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Abstract

In this work, we present low-complexity variable forgetting factor (VFF) techniques for diffusion recursive least
squares (DRLS) algorithms. Particularly, we propose low-complexity VFF-DRLS algorithms for distributed parameter
and spectrum estimation in sensor networks. For the proposed algorithms, they can adjust the forgetting factor
automatically according to the posteriori error signal. We develop detailed analyses in terms of mean and mean
square performance for the proposed algorithms and derive mathematical expressions for the mean square deviation
(MSD) and the excess mean square error (EMSE). The simulation results show that the proposed low-complexity
VFF-DRLS algorithms achieve superior performance to the existing DRLS algorithm with fixed forgetting factor when
applied to scenarios of distributed parameter and spectrum estimation. Besides, the simulation results also
demonstrate a good match for our proposed analytical expressions.

Keywords: Sensor networks, Distributed parameter estimation, Distributed spectrum estimation, Diffusion recursive
least-squares, Variable forgetting factor

1 Introduction
Distributed estimation is commonly utilized for dis-
tributed data processing over sensor networks, which
exhibits increased robustness, flexibility, and system effi-
ciency compared to centralized processing. Owing to
these merits, distributed estimation has received more
and more attention and been widely used in applications
ranging from environmental monitoring [1], medical data
collecting for healthcare [2], animal tracking in agricul-
ture [1], monitoring physical phenomena [3], localizing
moving mobile terminals [4, 5] to national security. Par-
ticularly, distributed estimation technique relies on the
cooperation among geographically spread sensor nodes
to process locally collected data. With different coop-
eration strategies employed, distributed estimation algo-
rithms can be classified into the incremental type and
the diffusion type. Note that we consider the diffusion
cooperation strategy in this paper since the incremen-
tal strategy requires the definition of a path through the
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network and may be not suitable for large networks or
dynamic configurations [6, 7]. Many distributed estima-
tion algorithms with the diffusion strategy have been put
forward recently, such as diffusion least-mean squares
(LMS) [8, 9], diffusion sparse LMS [10–12], variable step
size diffusion LMS (VSS-DLMS) [13, 14], diffusion recur-
sive least squares (RLS) [6, 7], distributed sparse RLS
[15], distributed sparse total least squares (LS) [16], dif-
fusion information theoretic learning (ITL) [17], and the
diffusion-based algorithm for distributed censor regres-
sion [18]. Among assorted distributed estimation algo-
rithms, the RLS-based algorithms achieve superior per-
formance to the LMS-based ones by inheriting the advan-
tages of fast convergence and low steady-state misad-
justment from the RLS technique. Thus, the distributed
estimation algorithms based on the diffusion strategy and
the RLS adaptive technique are investigated in this paper.
However, the existing RLS-based distributed estima-

tion algorithms provide a fixed forgetting factor, which
has some drawbacks. With a fixed forgetting factor, the
algorithm fails to keep up with real-time variations in
environment, such as variations in sensor network topol-
ogy. Moreover, it is expected to adjust the forgetting
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factors automatically according to the estimation errors
rather than choose appropriate values for them through
simulations. There have been several studies on vari-
able forgetting factor (VFF) methods. Specifically, the
classic gradient-based VFF (GVFF) mechanism was pro-
posed in [19], and most of the existing VFF mechanisms
are extensions of this method [20–24]. Nevertheless, the
GVFF mechanism requires a large amount of computa-
tion. In order to reduce the computational complexity,
the improved low-complexity VFFmechanisms have been
reported in [25, 26]. To the best of our knowledge, the
existing VFF mechanisms are mostly employed in a cen-
tralized context and have not been considered in the field
of distributed estimation yet.
In this work, the previously reported VFF mechanisms

[25, 26] are employed to the diffusion RLS algorithms
for distributed signal processing applications, by simpli-
fying the inverse relation between the forgetting factor
and the adaptation component to provide lower compu-
tational complexity. The resulting algorithms are referred
to as low-complexity time-averaged VFF diffusion RLS
(LTVFF-DRLS) algorithm and low-complexity correlated
time-averaged VFF diffusion RLS (LCTVFF-DRLS) algo-
rithm, respectively. Compared with the GVFF mecha-
nisms, the proposed LTVFF and LCTVFF mechanisms
can reduce the computational complexity significantly
[25, 26]. Then, we carry out the analysis for the pro-
posed algorithms in terms of the mean and mean square
error performance. Finally, we provide simulation results
to verify the effectiveness of the proposed algorithms
when applied in distributed parameter estimation and
distributed spectrum estimation.
Our main contributions are summarized as follows:

1) We propose the low-complexity VFF-DRLS
algorithms for distributed estimation in sensor
networks. To the best of our knowledge, the VFF
mechanisms have not been considered in the
distributed estimation algorithms yet.

2) We study the mean and mean square performance
for the proposed algorithms in a general case, and
provide the transient analysis for a specialized case.
Specifically, for the general case, in terms of the mean
performance, we show that the mean value of the
weight error vector approaches zero as iteration
numbers go to infinity, which implies the
asymptotical convergence of the proposed algorithms;
from the perspective of mean square performance,
we derive the mathematical expressions for the
steady-state MSD and EMSE values. In the specialized
case, we study the transient analysis by focusing on
the learning curve and prove that the proposed
algorithms are convergent and the convergence rate
is related to the varying forgetting factors.

3) We perform simulations to evaluate the performance
of the proposed algorithms when applied to
distributed parameter estimation and distributed
spectrum estimation tasks. The simulation results
indicate that the proposed algorithms exhibit
remarkable improvements in convergence and
steady-state performance when compared with the
DRLS algorithm that has a fixed forgetting factor.
Besides, effectiveness of our analytical expressions for
calculating the steady-state MSD and EMSE is
verified by the simulation results. In addition, we also
provided detailed simulation results regarding the
choice of the parameters in the proposed algorithms
to help with the parameter selection in practice.

This paper is organized as follows. Section 2 provides
the system model for the distributed estimation over sen-
sor networks. Besides, the DRLS algorithm with the fixed
forgetting factor is described briefly. In Section 3, two
low-complexity VFF mechanisms are presented, followed
by the analyses for the variable forgetting factor in terms
of steady-state statistical properties. Besides, the pro-
posed LTVFF-DRLS algorithm and the LCTVFF-DRLS
algorithm are presented. In the last part of this section,
the computational complexity of the VFF mechanisms as
well as the proposed algorithms is analyzed. In Section 4,
detailed analyses based on mean and mean-square per-
formance for the proposed algorithms are carried out and
analytical expressions to compute MSD and EMSE are
derived. In addition, transient analysis for a specialized
case is provided in the last part of Section 4. In Section 5,
simulation results are presented for distributed param-
eter estimation and distributed spectrum estimation.
Section 6 draws the conclusions.

Notation: Boldface letters are used for vectors or matri-
ces, while normal font for scalar quantities. Matrices are
denoted by capital letters and small letters are used for
vectors. We use the operator row{·} to denote a row vec-
tor, col{·} to denote a column vector, and diag{·} to denote
a diagonal matrix. The operator E[ ·] stands for the expec-
tation of some quantity, and Tr{·} represents the trace of
a matrix. We use (·)T and (·)−1 to denote the transpose
and inverse operator, respectively, and (·)∗ for complex
conjugate-transposition.We also use the symbol In to rep-
resent an identity matrix of size n and I to denote a vector
of appropriate size with all elements equal to one.

2 Systemmodel and diffusion-based DRLS
algorithm

In this section, we first illustrate the system model for the
distributed estimation over sensor networks. Following
this, we review the conventional DRLS algorithm with the
fixed forgetting factor briefly.
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2.1 Systemmodel
Let us consider a sensor network consisting of N sensor
nodes which are spatially distributed over a geographical
area. The set of nodes connected to node k including itself
are called the neighbor nodes of node k, denoted by Nk .
The number of the nodes linked to node k is the degree
of k, denoted by nk . The system model for the distributed
estimation over sensor networks is presented in Fig. 1.
At each time instant i, each node k has access to complex

valued time realizations {dk,i,uk,i}, k = 1, 2, . . . ,N , i =
1, 2, . . ., with dk,i a scalar measurement and uk,i a M×1
input vector. The relation between the measurement dk,i
and the input vector uk,i can be characterized as

dk,i = u∗
k,iw

o + vk,i (1)

where wo is the unknown optimal weight vector of size
M×1, and vk,i is zero-mean additive white Gaussian noise
with variance σ 2

v,k . Particularly, we assume that the noise
variance has been determined in advance somehow. We
also assume that the noise samples vk,i, k = 1, 2, . . . ,N ,
i = 1, 2, . . ., are independent of each other as well as the
input vectors uk,i. We aim to estimate the unknown opti-
mal weight vector wo in a distributed manner. That is,
each sensor node k obtains a local estimate wk,i of size
M × 1 to approach the optimal weight vector wo as much
as possible. To this end, each node k not only uses its local
measurement dk,i and input vector uk,i but also cooperates
with its closest neighbors for updating its local estimate
wk,i. Specifically, by cooperation, each node k has access
to its neighbors’ data {dl,i,ul,i} and estimates wl,i at each

Fig. 1 System model

time instant iwhere l ∈ Nk , and then, each node k fuses all
the available information to update its local estimate ψk,i.
Let us first introduce some vectors and matrices. At

each time instant i, by collecting all nodes’ measurements
into vector yi, noise samples into vector vi (both of length
N), and input vectors into the matrixHi of sizeN ×M, we
obtain

yi = col{d1,i . . . dN ,i}
Hi = col{u∗

1,i . . .u∗
N ,i}

vi = col{v1,i . . . vN ,i}.
(2)

Following this, we define the covariance matrix of the
noise vector vi as

Rv = E[ viv∗
i ]= diag

{
σ 2
v,1, σ

2
v,2, . . . , σ

2
v,N
}
. (3)

Next, we stack yi, vi and Hi from time instant 0 to time
instant i into matrices respectively, which are given by

Yi = col{yi . . . y0}
Hi = col{Hi . . .H0}
Vi = col{vi . . . v0}.

