finite volume method (FVM) [21, 25], and pseudo-
spectral method [24]. Interested readers can refer to
[2, 8, 9, 16, 17, 26–28, 40] for more details about the RBF
collocation methods.
Global RBF collocation technique is also easy to imple-

ment, gives good accuracy and converges exponentially
for solving the PDEs. Although, in this strategy, the inter-
polation matrix is fully populated and ill-conditioned,
and thus sensitive to shape parameter. Thus, it is com-
putationally extremely expensive to apply global collo-
cation method to large scale problems. So in literature,
there are many domain type collocation techniques, for
example, Kansa technique [19, 20] etc, is to settle these
issues.
The main advantages of the RBFs for interpolating mul-

tidimensional scattered data are discussed in [19, 20]. In
recent decades, meshless methods have been proved to
treat scientific and engineering problems efficiently. The
mesh-free method based on the collocation method has
been dominated and very efficient. Over the last several
decades RBFs have been found to be widely successful for
the interpolation of scattered data. RBF methods are not
tied to a grid and in turn, belong to a category of meth-
ods called mesh-free methods. They apply only a cloud of
points without any information about nodal connections.
It is (conditionally) positive definite [3, 36, 42], rotation-
ally and translationally invariant. The RBF approximation
is an incredibly powerful tool for representing smooth
functions in non-trivial geometries since the method is
mesh-free and can be spectrally accurate [10]. RBFs inter-
polations have been used to remove the Gibbs oscillations
from the given arbitrary data points [41] and very useful
results have been obtained.
Motivated by the applications of TV-regularization in

image restoration and RBF collocation methods for the
solution of PDEs, we propose a new mesh-free strategy,
with some modifications, of the TV (ROF) filter by RBF
approximation to accomplish a new algorithm to solve the
associated PDE with minimization of ROF model. This
strategy is entirely mesh-less and is not only helpful to
restore the image efficiently and resolve the edges due to
is discontinuous jumps but also to eliminate the staircase
effect and preserve the textures during the restoration
process. The numerical treatment in this approach is also
easy to implement and faster because of its mesh-free
properties as compared to the traditional mesh-based
numerical methods.

The rest of the paper is organized as follows. In
Section 2, some details are provided related to the appli-
cations of TV-regularization and its detail use in ROF
model for image restoration. This section also contains the
shortcoming in ROF model. This section also includes the
details of RBFs and its applications in solving PDEs and
comparison with traditional methods. Two mesh-based
methods, i.e., implicit and Augmented Lagrangian meth-
ods utilized for the solution of ROF model are presented
in Section 3. This section also contains proposed method,
i.e., BRF collocation method (Kansa method) for the solu-
tion of the associated PDE with ROF model. Section 4,
describes experimental results and discussion, to compare
the three methods for ROF model regarding CPU times,
the number of iterations, and quality (peak signal to noise
ratio (PSNR)) of the restored images. This section also
includes the shape parameter analysis on image restora-
tion and comparison of the proposed method with an
other recent method. Section 5, shows the tabulated dis-
cussions about the sensitivity of parameters of the pro-
posed method. The conclusion is provided in Section 6.
And finally, the details for derivatives for our proposed
method are given in an Appendix.

2 Related work
2.1 Total variation-based in image denoising

Rudin-Osher-Fatemi (ROF) model
The TV regularization is a process in digital image pro-
cessing for the noise removal and also an important tool
in the inverse problem and numerical [15]. It is the only
regularizer which is used to preserve the edges and for
removing the highly noisy frequency components from
the image. It is also a convex one. So the total variation
(TV) for an image u : � → R2 is defined as

TV (u) =
∫

�

|∇u|dxdy, where |∇u| =
√
u2x + u2y .

Rudin et. al (ROF) proposed the first model for image
restoration from given noisy image having additive noise
using TV regularization in [38]. This model achieved
some useful restoration results.
The minimization approach for the model (1) using TV

method is given as

û = argmin
u

E(u) =
∫

�

|∇u|dxdy + λ

2
‖u − z‖ 2

2,

where |∇u| =
√
u2x + u2y ,

(2)

where the first term is the total variation of u, and the
second term is data fitting term, respectively, and λ is
the parameter. The fitting parameter λ is used for balanc-
ing the denoising and smoothing of the denoised image
which usually depends on upon the noise level. The
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corresponding Euler Lagrange equation of the ROFmodel
(2) is given as follows;

− ∇ .
[ ∇u

|∇u|2 + ε

]
+ λ(u − z) = 0 in

� for ε > 0, (x, y) ∈ R,
or

− ∂

∂x

⎛
⎜⎝ ux√

u2x + u2y

⎞
⎟⎠ + ∂

∂y

⎛
⎜⎝ uy√

u2x + u2y

⎞
⎟⎠ + λ(u − z)

= 0 in �

(3)

with ∂u
∂n = 0 on the boundary of � = ∂�. The time

marching restoration PDE from (3) is given as follows,

ut = ∇ .
[ ∇u

|∇u|2 + ε

]
+ λ(u − z) in

� for t > 0, (x, y) ∈ R,
or

∂u
∂t

= ∂

∂x

⎛
⎜⎝ ux√

u2x + u2y

⎞
⎟⎠ + ∂

∂y

⎛
⎜⎝ uy√

u2x + u2y

⎞
⎟⎠

+ λ(u − z) for t > 0, (x, y) ∈ R,

(4)

for the given u(x, y, 0), and also ∂u
∂n = 0 on ∂�.

