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Abstract

Wideband sparse spectral estimation is generally formulated as a multi-dictionary/multi-measurement (MD/MM)
problem which can be solved by using group sparsity techniques. In this paper, the MD/MM problem is reformulated
as a single sparse indicative vector (SIV) recovery problem at the cost of introducing an additional system error. Thus,
the number of unknowns is reduced greatly. We show that the system error can be neglected under certain
conditions. We then present a new subband information fusion (SIF) method to estimate the SIV by jointly utilizing all
the frequency bins. With orthogonal matching pursuit (OMP) leveraging the binary property of SIV’s components, we
develop a SIF-OMP algorithm to reconstruct the SIV. The numerical simulations demonstrate the performance of the
proposed method.

1 Introduction
Wideband direction-of-arrival (DOA) estimation has
been a popular area of research due to the various
applications in radar, sonar, seismology, communications,
astrophysics, and many other fields [1–3]. Traditional
wideband array processing is to decompose the wideband
signals into many narrowband signals with a filter bank or
the discrete Fourier transform (DFT), and two categories,
referred to as incoherent signal subspace method (ISSM)
[4] and coherent signal subspace method (CSSM) [5], are
utilized to realize wideband DOA estimation. The ISSM
estimates the DOAs independently and average them over
all the bins. The performance of ISSM may deteriorate
with low signal-to-noise ratio (SNR) frequency bins and
coherent sources. The CSSM align the signal subspaces by
transforming the observation vectors associated with each
bin into the focusing subspace and can deal with coher-
ent sources by averaging the subspace-aligned covariance
matrices. Compared with ISSM, CSSM can enhance DOA
resolution and improve the accuracy of DOA estimates
at low SNR. However, CSSM requires an initial DOA
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estimates, and the precision of DOA pre-estimates greatly
influences the accuracy of DOA estimation [6, 7].
Recently, a class of sparse signal representation (SSR)

methods provide a new perspective for wideband DOA
estimation [8–11]. The DOA estimation problem can
be formulated as recovering a spatial sparse signal vec-
tor or matrix by minimizing the residual norm under
sparsity constraint. Basically, the wideband SSR meth-
ods in frequency domain decompose the received signals
into narrowband subbands and estimate spatial spec-
tra in each frequency bin. One of the most succes-
sive �1-norm-based SSR algorithms for DOA estimation
is �1-SVD (Singular Value Decomposition) [12], which
reduces the computational complexity by SVD. Hyder
and Mahata [13] presented a joint �2,0-norm approx-
imation (JLZA) method and extended it to wideband
DOA estimation. Tang et al. [14] showed that the spatial
ambiguity can be removed by using multiple dictionar-
ies, each dictionary corresponding to a judiciously chosen
frequency. It should be mentioned that the above SSR
methods in frequency domain are generally formulated as
a multi-dictionary/multi-measurement (MD/MM) joint
optimization problem. These techniques usually do not
use all the subband information to estimate DOAs with
the aim of reducing unknown variables. Similar to ISSM,
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the performance of joint optimizing a MD/MM problem
may deteriorate rapidly if subband signals with low SNR
are chosen. Liu et al. [15] proposed a wideband covariance
matrix sparse representation (WCMSR) method for DOA
estimation. The WCMSR method uses time domain mea-
surements and has its limitation for spatial nonambiguity
because the spatial aliasing is frequency dependent.
In this paper, we reformulate the MD/MM problem as a

sparse indicative vector (SIV) recovery problem and pro-
pose a new subband information fusion (SIF) method to
estimate the SIV by jointly integrating all the frequency
bins together. Thus, the number of unknown variables can
be reduced dramatically. By introducing the SIV, an extra
system error is also generated. We show that such error
term can be ignored under certain conditions. Compared
with the traditional wideband DOA estimation methods,
the proposed approach does not rely on focusing tech-
nique to average the subspace matrices. By using the
binary property of the SIV, we design a binary constrained
orthogonal matching pursuit (OMP) algorithm to recover
the SIV. The developed algorithm is called SIF-OMP
algorithm.
The organization of this paper is as follows. In Section 2,

we review the SSR model for wideband DOA estimation.
The new SIF method is presented in Section 3. The SIF-
OMP algorithm is implemented in Section 4, together
with the convergence properties of the SIF-OMP algo-
rithm. Numerical simulations are carried out in Section 5
to demonstrate the performance of our algorithm, and
Section 6 gets the conclusion.