(4)

Besides, we defineRv,i = E[ViV∗
i ].

2.2 Brief review of diffusion-based DRLS algorithm
In this part, we give a brief introduction to the diffusion-
based DRLS algorithm [6, 7].
For the diffusion-based DRLS algorithm, the local opti-

mization problem to estimate the optimal weight vector
wo at each node k can be formulated as follows:

ψk,i = argmin
w

{
‖w‖2�i + ‖Yi − Hiw‖2Wk,i

}
(5)

Note that the notation ‖a‖2� = a∗�a represents the
weighted vector norm of any positive definite Hermitian
matrix �. Besides, the matrix �i is given by �i = λi+1�
where 0 � λ < 1 representing the forgetting factor and
� = δ−1IM with δ > 0. Furthermore, the matrix Wk,i
can be expressed as Wk,i = R−1

v,i �idiag{Ck ,Ck , . . . ,Ck},
where �i = diag{IN , λIN , . . . , λiIN } and Ck is a diagonal
matrix. It is worth noting that the main diagonal elements
of the matrix Ck is composed of the kth column of matrix
C. Particularly, the matrix C is the adaptation matrix for
the diffusion-based DRLS algorithm and satisfies ITC = I

and CI = I [6]. Also, note that the matrix C is a doubly
stochastic matrix, that is, both a left stochastic matrix and
a right stochastic matrix.
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The optimization problem (5) can be rewritten as
follows [6]:

ψk,i = argmin
w

⎧
⎨

⎩
λi+1‖w‖2� +

i∑

j=0
λi−j

N∑

l=1

Cl,k |dl,j − u∗
l,jw|2

σ 2
v,l

⎫
⎬

⎭

(6)

where Cl,k represents the (l, k)th element of the matrix C.
The closed-form solution to (6) is given by [6, 7]

ψk,i = Pk,iH∗
i Wk,iY i (7)

where Pk,i can be expressed as

Pk,i = [
λi+1� + H∗

i Wk,iHi
]−1 . (8)

However, the closed-form solution in (7) is obtained via
calculating the inversion of matrices, which requires large
computation. Instead, the diffusion-based DRLS algo-
rithm provides a recursive approach to solve (6), which
can be implemented by the following two steps.
Step 1: Let us take the updates at time instant i for exam-

ple. Note that we denote the iteration number at time
instant i as the superscript (·)l with l = 0 representing the
initial value. At the very start, we initialize the intermedi-
ate local estimate ψk,i and the inverse matrix Pk,i for each
node k by utilizing the updated results from time instant
i − 1, that is

ψ0
k,i = wk,i−1

P0
k,i = λ−1Pk,i−1

(9)

Then, for each node k, its data is updated incrementally
among its neighbors, which is given by

ψ l
k,i ←− ψ l−1

k,i +
Cl,kPl−1

k,i ul,i
[
dl,i − u∗

l,iψ
l−1
k,i

]

σ 2
v,l + Cl,ku∗

l,iP
l−1
k,i ul,i

(10)

Pl
k,i ←− Pl−1

k,i − Cl,kPl−1
k,i ul,iu

∗
l,iP

l−1
k,i

σ 2
v,l + Cl,ku∗

l,iP
l−1
k,i ul,i

(11)

where the left arrow denotes the operation of assignment.
Finally, each node k obtains its ultimate intermediate local
estimate ψk,i which can be expressed as

ψk,i ←− ψ
|Nk |
k,i (12)

Step 2: Each node k combines the ultimate intermediate
local estimate of its own, i.e., ψk,i, obtained in step 1 with
that of its neighbors, i.e., ψ l,i, l ∈ Nk by performing the
following diffusion to obtain the local estimate wk,i:

wk,i =
N∑

l=1
Al,kψ l,i (13)

where Al,k denotes the (l, k)th element of the matrix A.
Particularly, the matrix A is the combination matrix for

the diffusion-based DRLS algorithm and is chosen such
that ITA = I [6].
Note that the steps (9)–(13) constitute the diffusion-

based DRLS algorithm [6, 7].

3 Low-complexity variable forgetting factor
mechanisms

In this section, we introduce the LTVFF mechanism
and the LCTVFF mechanism that are employed by our
proposed algorithms. Particularly, the analyses for the
variable forgetting factor in terms of the steady-state
properties of the first-order statistics are presented, and
the LTVFF-DRLS algorithm that employs the LTVFF
mechanism as well as the LCTVFF-DRLS algorithm that
applies the LCTVFF mechanism are proposed. In the last
part of this section, we analyze the computational com-
plexity for these two VFF mechanisms as well as the
proposed algorithms.

3.1 LTVFF mechanism
Motivated by the VSSmechanism [13, 14] for the diffusion
LMS algorithm, the low-complexity VFF mechanisms are
designed such that smaller forgetting factors are employed
when the estimation errors are large in order to obtain
a faster convergence speed, whereas the forgetting fac-
tor increases when the estimation errors become small so
as to yield better steady-state performance. Based on the
above idea, an effective rule to adapt the forgetting factor
can be formulated as

λk(i) =[ 1 − ζk(i)]
λ+
λ− (14)

where the quantity ζk(i) is related to the estimation errors
and varies in an inverse way to the forgetting factor, which
is referred to as the adaptation component. The operator
[ ·]λ+

λ− denotes the truncation of the forgetting factor to the
limits of the range [ λ+, λ−].
For the LTVFF mechanism, the adaptation component

is given by

ζk(i) = αζk(i − 1) + β|ek(i)|2 (15)

with parameters 0 < α < 1 and β > 0. Besides, α is cho-
sen close to 1 and β is set to be a small value. The quantity
ek(i) denotes the priori estimation error [19] of each node
for the DRLS algorithm, which can be expressed as

ek(i) = dk,i − u∗
k,iwk,i−1. (16)

That is to say, in the LTVFF mechanism, the adapta-
tion component is updated based on the instantaneous
estimation error.
The LTVFF mechanism is given by (14) and (15). The

value of the forgetting factor λk(i) is controlled by the
parameters α and β . Particularly, the effects of α and β

on the performance of our proposed algorithms are inves-
tigated in Section 5. As can be seen from (14) and (15),
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large estimation errors will cause an increase in the adap-
tation component ζk(i), which yields a smaller forgetting
factor and provides a faster tracking speed. Conversely,
small estimation errors will lead to the decrease of the
adaptation component ζk(i), and thus, the forgetting fac-
tor λk(i) will be increased to yield smaller steady-state
misadjustment.
Next, we study the steady-state statistical properties of

the adaptation component ζk(i) and the forgetting factor
λk(i). Based on (15), it is reasonable to assume that ζk(i)
and ζk(i − 1) are approximately equivalent when i → ∞.
By taking expectations on both sides of (15) and letting i
goes to infinity, we can obtain E[ ζk(∞)]

E[ ζk(∞)]= β

1 − α
E
[|ek(∞)|2] . (17)

Then, we compute the quantity of E[ |ek(∞)|2]. Let us
define the weight error vector for node k as

w̃k,i = wk,i − wo. (18)

According to (16) and (18), we can rewrite E
[|ek(i)|2

]
as

E[ |ek(i)|2] = E
[|dk,i − u∗

k,i(w̃k,i−1 + wo)|2]

= E
[|vk,i − u∗

k,iw̃k,i−1|2
]

= σ 2
v,k + E

[|u∗
k,iw̃k,i−1|2

]
(19)

where the term E
[∣∣∣uTk,iw̃k,i−1

∣∣∣
2
]
denotes the excess error.

Since it is sufficiently small when i → ∞ compared
with the variance of noise, it can be neglected. As a
consequence, the following approximation holds

E
[|ek(∞)|2] ≈ εmin (20)

where εmin denotes the minimum mean-square error and
can be expressed as

εmin = E
[∣∣dk,i − u∗

k,iw
o∣∣2
]

= σ 2
v,k . (21)

Subsequently, by substituting (20) into (17), we can
approximately write

E[ ζk(∞)]≈ β

1 − α
εmin. (22)

According to (14), we can deduce

E[ λk(∞)]= 1 − E[ ζk(∞)] . (23)

By substituting (22) into (23), we can obtain the first-
order statistics of the forgetting factor for the LTVFF
mechanism:

E[ λk(∞)]= 1 − β

1 − α
εmin. (24)

By applying the LTVFF mechanism to the diffusion-
based DRLS algorithm, we propose the LTVFF-DRLS
algorithm, which is exhibited in the left column of Table 1.