ROF model has the following disadvantages.

• This model yields staircase effect, in restoring the
smooth images in applications where edges are not
the main features.

• This model also generates to the loss of image
contrast during the restoration process.

• This model also contains the difficulty with the
non-differentiability term in the total variation norm.

2.2 Radial basis functions approximation
RBFs are mostly multivariate functions, and their val-
ues depend only on the distance from the origin, so that
φ(x) = φ(r) ∈ R, x ∈ Rn, r ∈ R; or alternatively on
the distance from a point of a given set {xj} such that

φ(x− xj) = φ(rj) ∈ R. Any function φ satisfying the prop-
erty φ(x) = φ(‖x‖2) is called the radial function. Some
commonly used, globally-supported RBFs are shown in
Table 1.
RBF interpolation of a continuousmultivariate function,

f (x), x ∈ � ⊆ Rn, where � is the bounded domain. For
N interpolation function values {yi}Ni=1 ∈ R at the data
location (which are traditionally called centers in the RBF
concept) {xi}Ni=1 ∈ � ⊆ Rn, then f (x) can be approximated
by a linear combination of RBFs, namely,

f (x) =
N∑
j=1

γjφ(‖x − xj‖2), x ∈ �, (5)

where γj are unknown coefficients which must be deter-
mined. Using the collocation method, one may write:

yi = f (xi) =
N∑
j=0

γjφ(‖xi − xj‖2), i, j = 1, 2, . . .N .

The above linear system of equations can be expressed
in the following N × N linear system matrix form

Aα = b,

in which α = (α1,α2, . . . αN )t is an unknown coefficient
vector that should be determined, b = (y1, y2, . . . yN )t , and
the RBF interpolation matrix is given by

A =[
ij]=[φ(‖xi − xj‖2)]1≤i,j≤N with 
ij = 
ji,

where where A is a N × N matrix, α and b are N × 1
matrices. However, some RBFs are conditionally positive
definite functions as listed in Table 1, such as MQ, IMQ,
GA, and TPS.
Hence, polynomials are augmented to Eq. (5) to guar-

antee that the resultant interpolation matrix is invertible.
Such a formulation is expressed as follows

f (x) =
N∑
j=1

γjφ(‖x − xj‖2) +
M∑
i=1

γN+ipi(x), (6)

with constraints
N∑
j=1

γjpi(xj) = 0, i = 1, 2, . . . ,M, (7)

Table 1 [k] denotes the nearest integers less than or equal to k, and N the natural number, c a positive constant which is known as the
shape parameter, and CPD denotes the m-order conditionally positive definite functions [3, 11]

Name of RBF Definition CPD order (m)

Multiquadric (MQ) φ(r, c) = (r2 + c2)k if k > 0, k /∈ N [k]+1

Inverse multiquadric (IMQ) φ(r, c) = (r2 + c2)−k if k > 0, k /∈ N 0

Gaussian (GA) φ(r, c) = e
−r2

c2 0

Polyharmonic spline φ(r) =
⎧⎨
⎩

r2k−1 if k ∈ N

r2k−1log(r) if k ∈ N.
[k/2]+1

Thin plate splines (TPS) φ(r) = r2 ln(r) 0
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in which pi ∈ �m−1, i = 1, 2, . . . ,M, where �m repre-
sents the polynomial space in which the total degree of all
polynomials is thenm in N variables [36],(

N + m − 1
m − 1

)

Then, Eqs. (6) and (7) yields matrix system of (M+N)×
(M + N)[

A P
Pt O

] [
γ

0

]
=

[
b
0

]

where the elements of matrix A are Ai,j =[
ij]=
[φ(‖xi − xj‖2)]1≤i,j≤N , the elements of P are Pi,j =
pi[ xj]1≤i≤N ,1≤j≤M and O is alsoM × M matrix.
Moreover, details of positive definite (PD) and condi-

tionality positive definite (CPD) RBFs are discussed in
[3, 36] and listed in Table 1. For RBFs containing the shape
parameter c, such as as in Table 1, small shape parameters
produces more accurate results, but also associated with
poorly conditioned interpolation matrix [3, 36].

3 Numerical methods for solution of ROFmodel
3.1 Implicit method (M1)
Rudin et al. (ROF) proposed the implicit scheme to solve
the Eq. (4) in [38].
The numerical approximation for (4) is given as

uk+1
ij = ukij +

�t
h

⎡
⎢⎢⎢⎢⎣∇−

x

⎛
⎜⎜⎜⎜⎝

∇−
x ukij√(

∇+
x ukij

)2 +
(
m1

(
∇+
y ukij

)
,
(
∇−
y ukij

)2

⎞
⎟⎟⎟⎟⎠

+ ∇−
y

⎛
⎜⎜⎜⎜⎝

∇−
y ukij√(

∇+
y ukij

)2 +
(
m2

(
∇+
x ukij

)
,
(
∇−
x ukij

)2

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦

− �tλ
(
ukij − z0

(
ih, jh

))

for i = 1, 2, . . . ,m1, j = 1, 2, . . . ,m2 with boundary
conditions

u0j = u1j, um1j = um1−1j, ui0 = uim2 = uim2−1.