2 Problem formulation and existingmethods
Consider a uniform linear array (ULA) of N omnidirec-
tional sensors working together to estimate the spatial
location parameters of Q wideband sources and Q is
assumed to be unknown. The sensors of the ULA are
equally placed on a line with spacing d which is not neces-
sary to be smaller than half a wavelength. Let � = {θi}Li=1
denote the set of a sampling grid of all possible source
locations, L � N , L � Q. We assume that the grid is
fine enough that � can represent the true source loca-
tions, e.g., {θi1 , θi2 , . . . , θiQ} ∈ �. The subscript iq, q =
1, 2, . . . ,Q, is used to index the position of θiq .
For each sensor, the time-samples are split into M seg-

ments, where for each segment, K frequency bins are
obtained by a bank of narrowband filters or the discrete
Fourier transform [7]. Let sk,q(m) denote the qth source
signal at frequency ωk computed for the mth segment,
k = 1, 2, . . . ,K and m = 1, 2, . . . ,M. The sparse rep-
resentation perspective transforms the DOA estimation
problem into sparse spectrum recovery problem. We use
vk,i(m) to denote the kth frequency coefficient for themth
segment corresponding to the i-th grid, i = 1, 2, . . . , L.
Similarly, we use yn,k(m) to represent the measurement

data at the nth sensor for the mth segment at frequency
ωk . By stacking all measurements into a vector, the output
of the array can be expressed as

yk,m =
L∑

i=1
ak(θi)vk,i(m) + wk,m (1)

where yk,m =[ y1,k(m), y2,k(m), . . . , yN ,k(m)]T is the mea-
surement vector, wk,m represents the N × 1 additive noise
vector, ak(θi) is the steering vector with respect to the i-th
grid and it can be written as

ak(θi) =
[
1, e−jωk

d
c sin θi , . . . , e−jωk(N−1) dc sin θi

]T
(2)

where c is the speed of the signal propagation. We
now introduce an overcomplete basis matrix Ak =
[ak(θ1),ak(θ2), . . . ,ak(θL)]. The sparse representation
model in (1) can be expressed concisely

yk,m = Akvk,m + wk,m (3)

where vk,m =[ vk,1(m), vk,2(m), . . . , vk,L(m)]T is called
“virtual source" vector and it is the sparse representa-
tion of true source vector sk,m = [ sk,1(m), sk,2(m), . . . ,
sk,Q(m)]T . The nonzero entries of vk,i represent true
sources and zero otherwise. Clearly, vk,iq(m) = sk,q(m).
When all M segments are available, we define Y k =
[ yk,1, yk,2, . . . , yk,M]; then, (3) becomes

Y k = AkV k + W k (4)

where V k is an L × M matrix, W k is an N × M matrix,
and they are defined similarly as Y k . If the sources are
assumed to be stationary during M snapshots, then each
column of V k shares the same sparsity. As shown in
the previous literature (see [12–14, 16] and the refer-
ences therein), the DOA estimation problem can be solved
by reconstructing V 1,V 2, . . . ,VK from Y 1,Y 2, . . . ,YK
within the scope of the MD/MM problem. We define
A = blkdiag(A1,A2, . . . ,AK ), Y = [

