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Abstract

One of the main challenges in indoor time-of-arrival (TOA)-based wireless localization systems is to mitigate
non-line-of-sight (NLOS) propagation conditions, which degrade the overall positioning performance. The positive
skewed non-Gaussian nature of TOA observations under LOS/NLOS conditions can be modeled as a heavy-tailed
skew t-distributed measurement noise. The main goal of this article is to provide a robust Bayesian inference
framework to deal with target localization under NLOS conditions. A key point is to take advantage of the
conditionally Gaussian formulation of the skew t-distribution, thus being able to use computationally light Gaussian
filtering and smoothing methods as the core of the new approach. The unknown non-Gaussian noise latent variables
are marginalized using Monte Carlo sampling. Numerical results are provided to show the performance improvement
of the proposed approach.

Keywords: Robust Bayesian inference, Gaussian filtering and smoothing, NLOS mitigation, Skew t-distributed
measurement noise, Indoor localization, Monte Carlo integration

1 Introduction
The knowledge of position is ubiquitous in many applica-
tions and services, playing an important role. The widely
diffused Global Navigation Satellite System (GNSS) offers
a worldwide service coverage due to a network of
dedicated satellites [1]. GNSS is recognized to be the
de facto system in outdoor environments when it is avail-
able. Under the assumption that its reception is not
obstructed or jammed [2–4], there is no doubt that GNSS
is the main enabler for location-based services (LBS).
One of such situations is indoor positioning and tracking,
where satellite signals are hardly useful (unless extremely
large integration times are considered). In indoor scenar-
ios, a plethora of alternative and complementary tech-
nologies can be considered [1, 5, 6].
We are interested in a particular propagation phe-

nomena encountered in most positioning technologies
(both outdoor and indoor), known as non-line-of sight
(NLOS). It is one of the most challenging problems for
tracking. Particularly, when considering time-of-arrival
(TOA) measurements as range estimates, the measured

*Correspondence: jvila@cttc.cat
1Centre Tecnològic de Telecomunicacions de Catalunya (CTTC/CERCA), 08860
Castelldefels, Barcelona, Spain
Full list of author information is available at the end of the article

distance can be severely degraded. These ranges are typ-
ically positively biased with respect to the true distances,
therefore seen as outliers at the receiver. It is of inter-
est to develop NLOS mitigation techniques, providing
enhanced robustness to tracking methods based on TOA
measurements [6].
In general, the problem under study concerns the

derivation of new robustmethods to solve the Bayesian fil-
tering and smoothing problem in challenging applications
such as the LOS/NLOS propagation conditions in indoor
localization systems. The state-space models (SSM) of
interest are expressed as

xk = fk−1
(
xk−1

) + uk , uk ∼ N (0,Qk) , (1)
yk = hk (xk) + nk , nk ∼ ST

(
φk

)
, (2)

where xk ∈ R
nx and yk ∈ R

ny are the hidden states of
the system and measurements at time k. fk−1(·) and hk(·)
are known to be the possibly nonlinear functions of the
state; and both process and observation noises, uk and nk ,
assumed to be mutually independent. In real–life appli-
cations, we may not have a complete knowledge of the
system conditions, thus the measurement noise statistics
are assumed to be unknown to a certain extent. In con-
trast, we consider a known process noise covariance Qk .
Regarding the measurement noise, we assume that it is
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distributed according to a parametric heavy-tailed skew
t-distribution, nk ∼ ST

(
φk

)
, with φk representing the

set of possibly unknown parameters of the non-Gaussian
distribution. The probability density function (pdf) of
the univariate skew t distribution of interest can be
written as [19]

ST
(
z;μ, σ 2, λ, ν

) = 2T
(
z;μ, λ2 + σ 2, ν

)
T(z̃; 0, 1, ν + 1),

with μ ∈ R, σ 2 ∈ R
+, λ ∈ R, and ν ∈ R

+, referring
to the distribution location, scale, skewness, and degrees
of freedom, respectively. T

(
z;μ, σ 2, ν

)
is the pdf of the

Student’s t distribution,

T
(
z;μ, σ 2, ν

) = �
(

ν+1
2

)

σ
√

νπ�
(

ν
2
)

(
1 + (z − μ)2

νσ 2

)− ν+1
2

,

with �(·) the gamma function. T(z̃; 0, 1, ν) is the cumula-
tive distribution function (CDF) of the Student’s t distri-
bution with ν degrees of freedom and

z̃ = (z − μ)λ

σ

√
ν + 1

ν
(
λ2 + σ 2) + (z − μ)2

.