3.2 LCTVFF mechanism
For the LCTVFF mechanism, the forgetting factor can
be calculated through (14) while the adaptation compo-
nent ζk(i) can be adjusted according to an alternative
rule, that is, the time-averaged estimation of the correla-
tion of two consecutive estimation errors is employed to
the updating equation of the adaptation component ζk(i).
Therefore, the rule to update the adaptation component
can be described as

ζk(i) = αζk(i − 1) + β|ρk(i)|2 (25)

where 0 < α < 1 and β > 0. Particularly, α is set close to
1 and β is chosen to be slightly larger than 0. The quantity
ρk(i) denotes the time-averaged estimation of the correla-
tion of two consecutive estimation errors, which is defined
by

ρk(i) = γρk(i − 1) + (1 − γ )|ek(i − 1)||ek(i)| (26)

where 0 < γ < 1 and γ is slightly smaller than 1. Note that
the LCTVFF mechanism is given by (14), (25), and (26).
Next, we consider the steady-state statistical properties

of ρk(i), ζk(i), and λk(i) for the LCTVFF mechanism. As
we will see in simulation results, the proposed algorithm
converges to the steady-state in numerous iterations, and
thus, the values of ρk(i − 1) and ρk(i) can be assumed
to be approximately equivalent, respectively, when i is
large enough. Thus, we can obtain E[ |ek(i − 1)||ek(i)|]≈
E[ |ek(i)|2] and ρk(i − 1) ≈ ρk(i) when i → ∞. Then, by
taking expectations on both sides of (26) and letting i go to
infinity, we can obtain the first-order statistical properties
of ρk(i):

E[ ρk(∞)]≈εmin. (27)

To study the second-order statistical properties of ρk(i),
we consider the square of (26), which is given by

ρ2
k (i) = γ 2ρ2

k (i − 1) + (1 − γ )2|ek(i − 1)|2|ek(i)|2
+ 2γ (1 − γ )ρk(i − 1)|ek(i − 1)||ek(i)|.

(28)

Recall that |ek(i−1)| and |ek(i)| can be considered equiv-
alent when i → ∞, and thus, we can rewrite (28) as

ρ2
k (i)≈γ 2ρ2

k (i − 1) + (1 − γ )2|ek(i)|4
+ 2γ (1 − γ )ρk(i − 1)|ek(i)|2.

(29)

Since (1 − γ )2|ek(i)|4 is sufficiently small when com-
pared with other terms in (29), it can be neglected.
Therefore, we can obtain

ρ2
k (i)≈γ 2ρ2

k (i − 1) + 2γ (1 − γ )ρk(i − 1)|ek(i)|2. (30)

According to (16) and (26), the quantities of ρk(i−1) and
|ek(i)|2 can be considered uncorrelated at steady state, that
is to say, E[ ρk(i−1)|ek(i)|2]≈E[ ρk(i−1)]E[ |ek(i)|2]. Note
that the detailed derivation is presented in Appendix A.



Zhang et al. EURASIP Journal on Advances in Signal Processing  (2017) 2017:57 Page 6 of 23

Table 1 LTVFF-DRLS and LCTVFF-DRLS algorithms

LTVFF-DRLS Algorithm LCTVFF-DRLS Algorithm

1 For each node k = 1, 2, . . . ,N do 1 For each node k = 1, 2, . . . ,N do

2 Initializewk,−1 = 0, Pk,−1 = �−1. 2 Initializewk,−1 = 0, Pk,−1 = �−1.

3 For time instant i = 1, 2, . . . do 3 For time instant i = 1, 2, . . . do

4 λk(i) =[ 1 − ζk(i)]
λ+
λ− . 4 λk(i) =[ 1 − ζk(i)]

λ+
λ− .

5 ζk(i) = αζk(i − 1) + β|ek(i)|2. 5 ζk(i) = αζk(i − 1) + β|ρk(i)|2.
6 ρk(i) = γρk(i − 1) + (1 − γ )|ek(i − 1)||ek(i)|.

6 Set ψk,i = wk,i−1, Pk,i = λ−1
k (i)Pk,i−1. 7 Set ψk,i = wk,i−1, Pk,i = λ−1

k (i)Pk,i−1.

7 For l ∈ Nk do 8 For l ∈ Nk do

8 ψk,i←−ψk,i + Cl,kPk,iul,i [dl,i−u∗
l,iψk,i ]

σ 2
v,l+Cl,ku∗

l,iPk,iul,i
. 9 ψk,i←−ψk,i + Cl,kPk,iul,i [dl,i−u∗

l,iψk,i ]

σ 2
v,l+Cl,ku∗

l,iPk,iul,i
.

9 Pk,i←−Pk,i − Cl,kPk,iul,iu∗
l,iPk,i

σ 2
v,l+Cl,ku∗

l,iPk,iul,i
. 10 Pk,i←−Pk,i − Cl,kPk,iul,iu∗

l,iPk,i
σ 2
v,l+Cl,ku∗

l,iPk,iul,i
.

10 End 11 End

11 Generate the final estimatewk,i = ∑

l∈Nk

Al,kψ l,i . 12 Generate the final estimatewk,i = ∑

l∈Nk

Al,kψ l,i .

12 End 13 End

13 End 14 End

Then, by taking expectations on both sides of (30), we can
obtain the following result:

E
[
ρ2
k (∞)

] = 2γ
1 + γ

E [ρk(∞)]E
[|ek(∞)|2] . (31)

Substituting (20) and (27) into (31) results in

E
[
ρ2
k (∞)

] ≈ 2γ
1 + γ

ε2min. (32)

To calculate the first-order statistics of the adaptation
component ζk(i), we take expectations on both sides of
(25) and let i goes to infinity, as a result, we obtain

E[ ζk(∞)]= β

1 − α
E[ ρ2

k (∞)] . (33)

Substituting (32) into (33) leads to

E[ ζk(∞)]= 2γβ

(1 + γ )(1 − α)
ε2min. (34)

Consequently, we have the first-order steady-state
statistics of the forgetting factor for the LCTVFF mecha-
nism as follows:

E[ λk(∞)]= 1 − 2γβ

(1 + γ )(1 − α)
ε2min. (35)

By employing the LCTVFF mechanism to the diffusion-
based DRLS algorithm, we propose the LCTVFF-DRLS
algorithm, which is presented in the right column of
Table 1.

3.3 Computational complexity
In this part, we study the computational complexity of the
proposed LTVFF and LCTVFF mechanisms in compar-
ison with the GVFF mechanism. Generally, we evaluate
the number of arithmetic operations in terms of complex

additions and multiplications for each node at each iter-
ation. The results have been shown in Tables 2 and 3.
From Table 3, the additional computational complexity of
the proposed LTVFF and LCTVFF mechanisms is evalu-
ated by fixed small values for each node at each iteration.
However, for the GVFF mechanism, the additional com-
putational complexity increases with the size of the sensor
network for each node at each iteration. The result in
Table 3 clearly reveals that the proposed LTVFF and
LCTVFF mechanisms greatly reduce computational cost
when compared to the GVFF mechanism.

4 Performance analysis
In this section, we carry out the analyses in terms of mean
and mean square error performance for the proposed
LTVFF-DRLS and LCTVFF-DRLS algorithms. In partic-
ular, we derive mathematical expressions to describe the
steady-state behavior based on MSD and EMSE. In addi-
tion, we also perform transient analysis in a specialized
case for the proposed algorithms in the last part of this
section. To proceed with the analysis, we first introduce
several assumptions, which have been widely adopted in
the analysis for the RLS-type algorithms and have been
verified by simulations [7, 27].

Assumption 1 To facilitate analytical studies, we
assume that all the input vectors uk,i, ∀k, i are independent
of each other and the correlation matrix of the input vector
uk,i is invariant over time, which is defined as

E[uk,iu∗
k,i]Ruk . (36)

Assumption 2 For the proposed LTVFF and LCTVFF
mechanisms, when i becomes large, we assume that there
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Table 2 Computational complexity of the DRLS algorithm

Number of operations for each node at each iteration

Multiplications Additions

DRLS (fixed forgetting factor) M2 + N2(4M2 + 5M + 1) + M 4N2M2 + M − 1

exists a positive number Ni, when i > Ni, for which we
have that the forgetting factor λk(i) varies slowly around its
mean value, that is

E{λk(Ni)}�E{λk(Ni + 1)}� . . . �E{λk(i)}�E{λk(∞)}.
(37)

For the RLS-type algorithms with the fixed forget-
ting factor, we have the ergodicity assumption for Pk,i
[6, 7, 27], that is, the time average of a sequence of ran-
dom variables can be replaced by its expected value so as
to make the analysis for the performance of these algo-
rithms tractable. Similarly, for the RLS-type algorithms
with variable forgetting factors, we still have the ergodicity
assumption:

Assumption 3 We assume that there exists a number
Ni > 0, when i > Ni, for which we can replace P−1

k,i by its
expected value E

[
P−1
k,i

]
, which can be represented as

lim
i→∞P−1

k,i ≈ lim
i→∞E

[
P−1
k,i

]
(38)

where lim
i→∞E

[
P−1
k,i

]
can be calculated through

lim
i→∞E

[
P−1
k,i

]
= 1

1 − E[ λk(∞)]

N∑

l=1

Cl,k

σ 2
v,l

Rul . (39)

The derivation is presented in Appendix B. Since
lim
i→∞E

[
P−1
k,i

]
is independent of i, we can denote it by P−1

k .
Moreover, based on the ergodicity assumption, it is also
common in the analysis of the performance of the RLS-type
algorithms to replace the random matrix Pk,i by Pk when i
is large enough.