YT
1 ,Y

T
2 , . . . ,Y

T
K
]T

and V = [
VT

1 ,V
T
2 , . . . ,V

T
K
]T , where blkdiag(·) denotes

the operation to form a block diagonal matrix. Thus, the
sparse representation for the MD/MM problem can be
described as

minimize
V

‖V‖0 , s.t. ‖Y − AV‖2 ≤ ε, (5)

where the �0 norm ‖V‖0 denotes the number of non-zero
rows of a matrix V and ε is an upper bound of the Frobe-
nius norm of the residual error. However, finding such
a combinatorial problem requires an enumerative search
and is NP hard. Consequently, ‖V‖0 is replaced by ‖V‖p,t ,
for 0 < p ≤ 1, t ≥ 1, given in [16]

‖V‖p,t =
[ L∑

i=1
(‖v̄i‖t)p

]1/p

, ‖v̄i‖t =
[ M∑

m=1
|vi,m|t

]1/t

(6)
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where v̄i ∈ C
1×M is the ith row vector of matrix V

and vi,m is the m-th element in the row vector v̄i. Tak-
ing the �1,2 mixed norm minimization as an example, the
matrix V k can be estimated by the following constrained
optimization problem [12]:

minimize
V

L∑

i=1
‖v̄i‖ s.t. ‖Y − AV‖ ≤ ε. (7)

The above optimization problem can be solved with
standard optimization software, i.e., second-order cone
programming (SOCP). However, the optimization pro-
cedure should be repeated by K times by utilizing all
frequency bins ω1,ω2, . . . ,ωK , and K could be rather large
in wideband signal processing. Indeed, it is not efficient to
compute V using (7) for all frequency components. In this
paper, instead of estimating matrix V , we solve the DOA
estimation problem efficiently by recovering a SIV which
is used to represent the location of sources.

3 Subband information fusionmethod
From the sparse representation model in (4), we observe
that the matrices V 1,V 2, . . . ,VK share the identical
sparse structure, where V k =[ vk,1, vk,2, . . . , vk,M], k =
1, 2, . . . ,K . The nonzero rows of matrix V indicate the
source locations. To solve the DOA estimation problem,
we need to decide which row of the source matrix V is
non-zero from the measurements. Once this is done, say
that the ith row ofV is non-zero, we can infer that θi is one
of DOA estimates for the corresponding source. Indeed, it
is not necessary to estimate the whole signal matrix V to
get the solution of a direction estimation problem. Actu-
ally, the DOA estimation problem can be formulated as
recovering a SIV using a SIF method and the estimating of
entire matrix V can be avoided.

3.1 Method
To develop the SIF algorithm, first, we introduce a pro-
jection matrix Ck,i for the ith spatial grid at frequency ωk
given by

Ck,i = ak(θi)
[
aHk (θi)ak(θi)

]−1 aHk (θi)

= 1
N

⎡

⎢⎢⎢⎢⎢⎣

1 ejωk
d
c sin θi · · · ejωk (N−1) dc sin θi

e−jωk
d
c sin θi 1 · · · ejωk (N−2) dc sin θi

...
...

. . .
...

e−jωk (N−1) dc sin θi e−jωk (N−2) dc sin θi · · · 1

⎤

⎥⎥⎥⎥⎥⎦
.

(8)

Let ψk,i(m) = Ck,iyk,m denote the projection of yk,m
onto the range of ak(θi). �k,m denotes an overcomplete
dictionary whose ith column is ψk,i(m), and it has the
following expression

�k,m = [
ψk,1(m),ψk,2(m), . . . ,ψk,L(m)

]
(9)

For noiseless case, we get yk,m = ∑Q
q=1 Ck,iqak(θiq)

sk,q(m). Inspired by this relationship, we introduce a new
L × 1 binary SIV g = [

g1, g2, . . . , gL
]T whose nonzero ele-

ments indicate the location of sources, i.e., g has the same
sparsity structure of source matrix V . As such, the model
(4) can be rewritten as