Notice that the standard Student t distribution is
T

(
z;μ, σ 2, ν

) = ST
(
z;μ, σ 2, λ = 0, ν

)
, the skew normal

pdf is SN
(
z;μ, σ 2, λ

) = ST
(
z;μ, σ 2, λ, ν → ∞)

, and
N

(
z;μ, σ 2) = ST

(
z;μ, σ 2, λ = 0, ν → ∞)

the normal
distribution.

1.1 State-of-the-art
The skew t distribution has been recently shown to
provide a reasonable fit to realistic indoor TOA mea-
surements. For instance, characterizing range measures
in NLOS conditions in ultra-wideband (UWB) local-
ization [7] or in multipath channels when ranging is
computed with long-term evolution (LTE) networks [8].
Interestingly, this distribution allows a Gaussian mean-
scale mixture (GMSM) representation, which implies
that the distribution can be reformulated as hierarchi-
cally (conditionally) Gaussian [9, 10]. Mathematically, if
we have the skew t-distributed random variable z ∼
ST (z;μ, σ 2, λ, ν), then we can write [41]

z|γ , τ ∼ N
(
z;μ + λγ , τ−1σ 2) , (3)

with τ ∼ G
(
τ ; ν

2 ,
ν
2
)
, γ |τ ∼ N+

(
γ ; 0, τ−1), and N+ (·)

and G(·) as the positive truncated normal and gamma
distributions. This is a key point in our problem formu-
lation, because under the knowledge of the noise param-
eters (i.e., μ, σ 2, λ, ν, γ and τ in (3)), both the conditional
marginal filtering and smoothing posterior distributions
of the states, p(xk|y1:k) and p(xk|y1:N ), turn to be Gaussian
and thus we are able to use computationally light Gaussian
smoothing methods to infer the states of the system.

In the literature, some contributions dealing with con-
ditionally Gaussian SSMs corrupted by both heavy-tailed
symmetric and skewed noise distributions were proposed.
A particle filter (PF) solution for linear SSMs in symmetric
α-stable (SαS) noise was presented in [11]. This idea was
further explored in [12] for nonlinear systems and gener-
alized to other symmetric distributions in [13]. The key
idea was to take advantage of the conditionally Gaussian
form and use a sigma-point Gaussian filter [14, 15]
for the nonlinear state estimation. A robust filtering vari-
ational Bayesian (VB) approach was considered for linear
systems in [16] and further extended to nonlinear SSMs
in [17] considering a symmetric Student t measurement
noise. But symmetric distributions may not always be
appropriate to characterize the system noise. Recently,
two interesting approaches to deal with linear SSMs under
skewed noise were proposed, the first one uses amarginal-
ized PF [18] and the other considers a VB solution [7, 19].
It is important to point out that (i) these contributions
deal with either nonlinear systems corrupted by symmet-
ric distributed noises or linear SSMs under skewed noise
and (ii) the core of these methods use standard Bayesian
filtering algorithms, then the smoothing problem needs to
be further analyzed within this context.
Related to the problem under study, it is worth saying

that several contributions deal with the filtering prob-
lem in nonlinear/non-Gaussian SSM under model uncer-
tainty using sequential Monte Carlo (SMC) methods, for
instance, joint state and parameter estimation solutions
[20], model selection strategies using interacting parallel
PFs [21, 22], or model information fusion within the SMC
formulation [23]. The main drawback of SMC methods
is their high computational complexity and the curse-of-
dimensionality [24]. That is the reason why we propose
to take advantage of the underlying conditional Gaussian
nature of the problem and use more efficient methods in
this context.

1.2 Contributions
Themain contributions of the article, which generalize the
preliminary results in [25], are summarized as:

• New Bayesian filtering and smoothing-based
solutions for SSMs corrupted by parametric
heavy-tailed skewed measurement noise

• Marginalization of the unknown non-Gaussian noise
latent variables by Monte Carlo integration

• TOA-based robust target tracking, where the
LOS/NLOS propagation is modeled using a skew
t-distributed measurement noise. Whereas a
Gaussian filter and smoother deals with the nonlinear
state estimation problem, the time-varying skew t
distribution parameters are marginalized via Monte
Carlo sampling
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The article is organized as follows: first, we provide a
discussion on Gaussian filtering and smoothing in non-
linear/Gaussian systems, together with the sigma-point-
based approximation of the multidimensional integrals
in the conceptual solution, being computationally more
efficient than SMC methods under the Gaussian assump-
tion; then, we provide the conditionally Gaussian for-
mulation of the measurement noise and a method to
deal with the unknown non-Gaussian noise latent vari-
ables, and finally, we propose a NLOS indoor localiza-
tion solution, based on the Gaussian smoother and the
sequential noise latent variables marginalization. Numer-
ical results are provided in realistic scenarios using
UWB signals.