4.1 Mean performance
In light of (1) and (13), the following relation holds [7]
after the incremental update of ψ l,i is complete:

P−1
l,i ψ l,i = λl(i)P−1

l,i−1wl,i−1 +
N∑

m=1

Cm,l
σ 2
v,m

um,idm,i. (40)

By substituting (1) and (18) into (40), we obtain the
following equation:

P−1
l,i (ψ l,i − wo) = λl(i)P−1

l,i−1w̃l,i−1 +
N∑

m=1

Cm,l
σ 2
v,m

um,ivm,i.

(41)

Next, let us define the intermediate weight error vector
ψ̃k,i for node k as

ψ̃k,i = ψk,i − wo. (42)

Substituting (42) into (41) results in the following result:

ψ̃ l,i = λl(i)Pl,iP−1
l,i−1w̃l−1,i+Pl,i

N∑

m=1

Cm,l
σ 2
v,m

um,ivm,i. (43)

Then, we construct w̃k,i from ψ̃ l,i based on (13) and
obtain

w̃k,i =
N∑

l=1
Al,k

[

λl(i)Pl,iP−1
l,i−1w̃l,i−1 + Pl,i

N∑

m=1

Cm,l
σ 2
v,m

um,ivm,i

]

.

(44)

Note that Pk,i can be replaced by Pk when i is large
enough (cf. Assumption 3), and thus, it is reasonable to
assume that Pk,i converges as i → ∞. Therefore, we can
approximately have

Pk,i≈E[Pk,i] . (45)

Besides, in view of Assumption 3 and the Eq. (39), we
can obtain

Pk,i =
(
P−1
k,i

)−1 ≈
{
E
[
P−1
k,i

]}−1 ≈ (1 − E[ λk(∞)] )
( N∑

l=1

Cl,k

σ 2
v,l

Rul

)−1

.

(46)

By combining (45) and (46), we have the following
approximation:

Pk,iP−1
k,i−1≈E−1

[
P−1
k,i

]
E
[
P−1
k,i

]
= IM. (47)

Table 3 Additional computational complexity of the analyzed VFF mechanisms

Number of operations for each node at each iteration

Multiplications Additions

GVFF M2 + N2(9M2 + 4M) + 2M + 1 M2 + N2(9M2 − 3M − 1) + 2M − 2

LTVFF 3 2

LCTVFF 6 3
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Then, substituting (47) into (44) yields the following
result when i is sufficiently large:

w̃k,i =
N∑

l=1
Al,k

[

λl(i)w̃l,i−1 + Pl,i

N∑

m=1

Cm,l
σ 2
v,m

um,ivm,i

]

.

(48)

Following this, two global matrices W̃i and P are built
in the following form in order to collect the weight error
vectors w̃k,i, k = 1, · · · ,N and matrices Pk , k = 1, · · · ,N ,
respectively:

W̃i = row{w̃1,i, w̃2,i, . . . , w̃N ,i}
P = row{P1,P2, . . . ,PN }. (49)

In addition, we introduce a global diagonal matrix D(i)
to collect the forgetting factors of all nodes at time instant
i, which is given by

�i = diag{λ1(i), λ2(i), . . . , λN (i)}. (50)

Using the vectors in (2), the term
N∑

m=1

Cm,l
σ 2
vm

um,ivm,i in (44)

can be rewritten as H∗
i ClR−1

v vi. By collecting the vectors
H∗

i ClR−1
v vi, l = 1, 2, . . . ,N , into a block diagonal matrix

Gi, we obtain

Gi = diag
{
H∗

i C1R−1
v vi,H∗

i C2R−1
v vi, . . . ,H∗

i CNR−1
v vi

}
.

(51)

To separate the noise vectors, we can rewrite (51) as

Gi = diag
{
H∗

i C1R−1
v ,H∗

i C2R−1
v , . . . ,H∗

i CNR−1
v
}
(IN⊗vi).

(52)

where ⊗ denotes the Kronecker product of two matri-
ces [28]. Subsequently, we express (48) in a more compact
way, which leads to the following updating equation for
the global matrix W̃i:

W̃i = W̃i−1�iA + PGiA. (53)

In order to simplify the notation �iA, we denote it as
F(i), and thus, we can rewrite (53) as

W̃i = W̃i−1F(i) + PGiA. (54)

In order to facilitate analysis, we assume that W̃i−1
and F(i) can be considered uncorrelated, that is,
E[ W̃i−1F(i)]≈ E[ W̃i−1]E[F(i)]. As we will see in simu-
lation results, this assumption works well for theoretical
analysis, which matches numerical results perfectly. By
taking expectations on both sides of (54), we obtain the
following result:

E[ W̃i]= E[ W̃i−1]E[F(i)]+PE[Gi]A. (55)

Recall (52), since the noise samples vi have zero mean,
E[Gi] equals to zero; therefore, we can obtain

E[ W̃i]= E[ W̃i−1]E[F(i)] . (56)

Following this, we assume that there exists a number
Ni > 0 and iterate (56) starting from the time instant i to
Ni, as a result, we obtain

E[ W̃i]= E[ W̃Ni ]
i∏

j=Ni+1
E[F(j)] . (57)

Recalling that F(i) = �iA, with�i a diagonal matrix, we
have the following relation for each element in F(i):

Fm,n(i) = λm(i)Am,n(i), ∀m, n ∈ {1, 2, · · · ,N} (58)

where the subscriptm, n represents the (m, n)-th element
in the matrix. Given that the elements ofA are all between
0 and 1 and each element in the diagonal matrix �i does
not exceed the upper bound λ+, which is smaller than
unity, we have

Fm,n(i) = λm(i)Am,n(i) < λ+Am,n(i) < 1,∀m, n ∈ {1, 2, · · · ,N}
(59)

Each element in the product
i∏

j=Ni+1
E[F(j)] can be

viewed as a polynomial of F1,1(i),F1,2(i), · · · , with an order
of i − Ni + 1. When i → ∞, each element of this prod-
uct approaches zero since F1,1(i),F1,2(i), · · · are all smaller
than unity. Now, assuming that all the elements of E[ W̃Ni ]
are bounded in absolute value by some finite constant,
therefore, all the elements of E[ W̃i] converge to zero when
i → ∞. As a result, we can conclude that the proposed
LTVFF-DRLS and LCTVFF-DRLS algorithms converge
asymptotically when i → ∞.

4.2 Mean-square error and deviation performances
In this part, we perform analyses for the proposed LTVFF-
DRLS and LCTVFF-DRLS algorithms based on mean
square performance and derive expressions for the steady-
state MSD and EMSE, which are defined as

MSDss
k = lim

i→∞E
[‖w̃k,i‖2

]

EMSEssk = lim
i→∞E

[|u∗
k,iw̃k,i−1|2

]
.

(60)

We start with (54) and then operate recursively from
time instant Ni, which yields

W̃i = W̃Ni

i∏

j=Ni+1
F(j) + P

i∑

t=Ni+1
GtA

i∏

j=t+1
F(j). (61)

Then, the kth column of W̃i is given by

w̃k,i = W̃Ni

i∏

j=Ni+1
F(j)ek + P

i∑

t=Ni+1
GtA

i∏

j=t+1
F(j)ek

(62)
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where ek is a column vector of length N with unity for
the kth element and zero for the others. Next, we write
the Euclidean norm of the weight error vector w̃k,i, that is,
‖w̃k,i‖2, or equivalently, Tr{w̃k,iw̃∗

k,i}.
Since the elements of F(i) are all bounded by zero and

one,
i∏

j=Ni+1
F(j) vanishes when i → ∞, which leads to the

expectation of the first term becoming zero. Moreover,
seeing that the cross terms incorporate the zero-mean
vectors vi, their expectations also become zero. As a
result, we have the following expression:

E
[‖w̃k,i‖2

] = E

⎡

⎢
⎣

∥∥∥∥∥∥
P

i∑

t=ni+1
GtA

i∏

j=t+1
F(j)ek

∥∥∥∥∥∥

2
⎤

⎥
⎦ (63)

which can be rewritten as

E
[‖w̃k,i‖2

] = E

⎡

⎣Tr

⎧
⎨

⎩
P

i∑

t=Ni+1
GtA

i∏

j=t+1
F(j)eke∗

k

i∑

l=Ni+1

×
⎛

⎝
i∏

j=l+1
F(j)

⎞

⎠

∗
A∗G∗

l P∗
⎫
⎬

⎭

⎤

⎦ .