Y k =
[ L∑

i=1
ak(θi)vk,i(1)gi,

L∑

i=1
ak(θi)vk,i(2)gi . . . ,

L∑

i=1
ak(θi)vk,i(M)gi

]
+ W k

= [
�k,1g,�k,2g, . . . ,�k,Mg

] + Ek + W̄ k (10)

where Ek = [
ek,1, ek,2, . . . , ek,M

]
is an N × M error matrix

and themth column of Ek is given by

ek,m = −
Q∑

j=1

Q∑

q=1,q �=j
Ck,ijak(θiq)sk,q(m) (11)

W̄ k =[ w̄k,1, w̄k,2, . . . , w̄k,M] is the errormatrix and w̄k,m =
wk,m−∑Q

q=1 Ck,iqwk,m. In (10), we observe that g captures
the sparsity property of V in the dictionary �k,m.
Using (10), we can combine all subband information

to estimate a single SIV. Let Xk(g) =[�k,1g,�k,2g, . . . ,
�k,Mg] denote the sparse representation matrix of Y k .
When all subbands are considered, the new observation
model is given as follows

Y = X(g) + E + W̄ (12)

where X(g) = [
XT
1 (g),XT

2 (g), . . . ,XT
K (g)

]T , Y , E and W̄
are defined similarly as V . Based on the new observa-
tion model (12), the following constrained optimization
problem can be used for wideband DOA estimation,

min
g

‖g‖0, subject to ‖Y − X(g)‖2 ≤ η. (13)

where η is the upper bound of the Frobenius norm of the
residual error with respect to (12). Note that (13) gen-
erally subjects to great error bound compared with (5)
for each frequency since additional error E is introduced
in the measurement model (12). Note that g is the only
unknown parameter appeared in (13). Thus, all the sub-
band information can be utilized jointly to estimate g. We
call it subband information fusion (SIF) method. The SIF
method in (13) attempts to find a sufficiently sparse g in a
manner that X(g) consistently fits Y as sparsely as possi-
ble. Instead of estimating V 1,V 2, . . . ,VK by the MD/MM
method stated in (5), the SIF approach only estimates a
SIV g and therefore significantly reduces the number of
unknown variables during the estimation process because
the number of frequency bins K could be rather large in
real applications.
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3.2 Analysis
In Section 3, the system error E appeared in (12) is dis-
carded when we solve the optimization problem (13). This
leads to loss of information since E contains the DOA
information. This section mainly analyzes the error term
E and addresses the problem when E can be neglected.

3.2.1 Single source case
It is straightforward to rewrite the measurement yk,m
when only a single DOA is required to be estimated,

yk,m = ak(θ)sk(m) + wk,m. (14)

In consideration of spatial sparsity, yk,m can also be
written as

yk,m = �k,mg + w̄k,m. (15)

Combining all these measurements together, we obtain

Y = X(g) + W̄ . (16)

From (16), we observe that the system error E does not
exist for single source case. Therefore, there is no infor-
mation loss for single DOA estimation when we formulate
the MD/MM problem as a SIV recovery issue.

3.2.2 Multi-source case
Let μ denote the parameter controlling the value of ek,m
and μ is given by

μj,q = 1
N
aHk (θij)ak(θiq)

= 1
N

N−1∑

n=0
exp

(−jωkndκ(θ)

c

)
(17)

where κ(θ) = sin(θiq) − sin(θij). Thus, ek,m can be written
as

ek,m = −
Q∑

j=1

Q∑

q=1,q �=j
μj,qak(θij)sk,q(m) (18)

Note from (17) and (18) that the value of ek,m is related
toμj,q. We need to thoroughly discuss the property ofμj,q.
According to (17), the magnitude of μj,q is given by

|μj,q| = 1
N

∣∣∣∣∣∣

1 − exp
(−jωkNdκ(θ)

c

)

1 − exp
(−jωkdκ(θ)

c

)

∣∣∣∣∣∣
(19)

When θiq approaches close to θij infinitely, we obtain

lim
θiq→θij

κ(θ) = 0 and lim
θiq→θij

|μj,q| = 1 (20)