Where

∇±
x = ±[ui±1,j − ui,j] , ∇±

y = ±[ui,j±1 − ui,j] .

|∇x(ui,j)|ε =
√

∇+
x (ui,j)2 + (m1[∇+

y (ui,j;∇−
y (ui,j] )2 + ε.

|∇y(ui,j)|ε =
√

∇+
y (ui,j)2 + (m2[∇+

x (ui,j;∇−
x (ui,j] )2 + ε.

Wherem[ a, b]=
(
sign(a)+sign(b)

2

)
.min (|a|, |b|) . For fur-

ther details, see [38].

3.2 Augmented Lagrangian method (M2)
Chunlin Wu [43] first proposed this numerical method in
2009, for the solution of ROF model (2) and hence many

good results have been obtained. So for this, he introduced
a new variable p for ∇u and then separate the calculation
of the non-differentiability term and the fidelity term. So
the minimization problem (2) can be written as

û = argmin
u,p

E(u, p) =
∫

�

|p|dxdy + λ

2
||u − z||22, (8)

such that p = (p1, p2)t =
(

∂u
∂x

,
∂u
∂y

)t
= ∇u

which is constrained optimization problem.
So, the above problem (8) can be solved by Augmented

Lagrangian method as

min
u,p

max
χ

Lrof (u, p,χ) =
∫

�

|p| + λ

2
||u − z||22

+
∫

�

χ .(p − ∇u) + r
2

∫
�

|p − ∇u|2,
(9)

where Lrof (u, p,χ) is called the augmented Lagrangian
functional, χ = (χ1,χ2)t is the Lagrange multiplier,
and r is the positive constant. The system of optimality
condition is written as follows

∂Lrof
∂u

= λ(u − z) + ∇ .χ + r∇ .(p − ∇u) = 0, (10)

∂Lrof
∂p

= p
|p| + χ + r(p − ∇u) = 0, (11)

∂Lrof
∂χ

= p − ∇u = 0. (12)

The augmented Lagrangian process is used to solve (9),
which is stated in the given Algorithm 1. To solve the

Algorithm 1 :Algorithm for Augmented Lagrangian
method for the ROF model
1. Procedure Input (u0 = 0, p0 = 0,χ0 = 0;)
2. For k = 0, 1, 2, .. : compute (uk+1, pk+1)

(uk+1, pk+1) = argmin
u,p

Lrof (u, p,χk), (13)

where Lrof (u, p,χk) is defined is functional (9).

minimization problem (13), we split (13) into two sub-
problems.
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For fixed p value,

argmin
u

λ

2
||u− z||2−

∫
�

χk .∇u+ r
2

∫
�

|p−∇u|2, (14)

and for fixed u value,

argmin
p

∫
�

|p| +
∫

�

χk .p + r
2

∫
�

|p − ∇u|2. (15)

For the u-subproblem, the optimality condition is given
by the following linear equation

λ(u − z) + divχk + rdivq − r∇u = 0, (16)

which allows us to use the Fast Fourier transform F(u) and
hence we get

u = F−1
(

λF(z) − F(div).F(χk) − rF(div).F(p)
λ − rF(�)

)
.

(17)

The p-subproblem can be formulated as

argmin
p

∫
�

|rp| + 1
2

∫
�

|rp − (r∇u − χk)|2, (18)

and hence obtained the following closed solution

q = 1
r

(
1 − w(x, y)

|w(x, y)|
)
max{|w(x, y)| − 1, 0}, (19)

where w = r∇u − χk . The given Algorithm 2 shows the
solution of sub-problem (13). For further details, we refer

Algorithm 2 :Algorithm for Augmented Lagrangian
method for the ROF model-solution of sub-problem (13).
1. Procedure Input (uk+1,0 = uk , pk+1,0 = pk ;)
2. For n = 0, 1, 2, ..N : compute uk+1,n+1 from Eq. (17) for
p = pk+1,n; and then compute pk+1,n+1 from Eq. (19) for
u = uk+1,n;
3. uk+1 = uk+1,N , pk+1 = pk+1,N . The value of N is taken
as 1.

the readers [43].