(64)

For simplicity, we have the following notation:

Jt,l(i) = A
i∏

j=t+1
F(j)eke∗

k

⎛

⎝
i∏

j=l+1
F(j)

⎞

⎠

∗
A∗ (65)

where Jt,l(i) is a matrix of size N×N . By combining (52),
(64), and (65), let us first compute (IN⊗vt)Jt,l(i)(IN⊗v∗

l ).
According to the properties of the Kronecker product, we
have the following equality:

(A ⊗ B)(C ⊗ D) = AC ⊗ BD. (66)

Therefore, (IN⊗vt)Jt,l(i)
(
IN⊗v∗

l
)
can be expressed as

(IN⊗vt)Jt,l(i)
(
IN⊗v∗

l
) = (IN⊗vt)

(
Jt,l(i)⊗1

) (
IN⊗v∗

l
)

= Jt,l(i)⊗ (vtv∗
l
)
.

(67)

Note that, in light of (65), thematrix Jt(i) and the covari-
ance matrix of noise Rv can be considered uncorrelated.
Then, by taking expectations on both sides of (67), we have
the following results:

E
[
(IN⊗vt)Jt,l(i)

(
IN⊗v∗

l
)] = E

[
Jt,l(i)

]
⊗E

[
(vtv∗

l )
]

=
{
E[ Jt(i)]⊗Rv t = l,
0 t 
= l,

(68)

where we drop the index and denote Jt,t(i) as Jt(i). By
substituting (68) into (64), we can obtain

E
[‖w̃k,i‖2

] = E

⎡

⎣Tr

⎧
⎨

⎩
P

i∑

t=Ni+1
GtJt(i)G∗

tP∗
⎫
⎬

⎭

⎤

⎦ .

(69)

Note that Pk , k = 1, 2, . . . ,N is Hermitian; therefore, we
have the following expression:

E
[‖w̃k,i‖2

] = E

⎡

⎣Tr

⎧
⎨

⎩
P

i∑

t=Ni+1
GtJt(i)G∗

tPT

⎫
⎬

⎭

⎤

⎦ (70)

where GtJt(i)G∗
t can be represented as a block matrix

Kt(i), which can be decomposed into N×N blocks of size
M×M each. The (m, l)th block is given by

Kt
m,l(i) = H∗

tCmR−1
v Jtm,l(i)vtv

∗
t ClR−1

v Ht . (71)

By taking expectations on both sides of (71), we obtain
the following equality:

E[Kt
m,l(i)]= E

[
Jtm,l(i)

] N∑

n=1

Cn,mCn,l
σ 2
v,n

Run . (72)

Substituting (65) and (72) into (70) yields the following
result:

E[ ‖w̃k,i‖2] = Tr

⎧
⎨

⎩

i∑

t=Ni+1

N∑

l=1

N∑

m=1
PmE

[
Kt
m,l(i)

]
Pl

⎫
⎬

⎭

=
i∑

t=Ni+1

N∑

l=1

N∑

m=1

N∑

n=1
Tr{PmRunPl}Cn,mCn,l

σ 2
v,n

×
⎧
⎨

⎩
A

i∏

j=t+1
E[F(j)]

⎫
⎬

⎭
m,k

⎧
⎨

⎩
A

i∏

j=t+1
E[F(j)]

⎫
⎬

⎭
l,k

.

(73)

In view of Assumption 2, we can verify that there exists
a number Ni > 0, when i > Ni, for which F(i) satisfies

E[F(Ni)]�E[F(Ni + 1)]� . . .�E[F(i)]�E[F(∞)] .
(74)

Therefore, we replace E[F(i)] with E[F(∞)] when i >

Ni and then reformulate (73) as

E[ ‖w̃k,i‖2] ≈
i∑

t=Ni+1

N∑

l=1

N∑

m=1

N∑

n=1
Tr{PmRunPl}

× Cn,mCn,l
σ 2
v,n

{
AEi−t[F(∞)]

}
m,k
{
AEi−t[F(∞)]

}
l,k .

(75)
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Subsequently, we replace i− t with t in (75) and then let
i goes to infinity. As a result, we can obtain the expression
of the steady-state MSD for node k:

MSDss
k = lim

i→∞E[ ‖w̃k,i‖2]

= lim
i→∞

i∑

t=0

N∑

l=1

N∑

m=1

N∑

n=1
Tr{PmRunPl}

× Cn,mCn,l
σ 2
v,n

{
AEt[F(∞)]

}
m,k
{
AEt[F(∞)]

}
l,k .

(76)

Next, we calculate the steady-state EMSE for node k.
According to (60), the EMSE for node k can be expressed
as follows

E
[|u∗

k,iw̃k,i−1|2
] = E

[
Tr
{
w̃∗
k,i−1uk,iu

∗
k,iw̃k,i−1

}]

= E[Tr{uk,iu∗
k,iw̃k,i−1w̃∗

k,i−1}]
= Tr

{
RukE

[
w̃k,i−1w̃∗

k,i−1
]}

.
(77)

Note that uk,i is independent of w̃k,i−1. By substituting
(76) into (77), we can obtain the expression of the steady-
state EMSE for node k:

EMSEssk = lim
i→∞

i∑

t=0

N∑

l=1

N∑

m=1

N∑

n=1
Tr
{
RukPmRunPl

}

× Cn,mCn,l
σ 2
v,n

{
AEt[F(∞)]

}
m,k
{
AEt[F(∞)]

}
l,k .

(78)

Expressions (76) and (78) describe the steady-state
behavior of the proposed LTVFF-DRLS and LCTVFF-
DRLS algorithms. By comparing the expressions (76) and
(78) with the analytical results in [7], it is clear that the
fixed matrix λ2A in the expressions for the conventional
DRLS algorithms has been replaced by the matrix F(i)
in the expressions (76) and (78), which is weighted by
the matrix �i. Since �i varies from one iteration to the
next, F(i) varies for each iteration as well, which improves
the tracking performance of the resulting algorithms. Fur-
thermore, since all the elements in F(i) are bounded by
zero and unity, the values of the steady-state MSD and
EMSE given by (76) and (78) are both very small values
when i is large enough. Thus, we can verify that the pro-
posed LTVFF-DRLS and LCTVFF-DRLS algorithms both
converge in the mean-square sense.

4.3 Transient analysis under spatial invariance
assumption

In this subsection, we consider a specialized case that
the noise variances and input vector covariance matri-
ces are the same for all the sensor nodes, and provide

transient analysis for this specific case. Particularly, we
assume spatial invariance:

σ 2
v1 = σ 2

v2 = · · · = σ 2
vN = σ 2

v (79)
Ru1 = Ru2 = · · · = RuN = Ru. (80)

In addition, to facilitate analysis, we assume that all
elements of the adaptation matrix C are equal to 1

N .
We study the transient analysis through focusing on the

learning curve, which is obtained by depicting the squared
priori estimation error, i.e., E

[
|u∗

k,i(wk,i − wo)|2
]
[29, 30],

as a function of the iteration number i. We first rewrite
this squared priori estimation error in a more compact
form:

E
[|u∗

k,i(wk,i − wo)|2]

=E
[|u∗

k,iw̃k,i|2
]

=E
[
w̃∗
k,iuk,iu

∗
k,iwk,i

]

=E
[
w̃∗
k,iRuw̃k,i

]

=E
[‖w̃k,i‖2Ru

]

(81)

where we use the representation ‖t‖2A = t∗At in the last
equality.
Then, we use the spatial invariance assumption to sim-

ply (39) and (48). Particularly, by taking advantage of the
assumption that the input vector covariance matrix is the
same over all sensor nodes, we can derive the following
expression from (39), when i is large enough:

Pk,i ≈ E
[
P−1
k,i

]−1 ≈ (1 − E[ λk(i)] )σ 2
v R−1

u ≈ (1 − λk(i))σ 2
v R−1

u .

(82)

By substituting (82) into (48), we can arrive at

w̃k,i =
N∑

l=1
Al,k

[

λl(i)w̃l,i + (1 − λl(i))R−1
u

N∑

m=1
um,ivm,i

]

=
N∑

l=1
Al,kλl(i)w̃l,i +

N∑

l=1
Al,k(1 − λl(i))R−1

u H∗
i vi

=
N∑

l=1
Al,kλl(i)w̃l,i +

N∑

l=1
Al,k(1 − λl(i))si

=
N∑

l=1
Al,kλl(i)w̃l,i +

(

1 −
N∑

l=1
Al,kλl(i)

)

si

(83)

where we use the column vector si to denote the quan-
tity R−1

u H∗
i vi in the third equality, and we use the property

of the combination matrix, i.e.,
∑N

l=1 Al,k = 1,∀k ∈
{1, 2, · · · ,N}, to arrive at the fourth equality. Let us define

W̃ i = col{w̃1,i, w̃2,i, · · · , w̃N ,i}
λi = col{λ1(i), λ2(i), · · · , λN (i)}. (84)
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Note that �i = diag{λi}. Then, we can write the recur-
sive equation of type (83) for all sensor nodes in a more
compact form as follows:

W̃ i = AT�iW̃ i−1 +
(
I − ATλi

)
⊗ si

= AT�iW̃ i−1 + f(i) ⊗ si
(85)

where f(i) = I − ATλi in the second equality. Then, we
have the following global squared priori estimation error
for all sensor nodes by using the last equality in (85):