The above limit conditions show that the error term
ek,m can not be neglected if the angles of any two inci-
dent sources are close enough. However, ek,m can be very
small if κ(θ) is larger than a certain value which can be

determined by an upper bound of |μj,q|, namely B|μ|. B|μ|
is given by

B|μ| = 2

N
∣∣∣1 − exp

(−jωkdκ(θ)

c

)∣∣∣
(21)

Figure 1 plots |μj,q| and its upper bound B|μ| against κ(θ).
Beyond the main lobe, B|μ| decreases sharply. Hence, if
κ(θ) satisfies

κ(θ) ≥ 2πc
ωkNd

(22)

then |μj,q| ≤ B|μ| = 2
N |1−exp(−j2π/N)| . This means a small

value of ek,m can be guaranteed when κ(θ) is larger than
a certain threshold. Relatively large values of ωk , N and d
make the threshold at extremely low level; see Fig. 2.

4 SIF algorithm
The SIFmethod proposed in the previous section suggests
that we can solve the wideband DOA estimation problem
via single measurement vector reconstruction, as long as
the system error E can be neglected. In this section, we
first derive an equivalent form for SIF optimization; then,
we develop a SIF algorithm to recover the SIV efficiently.
We now develop an equivalent form of (13). Let D ∈

C
L×L represent a new dictionary which satisfies DHD =

�, where

� =
K∑

k=1

M∑

m=1
�H

k,m�k,m. (23)

One realization of D is given by the eigenvalue decom-
position (EVD) of the Hermitian matrix �. Assume that
� can be written as � = U�UH , where U is a unitary
matrix whose columns are composed by L orthonormal
eigenvectors and � is a diagonal matrix of eigenvalues.
Thus, the dictionary D has the expression D = U�

1
2 . Let

t denote the rank of �. We have rank(D) = rank(�) = t.
We now define a newmeasurement vector ξ ∈ C

L×1 given
such that

DHξ = h (24)

where h = ∑K
k=1

∑M
m=1 �H

k,myk,m. From the definition
in (24), we see that Eq. (24) may be underdetermined
because rank(DH) = t ≤ L. Simultaneously, from

rank(�) = rank ([�,h]) =⇒ rank(DH)

= rank
([
DH ,h

])
,

(25)

we can conclude that the solution of (24) exists and ξ =
(DDH)−1Dh.
Based on the above definitions, the equivalent expres-

sion of (13) is presented as follows:

min
g

‖g‖0, subject to
∥∥ξ − Dg

∥∥2 ≤ η. (26)
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Fig. 1 The amplitudes of |μj,q| and B|μ| with k = 10. The amplitudes of |μj,q| and B|μ| , ω10 = 1.08π × 107 rad/s, d = πc/(ω0 + Bf/2), Bf = 0.2ω0,
ω0 = 7π × 107 rad/s, c = 3 × 108 m/s, N = 7

Since the SIV g has the same sparsity structure of V ,
the following theorem shows that the problem of estimat-
ing g by optimizing (26) is equivalent to estimating g by
using (13).

Theorem 1 Given the optimization problems (13) and
(26), the problem of recovering g through (13) is equivalent
to estimating g by (26).

Proof See Appendix.

Theorem 1 suggests that the wideband DOA estimation
problem can be solved by optimizing (26) using existing
methods, e.g., OMP. We consider the OMP for the recov-
ery of g based on the measurement vector ξ . OMP is
an iterative greedy algorithm. For each step, it finds out
the column of D which is the most correlated with the