3.3 Proposedmethod (M3)
In this subsection, our aim is to introduce a new algo-
rithm, using both RBF interpolation and total variation
norm to solve ROF model (4) and to reduce the difficulty
associated with the total variation norm in ROF method
(4). This methodology obviously uses advantages of both
BRF interpolation and total variation norm which leads
to the good restoration performance regarding restora-
tion, eliminating the staircase effect, sharp edges and
textures. Hence using this method, consistent improve-
ment in PSNR values is obtained. Suppose {xi}Ni=1 is the

N distant evaluation points in � ⊆ R2. So, for any radial
basis function the following equations satisfied, φ(r) =
‖r‖2 in R2, i.e r = (x, y). For {xcj}Ncj=1, given Nc centers,
defining of radial basis function without polynomial term
one may write:

s(x) =
Nc∑
j=1

ρjφ(‖x − xcj‖2) (20)

ρj coefficients in RBF is determined via enforcing the
interpolation condition

s(xj) = z,

a set of points that usually coincides with Nc centers. The
interpolation condition at Nc centers results in a Nc × Nc
linear system

Aρ = z

which must be solved for expansion coefficients of ρ.
Where ρ = (ρ1, ρ2 . . . ρNc)t and z = (z1, z2 . . . zNc)t are
Nc × 1 matrices. The matrix A is called interpolation
matrix or system matrix, and is given by

A =[
ij]=[φ(‖xi − xcj‖2)]1≤i,j≤Nc

This system matrix A is Nc × Nc square and is always
invertible [36] because it is always positive definite matrix
[3, 34]. Hence we have

ρ = A−1z, (21)

where ρ isNc×1 matrix. The interplant is evaluated using
(20) at N evaluation points

({xi}Ni=1
)
, through forming

(N × Nc) evaluation matrix B which is given as

B =[
ij]=[φ(‖xi − xcj‖2)] for i=1,2,...N , j=1,2,..Nc .

The interplant is then evaluated at N points using
matrix vector product to produce u as follows.

u = Bρ. (22)

Now, from Eqs. (21) and (22) the following equation is
obtained.

u = BA−1z

or

u = Hz where H = BA−1, (23)

which gives approximate solution at any point in �.
Where u is N × 1 matrix.
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As in ROF model, the time marching Eq. (4) can be re-
written as

u(n+1) − u(n)

dt
= u(n)

xx√
(u2x)(n) + (u2y)(n)

+ u(n)
yy√

(u2x)(n) + (u2y)(n)

+ λ
(
u(n) − z(0)

)
, t > 0, (x, y) ∈ R,

or

u(n+1) − u(n)

dt
= 1√

(u2x)(n) + (u2y)(n)

[
u(n)
xx + u(n)

yy

+λ

√
(u2x)(n) + (u2y)(n)

(
u(n) − z(0)

)]
,

t > 0, (x, y) ∈ R,
(24)

Now, combining Eqs. (24) and (23) we get a new restora-
tion PDE, which is shown in the undergoing non-linear
system of equations:

L
(
u(n)

)
u(n+1) = L

(
u(n)

)
u(n) + dt

[
u(n)
xx + u(n)

yy + L
(
u(n)

)

λ
(
u(n) − z(0)

)]
, t > 0, (x, y) ∈ R,

(25)

where L(u) =
√
u2x + u2y , ux = Hxz, uxx = Hxxz, uy = Hyz,

uyy = Hyyz, ∂u
∂n = un = Hnz, and z(0) = z.

Since the RBF in the Kansa scheme does not necessarily
satisfy the governing Eq. (25), so we have more freedom to
choose a RBF. Themost popular RBF in the Kansa method
is the multiquadric (MQ) [20, 34], which usually shows
spectral accuracy if an appropriate shape parameter c is
chosen. Here, the shape parameter c used in RBF is also
one of the most important parameters for the smooth-
ness in our method M3. For the optimal value of c, our
proposed methodology gives more accurate and smooth
results in image denoising having additive noise. In this
technique the shape parameter c and fitting parameter λ

depend on the size of the image and the noise level in the
image.

Algorithm 3 :Algorithm for proposed method M3
RBF
1. SetN = Nc, n total number of pixel points (N shows the
image size i.e.,N×N), whereN andNc are called the total
number of pixel and center pixel points which are used in
the RBF approximation process.
2. Find the ρ according to (21) by multiquadric radial basis
function (MQ-RBF) by using step (1).
3. Find u according to (23) by MQ-RBF by using steps (1)
and (2).
TV filtering
4. Initialize the values of λ, ε, c, dt, and z.
5. Set n as Nc centers pixel points i.e. xc1 ≤ xc2 ≤ . . . xcn,
set n = 0.
6. At n = 0, put u as MQ-RBF matrix in (25) from (23).
Where we choose z(0) = z.
7. n = n + 1. For each center point xci, for i = 1, 2, 3 . . . n,
compute u(n+1) according to (25) by Kansa method.
8. ‖u(n+1)−u(n)‖

‖u(n)‖ ≤ ε = 10−5 (stopping criteria), go to step
(10).
9. Go to step (7).
10. End.
11. Output u = u(n+1).

4 Results and discussion
In this section, some numerical results are provided to
demonstrate the performance of our proposed method
M3. Obtained results are compared with the results of
methods M1 and M2. The test images are “Lena”, “Par-
rot”, “Synthetic1”, “Synthetic2”, and “Cameraman” which
are shown in Fig. 1.
In this paper, it is assumed that N = Nc = the size of

the image, for our method M3, for the sake of compari-
son with methods M1 and M2. Here, Multiquadric radial
basis function (MQ-RBF) is utilized for the proposed
method M3. To quantify the denoised image, the peak-
signal-to-noise ratio (PSNR) is considered. This measure
has been commonly used and applied to determine the

(a) (b) (c) (d) (e)
Fig. 1 Test images; a Lena; b Parrot; c Synthetic1; d Synthetic2; e Cameraman
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quality of the restored image. The following formula can
calculate it.