2 Gaussian filtering and smoothing
This section reviews the general filtering and smoothing
solutions in the case of nonlinear/Gaussian systems, this
material corresponds to Sections 2.1 and 2.2, respectively.
Then, in Section 2.3, we provide the implementation
details when sigma-points are used to solve the filter-
ing/smoothing equations. Notice that when the system is
linear/Gaussian, the optimal solutions are given by the
standard Kalman filter (KF) [35] and Kalman smoother
(KS) [36], and for general nonlinear/non-Gaussian sys-
tems, one should consider more sophisticated SMC
techniques [29].
For the formal derivation of the Gaussian fil-

ter/smoother, we assume that the measurement noise in
(2) is zero-mean Gaussian with known covariance Rk .
Later, in Section 3, we discuss how the method can be
used in the context of conditionally Gaussian models.

2.1 Bayesian Gaussian filtering
From a theoretical point of view, all necessary information
to infer information of the unknown states resides in the
marginal posterior distribution of the states, p(xk|y1:k).
Thus, the Bayesian filtering problem is one of evaluating
this distribution. It can be recursively computed [26] in
two steps: (1) prediction of p(xk|y1:k−1) using the prior
information and the previous filtering distribution and (2)
update with new measurements yk to obtain.
The recursive solution provides an estimation frame-

work that is optimal in the Bayesian sense, that is, the
characterization of the posterior distribution allows us to
compute the minimum mean-squared error (MMSE), the
maximum a posteriori (MAP) or the median of the poste-
rior (minimax) estimators, addressing optimality in many
senses. The multidimensional integrals in the prediction
and update steps are analytically intractable in the gen-
eral case. Actually, there are few cases where the optimal
Bayesian recursion can be analytically solved. This is the
case of linear/Gaussian models, where the KF yields to
the optimal solution [27]. In more general models, one

must resort to suboptimal algorithms. A plethora of meth-
ods can be found in the literature [28]. A popular tool
are particle filters (PF) [29–32], a set of simulation-based
methods which are applicable in nonlinear/non-Gaussian
setups. Under the Gaussian assumption of interest, the
quadrature KF (QKF) [14, 15, 33] and cubature KF (CKF)
[34] are typically the methods of choice. In this case, the
marginal predictive and posterior distributions are

p(xk|y1:k−1) = N
(
xk ; x̂k|k−1,
x,k|k−1

)
, (4)

p(xk|y1:k) = N
(
xk ; x̂k|k ,
x,k|k

)
. (5)

In the prediction step, we compute the marginal predic-
tive distribution mean and covariance as 1

x̂k|k−1 =
∫

f(xk−1)p(xk−1|y1:k−1)dxk−1, (6)


x,k|k−1 =
∫

f2(xk−1)p(xk−1|y1:k−1)dxk−1

− x̂k|k−1x̂Tk|k−1 + Qk . (7)

In the update step, the mean and covariance of the
marginal posterior are given by the KF Equations [35]

x̂k|k = x̂k|k−1 + Kk
(
yk − ŷk|k−1

)
, (8)


x,k|k = 
x,k|k−1 − Kk�y,k|k−1KT
k , (9)

where the Kalman gain is Kk = �xy,k|k−1�
−1
y,k|k−1. The

predicted measurement and both innovation and cross-
covariance matrices are computed as

ŷk|k−1 =
∫

h (xk) p(xk|y1:k−1)dxk , (10)

�y,k|k−1 =
∫

h2(xk)p(xk|y1:k−1)dxk

− ŷk|k−1ŷTk|k−1 + Rk , (11)

�xy,k|k−1 =
∫

xkhT (xk)p(xk|y1:k−1)dxk

− x̂k|k−1ŷTk|k−1. (12)

The problem reduces to the approximation of these
integrals.

2.2 Gaussian smoothing
In the previous section, we summarized the general
Gaussian Bayesian filtering solution but sometimes it may
be interesting to obtain an estimate of the smoothing pos-
terior and not its filtering counterpart. In the problem
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under study, we consider a forward-backward smoother
formulation [36] to obtain the marginal smoothing poste-
rior, p(xk|y1:N ),

p(xk|y1:N ) =
∫

p(xk , xk+1|y1:N )dxk+1

=
∫

p(xk|xk+1, y1:k)p(xk+1|y1:N )dxk+1

= p(xk|y1:k)︸ ︷︷ ︸
filtering pdf

∫ p(xk+1|y1:N )p(xk+1|xk)
p(xk+1|y1:k)︸ ︷︷ ︸
predictive pdf

dxk+1,

where we used the state that is Markovian and then

p(xk|xk+1, y1:N ) = p(xk|xk+1, y1:k)

= p(xk , xk+1|y1:k)
p(xk+1|y1:k)

= p(xk+1|xk)p(xk|y1:k)
p(xk+1|y1:k) .