Fig. 2 The amplitudes of |μj,q| and B|μ| with k = 50. The amplitudes of |μj,q| and B|μ| , ω50 = 5.9π × 107 rad/s, d = πc/(ω0 + Bf/2), Bf = 0.2ω0,
ω0 = 7π × 107 rad/s, c = 3 × 108 m/s, N = 7
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current residuals. This column is then added into the set
of selected columns. After the OMP algorithm returns the
column set, one can use the least squares (LS) method to
further estimate the nonzero values of g. Note that the ele-
ments of g are binary by definition. Such property should
be incorporated into the OMP algorithm. Once the col-
umn set is obtained, the coordinates of “1” components
are also determined. Therefore, we do not need to deal
with the LS process before updating the residuals.
The proposed SIF method for recovering g can be

implemented in terms of algorithm 1, referred as the
SIF-OMP algorithm. Let us use q to denote the iteration
number. For any subset�q ∈ {1, 2, . . . , L}, we denote byDq
a submatrix ofD consisting of the columns dγq within γq ∈
�q. We use rq to denote the residual at the qth iteration.
Based on the above notations, the SIF-OMP algorithm is
given as follows.

Algorithm 1 SIF-OMP Algorithm
Input: ξ , D and Q;
Output: g;
Initialization: r0 = ξ , �0 = ∅, D0 = ∅, g = 0L, q = 1;
Repeat:
(1) Find index γq, where γq = argmax |〈rq−1,di〉|, i =
1, 2, . . . , L;
(2) �q ← �q−1 ∪ {γq}, Dq ← Dq−1 ∪ dγq ;
(3) Remove column dγq in D;
(4) Update residual rq ← ξ − Dq1q;
(5) q = q + 1;
Until stop condition (for example q > Q)
(6) Get final result g(�q) = 1;
return

5 Simulation results
In this section, we illustrate numerically the performance
of the proposed algorithm via various simulations. We
consider a similar example given in [15] for ease of com-
parison. Assume that two BPSK signals with central fre-
quency of 70 MHz and bandwidth of 20% impinge on
a ULA with 7 sensors. The code-rate of incident BPSK
signals is assumed unknown. First, we show the DOA esti-
mation results of two sources obtained by the MUSIC,
MD/MM [14], WCMSR [15], and SIF-OMP, respectively.
Within all approaches, the spatial range [−90◦, 90◦] is
split into 180 grids with an interval of 1◦. The total number
of frequency bins is K = 256. The number of snapshots
or segments is M = 1 and the SNR is set by SNR = 20
dB in this example. The parameters ε is set to 100 for the
MD/MM algorithm. The weight factor is selected by 1 for
the WCMSR method.
In first part of simulations, we consider the comparison

of the DOA estimates of two sources from the directions

of −10◦ and 10◦ using the proposed algorithm and pre-
vious methods. First, we fix the inter-spacing of the ULA
d at half-wavelength corresponding to the highest signal
frequency. We then enlarge d to 100 times to demonstrate
the aliasing-free property of the proposed algorithm. In
Fig. 3, d equals to the half-wavelength with respect to
the highest signal frequency and d = πc/

(
ω0 + Bf

2

)
,

where c = 3 × 108 is the propagation speed of the sig-
nal, ω0 = 1.4π × 108 rad/s is the central frequency and
Bf = 0.2ω0 is the bandwidth. TheMUSICmethod decom-
poses the wideband signals into narrowband subbands
first and obtains DOA estimates for each frequency bin.
Thus, we plot 3D view of spatial spectra with respect to
various frequency components and angle grids; see Fig. 3.
In Fig. 4, we compare the results of the proposed method
with MUSIC, MD/MM, and WCMSR algorithms. The
3D spectrum of the MUSIC method is averaged in angle
domain for ease of comparison. All these methods can
detect the DOAs successfully for this example.
When the inter-spacing of the ULA is expanded 100

times, the phenomenon of spatial aliasing appears for
MUSIC and WCMSR algorithms, yet the MD/MM and
SIF-OMP methods do not suffer spatial aliasing prob-
lem; see Figs. 5 and 6. Figure 5 plots the 3D spectrum
of the MUSIC method. The WCMSR also has the spa-
tial ambiguity problem because it works in time domain.
Both MD/MM and SIF-OMP algorithms can overcome
the spatial ambiguity for this example, and they detect
the spectra correctly. With the interval of two adjacent
frequencies �ω = 2π , the spatial nonambiguity of the
proposed algorithm is guaranteed if d < c