PSNR = 10 ∗ log10
[
M × Nmax{û}2

‖û − u‖2
]

(26)

Where û is the given image, u is the restored image and
M×N is the size of the image. Iterations in our algorithm
are terminated when the following condition is satisfied.

‖u(k+1) − u(k)‖
‖u(k)‖ ≤ ε, (27)

where ε indicates the maximum permissible error. Here, it
is set to be 10−5.
Here we use the Multiquadric (MQ) RBF to test and

compare the results of method M3 with methods M1 and
M2. For each point (xj, yj), Multiquadric (MQ) RBF is
defined as equation below.

φj(x, y) =
√
c2 + r2j =

√
c2 + (

(x − xj)2 + (y − yj)2
)
,

where rj =
√

(x − xj)2 + (y − yj)2.
Example 1: In this first example, the three methods, M1,

M2, and M3 are applied and tested on natural images
“Lena” and “Parrot” with additive noises (Gaussian noise
withmean value zero and standard deviation σ ) with noise
levels σ = 20, and σ = 18, which are shown in the Figs. 2
and 3, respectively. In all three figures, (a) and (b) are the
original and noisy images while (c), (d), and (e) depict the
restored images by the three methods M1, M2, and M3,
respectively. In each case, we can clearly notice that the
visual quality of restoration by proposed method M3 is
quite efficient than that of methods M1 and M2. Method
M1 can restore the images, but the quality of restored
images are not so good. Also, it creates staircase effect,
which is an intrinsic defect of the TV regularization in
ROF method as discussed in [7, 35]. These reconstructed
images are shown in the Figs. 2c and 3c, respectively. In
M2, the visual quality of the restored images are good
as compared with the method M1. But still, it contains

the staircase effect due to the TV regularization. These
obtained images are shown in the Figs. 2d and 3d, respec-
tively. In our method M3, the visual quality, preservation
of edges, and the minimization of staircase effect of the
restored images are far better than that of methods M1
and M2 due to the mesh-free characteristics of MQ-RBF
approximation used in our method M3. These denoised
images are shown in the Figs. 2e and 3e, respectively. In
our method M3, the shape parameter c plays a vital role
in image denoising. The range of optimal value for c in
this example is set to 1.63 ≤ c ≤ 1.70. Moreover, the
PSNR values for the two images “Lena” and “Parrot” for
three methods M1, M2, and M3 are listed in Table 2. The
bigger the PSNR value, the better the denoising perfor-
mance. It can be seen fromTable 2 that the PSNR values of
method M3 are greater than that of methods M1 and M2
for the two images, which shows the dynamic restoration
performance of theM3 overM1 andM2. The CPU time of
computation and number of iterations required for con-
vergence of the three methods M1, M2, and M3 are also
listed in Table 3. It can be observed from Table 3 that the
number of iterations and CPU time of computation of the
M3 is smaller than that of M1 and M2, which shows the
faster restoration performance of ourmesh-free algorithm
of proposed model M3 over the mesh-based algorithms
M1 and M2. The best experimental optimal values of
parameters of our technique M3 (shape parameter (c) and
fitting parameter (λ) ) for the two images “Lena” and “Par-
rot” are (1.69, 15.5) and (1.65, 14.7), respectively. So, it is
evident from this example, that the performance of our
mesh-free based method M3 is superior to that of mesh-
based methods M1 and M2 regarding visual restoration
quality ( PSNR), the number of iterations, and CPU time
of computation.
Example 2: In this second example, we study how our

algorithm M3 deals with the synthetic images “SynIm-
age1” and “SynImage2” having the Gaussian noises. These
synthetic images are listed in the Figs. 4 and 5, respec-
tively. The noise level for the two artificial images “synIm-
age1” and “synImage2” in this example are σ = 18 and

(a) (b) (c) (d) (e)
Fig. 2 Reconstructed results on Lena; a original image; b Lena image corrupted with additive Gaussian noise with σ = 20; c restored image by
method M1; d restored image by method M2; e restored image by method M3
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(a) (b) (c) (d) (e)
Fig. 3 Denoised results on Parrot; a original image; b noisy image with additive Gaussian noise σ = 18; c recovered image by method M1;
d recovered image by method M2; e recovered image by method M3

σ = 16, respectively. Again in both cases, the efficiency
of the restoration of M3 (shown in Figs. 4e and 5e, respec-
tively) is better than M1 (shown in Figs. 4c and 5c, respec-
tively) and M2 (shown in Figs. 4d and 5d, respectively).
In this example, the best experimental optimal values
of the parameters used for the two images “SynImage1”,
and “SynImage2” are for proposed technique M3 (shape
parameter (c) and fitting parameter (λ)) are (1.76, 15.3)
and (1.73, 13.9), respectively. Again, the range of the opti-
mal value of shape parameter c for our proposed method
M3 in this example is set to 1.72 ≤ c ≤ 1.77. The perfor-
mance of the three methods M1, M2, and M3, concerning
restoration (PSNR values), CPU computation time, and
number of iterations required for convergence for the two
images, i.e., “SynImage1” and “SynImage2”, are recorded
in Tables 2 and 3, respectively. Again, from Tables 2 and
3, M3 shows adequate performance than M1 and M2 due
to the mesh-free applications of MQ-RBF used in our
algorithmM3.
Example 3: In this example, the three methodologies