E[ ‖W̃ i‖2Ru ] = E[W̃∗
i RuW̃ i]

= E
[
W̃∗

i−1�iARuAT�iW̃ i−1 +
(
f(i)T ⊗ s∗i

)
Ru (f(i) ⊗ si)

]

= E
[
‖W̃ i−1‖2�

]
+ E

[(
f(i)T ⊗ s∗i

)
(Ru ⊗ 1)(f(i) ⊗ si)

]

= E
[
‖W̃ i−1‖2�

]
+ E

[((
f(i)TRu

)
⊗ s∗i

)
(f(i) ⊗ si)

]

= E
[
‖W̃ i−1‖2�

]
+ E

[(
f(i)TRuf(i)

)
⊗ (s∗i si)

]

= E
[
‖W̃ i−1‖2�

]
+ E

[
f(i)TRuf(i)

]
E[ s∗i si]

(86)

where � = �iARuAT�i, and we use the property of the
Kronecker product, i.e., (66), in the fourth and fifth equal-
ities, and the fact that both quantities of f(i)TRuf(i) and
s∗i si are scalar and they are independent to arrive at the
last equality. Particularly, E[ s∗i si] can be rewritten as

E[ s∗i si]

=E
[
Tr
(
v∗
i Hi

(
R−1
u
)∗ R−1

u H∗
i vi
)]

=E
[
Tr
(
Hi
(
R−1
u
)∗ R−1

u H∗
i viv∗

i

)]

=σ 2
v E
[
Tr
((
R−1
u
)∗ R−1

u H∗
i Hi

)]

=Nσ 2
v Tr

((
R−1
u
)∗ R−1

u Ru
)

=Nσ 2
v Tr

(
R−1
u
)

(87)

where we use the spatial invariance assumption, i.e.,
viv∗

i = diag{σ 2
v , σ 2

v , · · · , σ 2
v } = σ 2

v IN and H∗
i Hi =

∑N
m=1 um,iu∗

m,i = ∑N
m=1 Rum = NRu, to arrive at the third

and fourth equalities, respectively, and the symmetry of
the input vector covariance matrix in the last equality. By
plugging (87) back into (86), we have

E
[∥∥∥W̃ i

∥∥∥
2

Ru

]

=E
[∥∥∥W̃ i−1

∥∥∥
2

�

]
+ Nσ 2

v E
[
Tr
(
f(i)TRuf(i)R−1

u

)]

=E
[∥∥∥W̃ i−1

∥∥∥
2

E[�]

]
+ Nσ 2

v E
[
Tr
(
f(i)TRuf(i)R−1

u

)]
.

(88)

For convenience, we use the notation ‖t‖2vec{A}to denote
the weighted norm ‖t‖2A, where the symbol vec{A} repre-
sents the vectorization of a matrix. Particularly, by using

the equality vec{ABC} = (CT ⊗A)vec{B}, we can vector-
ize the matrix � = �iARuAT�i as follows

vec{�}
=vec

{
�iARuAT�i

}

=
((

AT�i
)

⊗ (�iA)
)
vec{Ru}

= ((�iA) ⊗ (�iA)) vec{Ru}
=(F(i) ⊗ F(i))vec{Ru}
=F iγ

(89)

where F(i) = �iA, F i = F(i) ⊗ F(i) and γ = vec{Ru}.
Ultimately, we have

E
[∥∥∥W̃ i

∥∥∥
2

γ

]

=E
[∥∥∥W̃ i−1

∥∥∥
2

E[F i]γ

]
+ Nσ 2

v E
[
Tr
(
f(i)TRuf(i)R−1

u

)]
.

(90)

This recursive equation is stable and convergent if
E[F i] is stable [31].
Particularly, the quantity F i has a spectral radius

smaller than unity and thus is stable. This can be proved
as follows: If we replace each element in �i by its upper
bound λ+, then we have F i replacced by λ2+A ⊗ A. Note
that A satisfies ITA = I, and then, we can readily verify
that each column of A ⊗ A sums up to unity. Hence, the
quantity λ2+A⊗A has the spectral radius λ2+ that is smaller
than one. Given that each element in �i does not exceed
λ+, the spectral radius ofF i is smaller than λ2+ and surely
is smaller than unity. Therefore, for this specialized case,
it can be verified theoretically that the proposed LTVFF-
DRLS and LCTVFF-DRLS algorithms are convergent in
terms of the learning curve and the convergence rate is
related to the varying forgetting factors.
Also note that, since the convergence performance of

the adaptive algorithms does not depend on the outside
environment but rely on the network topology and the
design of algorithms, the analytical results in this special-
ized case also apply to the general case.

5 Simulation results
In this section, we present the simulation results for the
proposed LTVFF-DRLS and LCTVFF-DRLS algorithms
when applied in two applications, that is, distributed
parameter estimation and distributed spectrum estima-
tion over sensor networks.

5.1 Distributed parameter estimation
In this part, we evaluate the performance of the
proposed LTVFF-DRLS and LCTVFF-DRLS algorithms
when applied to distributed parameter estimation in com-
parison with the DRLS algorithm with the fixed forgetting
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Fig. 2 Network topology for the simulation results in Section 5.1

factor and the GVFF-DRLS algorithm. In addition, we
also verify the effectiveness of the proposed analytical
expressions in (76) and (78) based on simulations.
We assume that there are 10 nodes in the sensor net-

work and the length of the unknown weight vector isM =
5. The input vectors uk,i, k = 1, 2, . . . ,N are assumed to
be Gaussian with zero means and variances

{
σ 2
u,k

}
chosen

randomly between 1 and 2 for each node. The Gaussian
noise samples vk,i, k = 1, 2, . . . ,N have variances

{
σ 2
v,k

}

that are chosen randomly between 0.1 and 0.2 for each
node. We generate the measurements {dk,i} according to
(1). Simulation results are averaged over 100 experiments.
The adaptation matrix C is governed by the Metropolis

rule, while the choice of the diffusion matrixA follows the
relative-degree rule [8]. The network topology used for
the simulations is shown in Fig. 2.

5.1.1 Effects of α, β, and γ

In this subsection, we study the effects of the parame-
ters α, β , and γ on the performance of the proposed
LTVFF and LCTVFF mechanisms. For the LTVFF mech-
anism, we investigate the steady-state MSD values versus
α for β = 0.0015, 0.002, 0.0025, 0.005. The simulation
results are shown in Fig. 3. For the LCTVFF mecha-
nism, we first depict the steady-state MSD values versus
α for β = 0.0025, 0.005, 0.0075, 0.01 in Fig. 4. Then, the
effects of γ are illustrated in Fig. 5 by investigating the
steady-state MSD values against γ for different pairs of α

and β .
As can be seen from Figs. 3 and 4 for both the LTVFF

and LCTVFF mechanisms, the optimal choice of α and
β is not unique. Specifically, different pairs of α and β

can yield the same steady-state MSD value. For exam-
ple, for the LTVFF mechanism, the pairs α = 0.91,β =
0.0015, α = 0.89,β = 0.002, and α = 0.87,β = 0.0025
provide almost the same steady-state MSD performance.
For the LCTVFF mechanism, when γ = 0.95, the pairs
α = 0.93,β = 0.0025, α = 0.90,β = 0.005, α =
0.85,β = 0.0075, and α = 0.80,β = 0.01 yield almost the
same steady-state MSD value. In addition, it can also be
observed that with the decreasing of α and β , the steady-
state performance degrades. Furthermore, the result in
Fig. 5 reveals that the steady-state MSD performance of
the LCTVFF mechanism does not change so much as γ

varies for different pairs of α and β .

Fig. 3 Steady-state MSD versus α for different values of β for the LTVFF mechanism
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Fig. 4 Steady-state MSD versus α for different values of β for the LCTVFF mechanism when γ = 0.95

However, when we choose appropriate values for α,
β , and γ , only considering the effects on the steady-
state behaviors is not enough. This is because that the
convergence speed is closely connected to the steady-
state MSD values. That is to say, when the algorithm
assumes a faster convergence speed, the steady-state
error floor rises; if the convergence speed is controlled
to be slower, the steady-state performance improves.

Figures 6 and 7 show the trade-off between conver-
gence speed and steady-state performance by depicting
learning curves against different values of α and β for
LTVFF-DRLS and LCTVFF-DRLS algorithms, respec-
tively. Therefore, we need to keep a good balance between
the steady-state behaviors and the convergence speed in
order to ensure good performance. In practical applica-
tions, the optimized values of α, β , and γ should be

Fig. 5 Steady-state MSD versus γ for different values of α and β for the LCTVFF mechanism
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Fig. 6 Learning curves against different values of α and β for LTVFF-DRLS algorithm

obtained through experiments and then stored for the
future use.