2 according to
Theorem 1 in [14].
We compare the root mean-squared errors (RMSEs) of

the proposed approach with MD/MM andWCMSR algo-
rithms. Please refer to Figs. 7, 8, 9, and 10. The RMSE is
defined as follows:

RMSE =

√√√√√E

⎛

⎝
Q∑

q=1

(
ĝiq − giq

)2
⎞

⎠ (27)

where E{·} represents the expectation operation. First,
we fix the inter-spacing of the ULA at half-wavelength
with respect to the highest frequency. The RMSEs of the
three methods are summarized in Fig. 7. All methods have
satisfactory performance for high SNR. However, the per-
formance of the SIF-OMP method gets worse at low SNR
region due to the additional errors. We also examine the
RMSEs of the three methods against the number of uti-
lized frequencies when the SNR is fixed at 0 dB; see Fig. 8.
Note that the RMSE of the SIF-OMP algorithm does not
reduce as the number of frequencies increases. That is
because the total value of errors can not be decreased
with the increase of frequency bins. We then enlarge the
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Fig. 3 The 3D spectral-spatial spectrum of MUSIC with half-wavelength. The 3D spectral-spatial spectrum of MUSIC with two BPSK signals from
−10◦ and 10◦ impinging on a ULA interspaced by half-wavelength relative to the highest frequency, SNR: 20 dB, K = 256 andM = 1

Fig. 4 The spatial spectra of two sources with half-wavelength. The spatial spectra of two BPSK signals from −10◦ and 10◦ on a ULA interspaced by
half-wavelength relative to the highest frequency, SNR: 20 dB, K = 256 andM = 1
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Fig. 5 The 3D spectral-spatial spectrum of MUSIC with 100 times half-wavelength. The 3D spectral-spatial spectrum of MUSIC with two BPSK signals
from −10◦ and 10◦ impinging on a ULA interspaced by 100 times half-wavelength relative to the highest frequency, SNR: 20 dB, K = 256 andM = 1

Fig. 6 The spatial spectra of two sources with 100 times half-wavelength. The spatial spectra of two BPSK signals from −10◦ and 10◦ on a ULA
interspaced by 100 times half-wavelength relative to the highest frequency, SNR: 20 dB, K = 256 andM = 1
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Fig. 7 RMSE performance against various SNR (half-wavelength). RMSE performance against various SNR with half-wavelength relative to the
highest frequency, K = 256 andM = 1

Fig. 8 RMSE performance against the number of frequency bins (half-wavelength). RMSE performance against the number of frequency bins with
half-wavelength relative to the highest frequency, SNR: 0 dB andM = 1
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Fig. 9 RMSE performance against various SNR (100 times half-wavelength). RMSE performance against various SNR with 100 times half-wavelength
relative to the highest frequency, K = 256 andM = 1

Fig. 10 RMSE performance against the number of frequency bins (100 times half-wavelength). RMSE performance against the number of frequency
bins with 100 times half-wavelength relative to the highest frequency, SNR: 0 dB andM = 1
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inter-spacing of the ULA to 100 times half-wavelength
with respect to the highest frequency and keep the other
settings unchanged. Figure 9 plots the RMSEs of the
MD/MM and SIF-OMP algorithms with respect to var-
ious SNR. Again, we observe that the additional errors
affect the performance of the SIF-OMP method for low
SNR. Figure 10 shows the RMSEs of theMD/MMand SIF-
OMP algorithms against the number of frequency bins
when SNR equals 0 dB. These two algorithms both have
good performance.
We then derive the separation probabilities of those