M1, M2, and M3 are applied and tested on “Cameraman”
having different noise levels. Here, we can observe that
the visual quality of restoration (PSNR) of our proposed
approach M3 is much better than that of M1 and M2
because of mesh-less applications of MQ-RBFs employed
in our proposed method M3 especially when the noise

Table 2 Comparison of methods M1, M2, and proposed method
M3 in terms of PSNR

Image Size Method M1 Method M2 Method M3

PSNR PSNR PSNR

Lena 4002 24.96 25.47 26.01

Parrot 4002 26.89 27.55 28.04

SynImag1 4002 28.31 29.11 29.87

SynImag2 4002 26.15 27.33 27.95

variance is significant. These can be seen from Figs. 6, 7,
8, and Table 4, respectively.
Example 4: In this fourth example, we evaluate the

performance of three algorithms, M1, M2, and M3, in
regions that are dominated by discontinuities by the
piecewise contact signals which are shown in Fig. 9.
In areas with edges, we observe that M3 restores and
enhances these image features in a productive way com-
pared to M1 and M2, which shows the better per-
formance of edge enhancement of M3 over M1 and
M2. These results are shown in Fig. 9c, d, and e,
respectively.
Example 5: In this example, we compare the three

techniques, M1, M2, and M3, for texture persevera-
tion that are given in Fig. 10. Here, we observed that
the textured regions were sufficiently reconstructed by
using the M3 as compared to M1 and M2 because of
the effectiveness to our proposed method M3. These
reconstructed results are shown in Fig. 10c, d, and e,
respectively.
Example 6: Here, the homogeneity is checked, and loss

(or preservation) is examined for the three techniquesM1,
M2, and M3 while being applied to “Lena”. For this pur-
pose, different lines of the original image compared with
noisy and restored images that are shown in Figs. 11 and
12. It is clear that the lines restored by proposed method
M3 (shown in Figs. 11d and 12d) are far better than what
acquired utilizing methods M1 andM2 that are presented
in the figures (Figs. 11c and 12c) and (Figs. 11b and 12b),
respectively. The blue line is the original image, and red
line is the restored image.

4.1 Shape parameter analysis
In this subsection, we compare the image restoration
(PSNR) by our proposed method M3 for the different
values of shape parameter c for real and artificial images.
Here, we can notice that different values of the shape

parameter c affect the image restoration quality of real and
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Table 3 Comparison of methods M1, M2, and proposed method M3 in terms of number of iterations (Iters) and CPU-time (Time) in
seconds

Image Size Method M1 Method M2 Method M3

Iters Time (s) Iters Time (s) Iters Time (s)

Lena 4002 32 27.11 21 16.30 15 11.82

Parrot 4002 29 23.71 18 13.79 12 9.36

SynImag1 4002 35 31.50 24 20.57 19 14.47

SynImag2 4002 31 28.35 22 18.52 16 12.91

artificial images shown in Figs. 13 and 14. The PSNR val-
ues of the two images are also listed in Table 5 for different
values of shape parameters.

4.2 Comparison with an other recent model
Dong et.al proposed a new variational model for image
restoration in 2015 [18], and some good restoration results
have been obtained on real images. The minimization
functional of this model is given as

min
u,v

E(u, v) =
∫

�

|∇NLu|dxdy + α

2

∫
�

|∇NLv|2dxdy

+ 1
2λ

∫
�

(z − u − v)2dxdy,

(28)

were α and λ are the two regularization parameters. This
model can be written a decomposition model as z =
u + v + w. Here, u, v, and w are taken as discontinuous,
piecewise smooth, and noise components, respectively.
By alternating minimization technique and unconstrained
transformation technique the author gets the following
minimization functional.{

min
u,d

E(u, d) =
∫

�

|d|dxdy + 1
2λ

∫
�

(z − u − v)2dxdy

+α

2

∫
�

|d − ∇NLu|2dxdy
}
,

(29)

where d = ∇NLu. The split Bregman applied for the
solution of functional (29), which is given as

uk+1 = argmin
u

{
1
2λ

‖z − u − v‖22 + α

2
‖dk − ∇NLu − bk‖22

}

(30)

dk+1 = argmin
d

{∫
�

|d|dxdy + α

2
‖dk − ∇NLu − bk‖22

}

(31)

bk+1 = bk +
(
∇NLuk+1 − dk+1

)
(32)

The associated Euler Lagrange equation of subproblem
(30) for u is

(
1
λ
I − α∇NL

)
uk+1 = 1

λ
(z − v) + αdivNL

(
dk − bk

)
.