The forward-backward smoothing [36] performs two
filtering passes, that is, first a standard forward filter-
ing from time k = 1 to N, and then, the backward
filtering from k = N to 1, backwards in time. Notice
that the predictive and filtering distributions may be
obtained from the standard Bayesian filtering solution.
At time k, if we consider that we know the filter-
ing distribution, N

(
xk ; x̂k|k ,
x,k|k

)
, and the predictive

distribution, N
(
xk+1; x̂k+1|k ,
x,k+1|k

)
, from the forward

filtering, together with the smoothed density at k +
1, N

(
xk+1; x̂k+1|N ,
x,k+1|N

)
, because the smoother is

running backwards, then the analytical solution to the
marginal smoothing posterior is obtained as follows:
using the Markovian properties of states, we have that
p(xk|xk+1, y1:N ) = p(xk|xk+1, y1:k), and then we can
obtain the conditional smoothing distribution of xk as

p(xk|xk+1, y1:N ) = p
(
xk , xk+1|y1:k

)

p(xk+1|y1:k) , (13)

with

p(xk , xk+1|y1:k) = p(xk+1|xk)p(xk|y1:k),
p(xk+1|y1:k) =

∫
p(xk+1|xk)p(xk|y1:k)dxk .

The joint smoothing distribution p(xk , xk+1|y1:N ) is

p(xk|xk+1, y1:N )p(xk+1|y1:N ), (14)

which can be used to obtain the smoothing distribution by
marginalization over xk+1,

p(xk|y1:N ) =
∫

p(xk|xk+1, y1:N )

× p(xk+1|y1:N )dxk+1. (15)

Under the Gaussian assumption, the problem is to
recursively obtain the mean and covariance of the

Gaussian marginal smoothing posterior distribution,
which is given by [37, 38]

p(xk|y1:N ) = N
(
xk ; x̂k|N ,
x,k|N

)
, (16)

x̂k|N = x̂k|k + Dk
(
x̂k+1|N − x̂k+1|k

)
, (17)


x,k|N = 
x,k|k + Dk
(

x,k+1|N − 
x,k+1|k

)
D�

k ,

with Dk = 
k,k+1|k
−1
x,k+1|k and 
k,k+1|k referring to

the cross-covariance between xk and xk+1. Note that
in practice we do not require the computation of the
smoothing estimation error covariance, 
x,k|N , for the
smoother recursion. However, it is useful in order to have
a measure of the smoothing uncertainty. The smoother
gain Dk can be easily obtained from the standard for-
ward filtering pass, therefore adding very few extra
computation.

2.3 Sigma-point Gaussian filtering and smoothing
An appealing class of filters and smoothers within
the nonlinear Gaussian framework are the sigma-point
Gaussian filters (SPGF) [14, 15, 34, 39, 40] and smoothers
(SPGS) [37, 38], a family of derivative-free algorithms
which are based on a weighted sum of function values at
specified (i.e., deterministic) points within the domain of
integration, as opposite to the stochastic sampling per-
formed by particle filtering methods. The idea is to use a
set of so-called sigma-points to efficiently characterize the
propagation of the normal distribution over the nonlinear
system. In the sequel, we detail the formulation of such
approximation and how it can be used to perform filtering
or smoothing.

2.3.1 Filtering
Consider a set of sigma-points, {ξ i,ωi}i=1,...,LM . Then,
construct the transformed set which captures the
mean and covariance of the posterior distribution,
xi,k−1|k−1 = Sx,k−1|k−1ξ i + x̂k−1|k−1, with 
x,k−1|k−1 =
Sx,k−1|k−1S�

x,k−1|k−1. The integrals in the prediction step
can be approximated as

x̂k|k−1 =
LM∑

i=1
ωif(xi,k−1|k−1), (18)


x,k|k−1 =
LM∑

i=1
ωif2(xi,k−1|k−1) − (

x̂k|k−1
)2 + Qk .