three algorithms in Figs. 11, 12, and 13. A successful sep-
aration is defined similarly with [15] when two conditions
are satisfied. (1) The amplitude of the highest pseudo-
peak is lower than half of that of the lowest signal peak
and (2) the bias of the DOA estimates is less than 3◦.
In the first group of examples, the first source signal
is fixed at −10◦, and the second one varies from −4◦
to 10◦. For each angle separation, the experiments are
done by 100 trials. Figure 11 illustrates the separation
probabilities of MD/MM, WCMSR, and SIF-OMP at dif-
ferent angle separations. We observe from Fig. 11 that
WCMSR gets better results than MD/MM and SIF-
OMP when d equals to half-wavelength relative to the
highest frequency, whereas the MD/MM and SIF-OMP
algorithms can separate two BPSK signals with almost
100% probability when d is expanded to 100 times half-

wavelength relative to the highest frequency. We then fix
the directions of two signals at −10◦ and 0◦ and com-
pare the separation probabilities with respect to various
SNRs and different number of frequency bins. First, K is
fixed at 256 and SNR varies from −10 to 10 dB. The sepa-
ration probabilities of MD/MM, WCMSR, and SIF-OMP
are drawn in Fig. 12. Again, we can conclude from Fig. 12
that it is more potential to obtain 100% separation prob-
ability when the inter-spacing of the ULA is much larger
than half-wavelength. If the SNR is fixed at 0 dB and the
number of frequency bins varies from 128 to 1280, their
probabilities of separation are plotted in Fig. 13. The angu-
lar separation performance of SIF-OMP can be improved
when the number of utilized frequencies increases.

6 Conclusions
In this paper, we present a new aliasing-free SIF algorithm
to solve the wideband DOA estimation problem. The SIF
algorithm utilizes all frequency bin information to recover
a SIV at the expense of introducing an additional system
error. By doing this, we reformulate the MD/MM prob-
lem as a single measurement vector recovery problem and
therefore reduce the unknown variables greatly. We show
that the additional system error can be neglected under
certain conditions. After using the binary property of the
SIV, we develop a SIF-OMP algorithm to estimate the SIV.
We compare the performances of the SIF-OMP algorithm

Fig. 11 Separationprobabilities against various angular separation. Separation probabilities against various angular separation, SNR = 0 dB and K = 256
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Fig. 12 Separation probabilities against various SNR. Separation probabilities against various SNR, source directions: −10◦ , 0◦ and K = 256

Fig. 13 Separation probabilities against the number of frequency bins. Separation probabilities against the number of frequency bins, source
directions: −10◦ , 0◦ and SNR = 0 dB
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with other well-known methods by analyzing the per-
formance of wideband DOA estimation. The numerical
simulations demonstrate the performance of the proposed
algorithm.

Appendices
Proof of Theorem 1
The constrained optimization problems (13) and (26) can
be converted to the following unconstrained optimization
problems respectively:

argmin
g

{∥∥ξ − Dg
∥∥2 + λ‖g‖0

}
, (28)

argmin
g

{∥∥Y − X(g)
∥∥2 + λ‖g‖0

}
, (29)

where λ is the regularization parameter. We need to prove

argmin
g

{∥∥ξ − Dg
∥∥2 + λ‖g‖0

}

≡ argmin
g

{∥∥Y − X(g)
∥∥2 + λ‖g‖0

}
.

(30)

Note from the expression of X(g) in (12), we can obtain

argmin
g

{∥∥Y − X(g)
∥∥2 + λ‖g‖0

}

= argmin
g

{ K∑

k=1

M∑

m=1

∥∥yk,m − �k,mg
∥∥2 + λ‖g‖0

}

(31)

As for the optimization problem of (26), we have the
following results:

argmin
g

{∥∥ξ − Dg
∥∥2 + λ‖g‖0

}

= argmin
g

{
gTDHDg − 2gTDHξ + ξHξ + λ‖g‖0

}

= argmin
g

{
gT�g − 2gTh +

K∑

k=1

M∑

m=1
yHk,myk,m + λ‖g‖0

}

= argmin
g

{ K∑

k=1

M∑

m=1

∥∥yk,m − �k,mg
∥∥2 + λ‖g‖0

}

(32)
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