(33)

The Gauss-Seidel method is utilized to find optimal
value of u from Eq. (30), which is

uk+1 = K−1Tk ,

(a) (b) (c) (d) (e)
Fig. 4 Restored results on SynImage1; a original image; b SynImage1 image corrupted with additive Gaussian noise with σ = 18; c denoised image
by method M1; d denoised image by method M2; e denoised image by method M3
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(a) (b) (c) (d) (e)
Fig. 5 Reconstructed results on SynImage2; a original image; b noisy image with additive Gaussian noise σ = 16; c restored image by method M1;
d restored image by method M2; e restored image by method M3

(a) (b) (c) (d) (e)
Fig. 6 Denoised results on “Cameraman” image; a true image; b noisy image with σ = 24; c processed with method M1; d processed with method
M2; e processed with method M3

(a) (b) (c) (d) (e)
Fig. 7 Restored results on “Cameraman” image; a original image; b noisy image with σ = 22; c restored image by method M1; d restored image by
method M2; e restored image by method M3

(a) (b) (c) (d) (e)
Fig. 8 Experimental results on “Cameraman” image; a original image; b noisy image with σ = 20; c restored image by method M1; d restored
image by method M2; e restored image by method M3
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Table 4 Comparison of PSNR value of the restored image “Cameraman” for different additive noise values for three algorithms M1, M2,
and M3

Image σ = 24 σ = 22 σ = 20

M1 M2 M3 M1 M2 M3 M1 M2 M3

Cameraman (PSNR) 19.83 20.90 21.29 20.57 21.42 21.94 21.76 22.47 23.01

where

K = 1
λ
I − α∇NL,

and

Tk = 1
λ

(z − v) + αdivNL
(
dk − bk

)
.

The optimal value of d can be defined as

dk+1 = shrink
(∇NLuk+1

)
,

where shrink(x, γ ) = |x|
x .max(|x| − γ , 0). For more infor-

mation, see [18].
Here, we compare our proposed method M3 with a

recent method [18] described above. We can notice that
the display results in Figs. 15, 16, and 17 and Table 6 that
our model M3 performs well regarding visual quality of
restoration (PSNR) than method [18] for the same noise
variance taken in method [18].

5 Sensitivity analysis of parameters
To comment briefly on the choice of the shape parame-
ter (c) and fitting parameter (λ) used in the algorithm M3
described above, it is recommended from our experience
that all the two parameters c and λ are more complicated
to choose. However, its optimal values are adjusted and
tuned according to the noise variance, image size, etc. It
has been observed that the range of values allowed are
c ∈ [ 1.63, 1.78] and λ ∈ [ 13.2, 16.3], for natural and arti-
ficial images. It indicates that all the parameters c and

λ are more important for improving denoising perfor-
mance. Similarly, the number of iterations required for
convergence are taken to be in the range [ 7, 27] for results
with improved PSNR. Thus, the availability of information
about the uncertainty of the denoising result on the user-
chosen parameters (by Trial and Error Method) is helpful
to avoid incorrect decisions.
For brevity, for Tables 7 and 8 we shall denote by

1. (·)%increase− ↑, and (·)%decrease− ↓
2. For example (0.17) ↓ stands for 0.17% decrease in

PSNR
3. (0.21) ↑ stands for 0.21% increase in PSNR

6 Conclusions
In this paper, a new TV based mesh-free algorithm
for additive noise removal is presented in which TV
regularization (ROF model) is employed in conjunction
with MQ-RBF approximation. This algorithm is exploited
for the solution of non-linear PDE arisen from the mini-
mization of the associated TV functional of ROF model.
The proposed algorithm (Kansa method) is mathemati-
cally simple and robust compared with the classical mesh-
based methods and hence provide more optimal results
because of mesh-free applications of MQ-RBF associated
with his algorithm.
This approach is tested on different artificial and real

images for additive noise, and the results are compared
with the existing methods. Our experimental results have

(a) (b) (c) (d) (e)
Fig. 9 A part of the “Lena” image with discontinuities; a true image;b noisy image ; c processed with method M1; d processed with method M2;
e processed with method M3
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(a) (b) (c) (d) (e)
Fig. 10 Experimental results on synthetic texture image; a original image; b noisy image; c restored image by method M1; d restored image by
method M2; e restored image by method M3

Fig. 11 The 57th line comparison of original image with noisy image, restored image by model M1, restored image by method M2, and restored
image by method M3 of the “Lena”. a Original and noisy image lines; b original and restored by method M1 image lines; c original and restored by
method M2 image lines; d original and restored by method M3 image lines. The blue line is the original image, and red line is the restored image

Fig. 12 The 99th line comparison of original image with noisy image, restored image by model M1, restored image by method M2, and restored
image by method M3 of the “Lena”. a Original and noisy image lines; b original and restored by method M1 image lines; c original and restored by
method M2 image lines; d original and restored by method M3 image lines. The blue line is the original image, and red line is the restored image

(a) (b) (c) (d) (e)
Fig. 13 Denoised results on Lena a original image; b Lena image corrupted with Gaussian noise with σ = 20; c restored image by optimal value of
c = 1.69; d restored image by c = 1.78; (e) restored image by c = 1.61
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(a) (b) (c) (d) (e)
Fig. 14 Recovered results on SynImage1 a original image; b SynImage1 image corrupted with Gaussian noise with σ = 18; c denoised image by
optimal value of c = 1.76; d denoised image by c = 1.84; e denoised image by c = 1.68

shown that the quality of the restoration of images, the
number of iterations, and the CPU times with the use of
the proposed method are quite good, and the proposed
algorithm is quite efficient. We have also noticed that the
performance of our proposed method is far better than
that of the existing methods regarding restoration quality
(PSNR), the number of iterations, and CPU times because
of the mesh-free properties of RBF used in our algorithm.
The choice of shape parameter c also plays a significant
role in this algorithm, which affects the image restoration.
The shape parameter analysis has also been discussed
here. A comparison with another method in this field is
provided as well.
However, this method produces an unsymmetri-

cal interpolation matrix. Additionally, sometimes, this
approach suffers relatively lower accuracy in boundary-
adjacent regions. These problems are under intense
study and results will be reported in the subsequent
paper.