5.1.2 MSD and EMSE performance
Figures 8 and 9 show the MSD curves against the num-
ber of iterations for the LTVFF-DRLS and LCTVFF-DRLS
algorithms with different initial values for the forgetting
factor in comparison with the conventional DRLS algo-
rithm and the GVFF-DRLS algorithm, respectively. The
parameters of the considered algorithms are listed in

Table 4. From the results, the LTVFF-DRLS algorithm
converges to almost the same error floor in two scenar-
ios where the variable forgetting factor is initialized to be
small or large. This is also true for the LCTVFF-DRLS
algorithm, which has lower error floor and faster conver-
gence speed than the LTVFF-DRLS algorithm. However,
as shown in Fig. 8, for the conventional DRLS algorithm,
its convergence speed and steady-state error floor both
have obvious changes when the fixed forgetting factors
increases. Specifically, when the fixed forgetting factor is

Fig. 7 Learning curves against different values of α and β for LCTVFF-DRLS algorithm when γ = 0.95
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Fig. 8MSD performance against iterations for the proposed algorithms with different initial values for the forgetting factor compared with the DRLS
algorithm with the fixed forgetting factor

small, the conventional DRLS algorithm converges faster
but has a higher error floor than the LTVFF-DRLS algo-
rithm; however, as the fixed forgetting factors increase,
it converges to a lower error floor (not as good as
the LTVFF-DRLS algorithm) but has slower convergence
speed. Besides, from Fig. 9, the MSD performance of the
proposed LTVFF-DRLS and LCTVF-DRLS algorithms are

less sensitive to the initial values for the forgetting fac-
tor than that of the GVFF-DRLS algorithm. Therefore,
by employing the LTVFF and LCTVFF mechanisms, the
proposed algorithms can track the optimal performance
regardless of the initial values for the forgetting factor and
greatly reduce the difficulty in choosing the appropriate
value for the forgetting factor.
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Fig. 9MSD performance against iterations for the proposed algorithms with different initial values for the forgetting factor compared with the
GVFF-DRLS algorithm
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Table 4 Optimized parameters for different algorithms
considered in Figs. 8 and 9

LTVFF-1 α = 0.91,β = 0.0015

λ0 = 0.995, λ+ = 0.9998, λ− = 0.980

LTVFF-2 α = 0.91,β = 0.0015

λ0 = 0.950, λ+ = 0.9998, λ− = 0.950

LCTVFF-1 α = 0.95,β = 0.005, γ = 0.95

λ0 = 0.995, λ+ = 0.9998, , λ− = 0.950

LCTVFF-2 α = 0.95,β = 0.005, γ = 0.95

λ0 = 0.950, λ+ = 0.9998, , λ− = 0.950

GVFF-1 λ0 = 0.995,μ = 0.005, λ+ = 0.9998, λ− = 0.990

GVFF-2 λ0 = 0.950,μ = 0.005, λ+ = 0.9998, λ− = 0.950

Fixed-1 λ = 0.998

Fixed-2 λ = 0.995

Fixed-3 λ = 0.950

In Figs. 10, 11, 12, and 13, we evaluate the performance
of the proposed LTVFF-DRLS and LCTVFF-DRLS algo-
rithms based onMSD and EMSE behaviors in comparison
with that of the conventional DRLS with the fixed forget-
ting factor and the GVFF-DRLS algorithms. Specifically,
the MSD and EMSE curves against the number of itera-
tions for the analyzed algorithms are depicted in Figs. 10
and 11, respectively, while the steady-state MSD and
EMSE values for each node are shown in Figs. 12 and 13,
respectively. As can be seen from these results, both the
LTVFF-DRLS and LCTVFF-DRLS algorithms converge

after a number of iterations and achieve lower steady-state
MSD and EMSE values compared to the DRLS algo-
rithmwith the fixed forgetting factor and the GVFF-DRLS
algorithm. Besides, we also depict the analytical results
which are calculated through expressions (76) and (78) in
Figs 10, 11, 12, and 13. From these results, it is clear that
analytical expressions corroborate the simulated results
very well. The parameters of the considered algorithms
are shown in Table 5, which are tuned through experi-
ments by referring to the investigation in Section 5.1.1.
In Fig. 14, we test the performance of different algo-

rithms considered in a non-stationary environment.
Specifically, in order to simulate the non-stationary envi-
ronment, we consider the scenario where the topology
of the sensor network varies over time, that is, the total
number of sensor nodes is set to 40 at the start, and
then, we switch off half of the nodes after 100 iter-
ations and another 10 nodes after 800 iterations. The
MSD curves against the number of iterations for the pro-
posed algorithms in comparison with the conventional
DRLS algorithm with the fixed forgetting factor and the
GVFF-DRLS algorithm in the non-stationary environ-
ment are depicted in Fig. 14. As can be observed, the
switching off of some sensor nodes results in the degra-
dation of the performance for all the algorithms. How-
ever, the proposed LTVFF-DRLS and LCTVFF-DRLS
algorithms still outperform the other two existing algo-
rithms in MSD performance. Besides, they exhibit better
tracking properties by showing smaller and smoother
variations in the MSD curves at the time of switching
sensor nodes.
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Fig. 10MSD curve against number of iterations for the proposed and existing algorithms
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Fig. 11 EMSE curve against number of iterations for the proposed and existing algorithms

Next, we elaborate the numerical stability of the
proposed LTVFF-DRLS and LCTVFF-DRLS algorithms.
Through tuning the parameters α, β , γ , λ+, λ+ to different
values, the proposed LTVFF-DRLS and LCTVFF-DRLS
algorithms can have different convergence speed and
steady-state performance, but their MSD and EMSE
curves always decrease to the steady-state. Indeed, after
a number of experiments, we have not encountered the
case where they diverge. Hence, the proposed LTVFF and

LCTVFF mechanisms do not make the numerical stabil-
ity of the DRLS algorithm worse. Besides, the simulation
results in Fig. 14 show that, after switching some nodes
in the network, the proposed LTVFF-DRLS and LCTVFF-
DRLS algorithms still achieve superior performance to the
conventional DRLS algorithm, and they exhibit smoother
MSD curves at the time of switching nodes, especially
the LCTVFF-DRLS algorithm. This further verifies that
the proposed algorithms improve instead of impair the
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Fig. 12 Steady-state MSD value versus node for the proposed and existing algorithms
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Fig. 13 Steady-state EMSE value versus node for the proposed and existing algorithms

numerical stability of the DRLS algorithm by keeping
better tracking of the variations.

5.2 Distributed spectrum estimation
In this part, we extend the proposed LTVFF-DRLS and
LCTVFF-DRLS algorithms to the application of dis-
tributed spectrum estimation, for which we focus on
estimating the parameter w0 that is relevant to the
unknown spectrum of a transmitted signal s. First of all,
we characterize the systemmodel of distributed spectrum
estimation.
We denote the power spectral density (PSD) of the

unknown spectrum of the transmitted signal s by 
s(f ),
which can be well approximated by the following basis
expansion model [32] with Nb sufficiently large:


s(f ) =
Nb∑

m=1
bm(f )w0m = bT0 (f )w0 (91)

Table 5 Optimized parameters for different algorithms
considered in Figs. 10, 11, 12, and 13

Fixed scheme λ = 0.990

GVFF μ = 0.005, λ0 = 0.990, λ+ = 0.9998, λ− = 0.990

LTVFF α = 0.91,β = 0.0015, λ0 = 0.990

λ+ = 0.9998, λ− = 0.980

LCTVFF α = 0.95,β = 0.005, γ = 0.95

λ0 = 0.990, λ+ = 0.9998, , λ− = 0.950

where b0(f ) = col{b1(f ), b2(f ), . . . , bNb(f )} is the vector
of basis functions [33, 34], w0 = col{w01,w02, . . . ,w0Nb} is
the expansion parameter to be estimated and represents
the power that transmits the signal s over each basis, and
Nb is the number of basis functions.
We assume Hk(f , i) to be the channel transfer function

between the source emitting the signal s and the receiver
node k at time instant i. Based on (91), the PSD of the
signal received by node k can be represented as


r(f ) = |Hk(f , i)|2
s(f ) + σ 2
r,k

=
Nb∑

m=1
|Hk(f , i)|2bm(f )w0m + σ 2

r,k

= bTk,i(f )w0 + σ 2
r,k

(92)

where bk,i(f ) = [|Hk(f , i)|2bm(f )
]Nb
m=1 ∈ R

Nb and σ 2
r,k

denotes the receiver noise power at node k.
At each time instant i, by observing the received PSD

described in (92) over Nc frequency samples fj = fmin :
(fmax − fmin)/Nc : fmax, for j = 1, 2, . . . ,Nc, each node k
takes measurements according to the following model:

djk,i = bTk,i(fj)w0 + σ 2
r,k + vjk,i (93)

where vjk,i denotes the sampling noise at frequency fj with
zero mean and variance σ 2

n,j. The receiver noise power
σ 2
r,k can be estimated with high accuracy preliminarily
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Fig. 14MSD performance against number of iterations for the proposed and existing algorithms in a nonstationary environment

and then subtracted from (93) [35, 36]. Therefore, we can
obtain

djk,i = bTk,i(fj)w0 + vjk,i. (94)

By collecting the measurements over Nc frequencies
into a column vector dk,i, we obtain the following system
model of distributed spectrum estimation:

dk,i = Bk,iw0 + vk,i. (95)

where dk,i =
[
dfjk,i
]Nc

j=1
∈ R

Nc , Bk,i =
[
bTk,i(fj)

]Nc

j=1
∈

R
Nc×Nb , with Nc > Nb, and vk,i =

[
vjk,i
]Nc

j=1
∈ R

Nc .
Next, we carry out simulations to show the performance

of the proposed algorithms when applied to distributed
spectrum estimation. We consider a sensor network com-
posed of N = 20 nodes in order to estimate the
unknown expansion parameter w0. We use Nb = 50 non-
overlapping rectangular basis functions with amplitude
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Fig. 15MSD performance for different algorithms applied in distributed spectrum estimation
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Table 6 Simulation time of running different algorithms in
Figs. 15 and 16

Simulation time (seconds)

LTVFF 61.11

LCTVF 66.35

GVFF 176

fixed 73

equal to one to approximate the PSD of the unknown
spectrum. The nodes can scan Nc = 100 frequencies over
the frequency axis, which is normalized between 0 and
1. In particular, we assume that only 8 entries of w0 are
non-zero, which implies that the unknown spectrum is
transmitted over 8 basis functions. Thus, the sparsity ratio
equals to 8/50. We set the power transmitted over each
basis function to be 0.7 and the variance of the sampling
noise to be 0.004.
In Fig. 15, we compare the performance of different

algorithms for the distributed spectrum estimation in
terms of MSD. As can be depicted, the proposed LTVFF-
DRLS and LCTVFF-DRLS algorithms still outperform
the conventional DRLS algorithm in steady-state perfor-
mance. By tuning parameters, the GVFF-DRLS algorithm
can achieve similar performance to the proposed algo-
rithms in the convergence speed and steady-state MSD
values but at huge computational cost. We have listed
the simulation time of running each algorithm for 600
iterations and 1 Monte Carlo experiment in Table 6.

As can be observed, the simulation time of running the
GVFF-DRLS algorithm is almost 3 times of that for run-
ning the other algorithms. In Fig. 16, we take node 1 as
an example to investigate the performance of different
algorithms in estimating the true PSD. From the results,
although different algorithms obtain similar estimates of
the true PSD, the proposed LCTVFF-DRLS algorithm
obviously leads to smaller side lobes in the PSD curve than
the other three.

6 Conclusions
In this paper, we have proposed two low-complexity
VFF-DRLS algorithms for distributed estimation includ-
ing the LTVFF-DRLS and LCTVFF-DRLS algorithms.
For the LTVFF-DRLS algorithm, the forgetting factor is
adjusted by the time-averaged cost function, while for
the LCTVFF-DRLS algorithm, the forgetting factor is
adjusted by the time-averaged of the correlation of two
successive estimation errors. We also have investigated
the computational complexity of the low-complexity VFF
mechanisms as well as the proposed VFF-DRLS algo-
rithms. In addition, we have carried out the convergence
and steady-state analysis for the proposed algorithms.
Moreover, we also have derived analytical expressions for
the steady-state MSD and EMSE. The simulation results
have shown the superiority of the proposed algorithms
to the conventional DRLS and GVFF-DRLS algorithms
in applications of distributed parameter estimation and
distributed spectrum estimation and have verified the
effectiveness of our proposed analytical expressions for
the steady-state MSD and EMSE.
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Appendices
A: Proof of the uncorrelation of ρk(i − 1) and |ek(i)|2 in the
steady state
By multiplying both sides of (26) by |ek(i)|2 and taking
expectaitons, we have the following equation:

E
[
ρk(i − 1)|ek(i)|2

] = γE
[
ρk(i − 2)|ek(i)|2

]

+(1−γ )E
[|ek(i − 2)||ek(i − 1)||ek(i)|2

]
.

(96)

Recall that the values of ek(i−1) and ek(i) and the values
of ρk(i − 1) and ρk(i) can be considered approximately
equivalent when i → ∞; therefore, we have the following
results:

E
[
ρk(i − 1)|ek(i)|2

] ≈γE
[
ρk(i − 2)|ek(i)|2

]

+ (1 − γ )E
[|ek(i − 1)|2]E [|ek(i)|2

]

≈γE
[
ρk(i − 1)|ek(i)|2

]

+ (1 − γ )ε2min.
(97)

By recalling (27), we can obtain

E
[
ρk(i − 1)|ek(i)|2

] ≈ ε2min≈E
[
ρk(i − 1)]E[ ek(i)|2

]

(98)

That is, we can conclude that ρk(i − 1) and |ek(i)|2 are
uncorrelated in the steady state.

B: Proof of (39)
According to (8), we can obtain the following equation:

P−1
k,i =

i∏

j=0
λk(j)� + H∗

i Wk,iHi (99)

where the matrices Hi and Wk,i can be expressed as
follows

Hi =
[

Hi
Hi−1

]

Wk,i =
[
R−1
v Ck

λk(i)Wk,i−1

]
.

(100)

Therefore, (99) can be reformulate as

P−1
k,i = λk(i)

⎛

⎝
i−1∏

j=0
λk(j)� + H∗

i−1Wk,i−1Hi−1

⎞

⎠

+ H∗
i R−1

v CkHi.

(101)

Substituting (2) into (101) yields the following recursion:

P−1
k,i = λk(i)P−1

k,i−1 +
N∑

m=1

Cm,k
σ 2
v,m

um,iu∗
m,i. (102)

By employing the iterative Eq. (102), we can write

P−1
k,i =

N∑

l=1

Cl,k
σ 2
,
ul,iu∗

l,i + λk(i)
N∑

l=1

Cl,k

σ 2
v,l

ul,i−1u∗
l,i−1

+ λk(i)λk(i − 1)
N∑

l=1

Cl,k

σ 2
v,l

ul,i−2u∗
l,i−2 + . . .

+
1∏

j=i
λk(j)

N∑

l=1

Cl,k

σ 2
v,l

ul,0u∗
l,0 +

0∏

j=i
λk(j)�.

(103)

Recalling Assumption 1, we know that the correlation
matrix of the input vector is invariant over time, as a
result, the correlation matrix Rul,i can be represented as
Rul . Therefore, by taking expectations on both sides of
(103), we obtain the following result

E
[
P−1
k,i

]
=

N∑

l=1

Cl,k

σ 2
v,l

Rul + E[ λk(i)]
N∑

l=1

Cl,k

σ 2
v,l

Rul + E [λk(i)

×λk(i − 1)]
N∑

l=1

Cl,k

σ 2
v,l

Rul +. . .+E

⎡

⎣
1∏

j=i
λk(j)

⎤

⎦
N∑

l=1

Cl,k

σ 2
v,l

Rul

+ E

⎡

⎣
0∏

j=i
λk(j)

⎤

⎦�.

(104)

In view of Assumption 2, (104) can be approximately
rewritten as

E
[
P−1
k,i

]
≈ (

1 + E[ λk(i)]+ . . . + E[ λk(i)]i−Ni+1 )
N∑

l=1

Cl,k

σ 2
v,l

Rul

+ E[ λk(i)λk(i − 1) . . . λk(Ni)]E

⎡

⎣λk(Ni − 1)

+λk(Ni − 1)λk(Ni − 2) + . . . +
1∏

j=Ni−1
λk(j)

⎤

⎦
N∑

l=1

Cl,k

σ 2
v,l

Rul

+ E

⎡

⎣
Ni∏

j=i
λk(j)

⎤

⎦E

⎡

⎣
0∏

j=Ni−1
λk(j)

⎤

⎦�

≈ (
1 + E[ λk(i)]+ . . . + E[ λk(i)]i−Ni+1 )

N∑

l=1

Cl,k

σ 2
v,l

Rul

+ E[ λk(i)]i−Ni+1 (ξ + χ)

(105)

where ξ and χ can be expressed as follows, respectively:

ξ = E

⎡

⎣λk(Ni − 1) + λk(Ni − 1)λk(Ni − 2)

+ . . . +
1∏

j=Ni−1
λk(j)

⎤

⎦
N∑

l=1

Cl,k

σ 2
v,l

Rul

(106)
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and

χ = E

⎡

⎣
0∏

j=Ni−1
λk(j)

⎤

⎦�. (107)

Since ni is a finite positive number, ξ and χ are two
deterministic values. In addition, note that λk(i) does not
exceed its upper bound λ+, which is smaller than but close
to unity. Therefore, we have 0 < E[ λk(i)]< λ+ < 1,
and E[ λk(i)]i−Ni+1 < λ

i−Ni+1
+ . When i is large enough,

λ
i−Ni+1
+ approaches zero, and, of course, E[ λk(i)]i−Ni+1

also approaches zero. As a result, the last term in (105)
vanishes. Then, we obtain the following result:

lim
i→∞E

[
P−1
k,i

]
= 1

1 − E[ λk(∞)]

N∑

l=1

Cl,k

σ 2
v,l

Rul (108)

where the values of λk(∞) is given in (24) for the LTVFF
mechanism and in (35) for the LCTVFF mechanism,
respectively. Hence, we obtain (39). Note that, by setting
appropriate truncation bounds for λk(i), the steady-state
forgetting factor value will not be influenced by the trun-
cation. Hence, the result (39) always holds true despite the
truncation employed to the VFF mechanisms. Indeed, the
truncationmechanism only plays a role during the process
of converging. Once the algorithms reach the steady state,
the values of the forgetting factor are not affected by the
truncation mechanism any longer.
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