Appendix
The derivatives in our methodM3 for Eq. (25) are given as
under: Since Eq. (21) is

ρ = A−1z, (34)

When we evaluate the derivative at N evaluation points({xi}Ni=1
)
and Nc center points

(
{xj}Ncj=1

)
, then RBF inter-

polation, we have

u =
Nc∑
j=1

ρjφ(‖x − xcj‖2), (35)

or

u = Bρ, (36)

with (N × Nc) evaluation matrix B, i.e.,

B =[
ij]=[φ(‖xi − xcj‖2)] for i=1,2,...N , j=1,2,..Nc .

Then, the derivative becomes from (35) is as follows:

∂u
∂xi

=
Nc∑
j=1

ρj
∂

∂xi
φ(‖x − xcj‖2), (37)

or

∂u
∂xi

= ∂

∂xi
Bρ. (38)

Where

∂B
∂xi

= ∂[
ij]
∂xi

= ∂

∂xi
[φ(‖xi−xcj‖2)] for i=1,2,...N , j=1,2,..Nc .

Combining Eqs. (34) and (38) we have

∂u
∂xi

= ∂

∂xi
BA−1z. (39)

Table 5 Comparison of the image quantity (PSNR values) for different values (increase and decrease) in shape parameter c with the
optimal value of shape parameter c of the proposed method M3 for real and artificial images

Image Size Optimal value c PSNR Increase c PSNR Decrease c PSNR

Lena 4002 1.69 26.01 1.78 25.57 1.61 25.29

SynImage1 4002 1.76 29.87 1.84 29.63 1.68 29.37
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(a) (b) (c)
Fig. 15 Denoised result on Lena; a true image; b noisy image with Gaussian noise with σ = 15 ; c processed with method M3

(a) (b) (c)
Fig. 16 Reconstructed result on cameraman; a true image; b noisy image with Gaussian noise with σ = 20 ; c denoised with method M3

Fig. 17 Restored result on Barbara; a true image; b noisy image with σ = 15 ; c recovered with method M3
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Table 6 Comparison of our method M3 with the model [18] in
terms of PRNR

Image Size Method [18] Method M3

PSNR PSNR

Lena 2562 30.9162 31.2413

Cameraman 2562 28.6519 30.3126

Barbara 2562 26.5676 27.9471

Define H = BA−1, then above equation (39) can be re-
written as

∂u
∂xi

= ∂

∂xi
Hz = Hxiz. (40)

The differentiation matrix can be defined as

Hxi = ∂

∂xi
BA−1 = BxiA−1. (41)

For second derivative, we have

Hxixi = ∂2

∂x2i
BA−1 = BxixiA−1. (42)

Also
∂2u
∂x2i

= ∂2

∂x2i
Hz = Hxixiz. (43)

The differentiationmatrix is well-defined since it is known
that the system matrix A is invertible.
For any sufficiently differentiable RBF, φ[ r(x)], the chain

rule gives
∂φ

∂xi
= dφ

dr
∂r
∂xi

(44)

for the first derivative, with
∂r
∂xi

= xi
r
. (45)

The second derivative is calculated as follows
∂2φ

∂x2i
= dφ

dr
∂2r
∂x2i

+ d2φ
dr2

(
∂r
∂xi

)2
, (46)

with

∂2r
∂x2i

=
1 −

[
∂r
∂xi

]2
r

. (47)

Table 7 PSNR value of the restored image “Lena” with optimal
values of c and λ is 26.01. Parameter sensitivity analysis for our
proposed method M3 by percentage increased in values of the
parameters c and λ, with the resultant percentage increase or
decrease in PSNR of the denoised image of size (4002)

Image 30% (↑) 60% (↑)
c λ PSNR c λ PSNR

Lena 2.20 20.15 2.26(↓) 2.71 24.80 3.93(↓)

Table 8 PSNR value of the restored image “Lena” with optimal
values of c and λ is 26.01. Parameter sensitivity analysis for our
proposed method M3 by percentage decreased in values of the
parameters c and λ, with the resultant percentage increase or
decrease in PSNR of the denoised image of size (4002)

Image 30% (↓) 60% (↓)
c λ PSNR c λ PSNR

Lena 1.18 10.85 2.57(↓) 0.68 6.20 4.81(↓)

For the MQ in particular,

dφ

dr
= d

[
c2 + r2

] 1
2

dr
= r[

c2 + r2
] 1
2
, (48)

and
d2φ
dr2

= c2[
c2 + r2

] 3
2
. (49)
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