In the following update step, first compute the trans-
formed set to capture the mean and covariance of the
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predictive marginal distribution, xi,k|k−1 = Sx,k|k−1ξ i +
x̂k|k−1, with 
x,k|k−1 = Sx,k|k−1S�

x,k|k−1. Then, we approx-
imate the integrals of interest as,

ŷk|k−1 =
LM∑

i=1
ωih(xi,k|k−1), (19)


y,k|k−1 =
LM∑

i=1
ωih2

(
xi,k|k−1

) − (
ŷk|k−1

)2 + Rk ,


xy,k|k−1 =
LM∑

i=1
ωixi,k|k−1h(xi,k|k−1)

�

− x̂k|k−1ŷ�
k|k−1.

2.3.2 Smoothing
The smoothed state (17) is obtained using the predicted
filtering and smoothing states, x̂k+1|k and x̂k+1|N , respec-
tively. Define again a set of sigma-points and weights,
{ξ i,ωi}i=1,...,LM , and the transformed set which captures
the correspondingmean and covariance, xi,k|k = Sx,k|kξ i+
x̂k|k . Use this transformed sigma-points to estimate the
predicted subspace state, its prediction error covariance,
and the cross-covariance as

x̂k+1|k =
LM∑

i=1
ωif(xi,k|k), (20)


x,k+1|k =
LM∑

i=1
ωif2(xi,k|k) − (

x̂k+1|k
)2 + Qk ,


k,k+1|k =
LM∑

i=1
ωixi,k|kf(xi,k|k) − x̂k|k x̂�

k+1|k .

Finally, estimate the smoothed subspace and covariance as

x̂k|N = x̂k|k + Dk
(
x̂k+1|N − x̂k+1|k

)
, (21)


x,k|N = 
x,k|k + Dk
(

x,k+1|N − 
x,k+1|k

)
D�

k ,

with Dk = 
k,k+1|k
−1
x,k+1|k . Notice that the smoother

gain can be embedded into the prediction step of the for-
ward filtering, then only the last step is performed in the
backward recursion. At time k = N , both filtering and
smoothing estimates are the same, then the backward pass
runs from time N − 1 to 1. Compared to the filtering
process, implementation of the smoothing solution only
impacts in having additional steps 6 and 12 in Algorithm 1,
where we use the notation 
x = SxS�

x for the factorized
covariances.

3 Hierarchically Gaussianmeasurement noise
formulation

In the previous Section 2, we assumed a Gaussian mea-
surement noise with known covariance matrix. But in

Algorithm 1 Sigma-point Kalman filter/smoother
Require: ŷ1:N , x̂0, Sx,0|0,Qk , Rk , {ξ i,ωi}LMi=1.
1: Set k ⇐ 1
2: Forward filtering (from k = 1 to N)
3: Time update
4: Factorize covariance and evaluate sigma-points:

xi,k−1|k−1 = Sx,k−1|k−1ξ i + x̂k−1|k−1, i = 1, . . . , LM
5: Estimate the predicted subspace state and covariance:

x̂k|k−1 = ∑LM
i=1 ωif(xi,k−1|k−1)


x,k|k−1 = ∑LM
i=1 ωif2(xi,k−1|k−1) − x̂k|k−1x̂�

k|k−1 + Qk
6: Estimate the cross-covariance and smoother gain:


k−1,k|k−1 = ∑LM
i=1 ωixi,k−1|k−1

×f(xi,k−1|k−1) − x̂k−1|k−1x̂�
k|k−1

Dk−1 = 
k−1,k|k−1
(

x,k|k−1

)−1

7: Measurement update
8: Factorize covariance and evaluate the sigma-points:

xi,k|k−1 = Sx,k|k−1ξ i + x̂k|k−1, i = 1, . . . , LM
9: Predicted measurement, cross and innovation covariance:

ŷk|k−1 = ∑LM
i=1 ωih(xi,k−1|k−1)


xy,k|k−1 = ∑LM
i=1 ωif(xi,k−1|k−1)

×h(xi,k−1|k−1)
� − x̂k|k−1ŷ�

k|k−1


y,k|k−1 = ∑LM
i=1 ωih2(xi,k−1|k−1) − (

ŷk|k−1
)2 + Rk

10: Estimate the updated subspace state and error covariance:
x̂k|k = x̂k|k−1 + Kk

(
yk − ŷk|k−1

)


x,k|k = 
x,k|k−1 − Kk
y,k|k−1(Kk)
�

with Kk = �xy,k|k−1�
−1
y,k|k−1.

11: Backward filtering (from k = (N − 1) to 1)
12: Estimate the smoothed subspace and covariance:

x̂k|N = x̂k|k + Dk(x̂k+1|N − x̂k+1|k)

x,k|N = 
x,k|k + Dk

(

x,k|N − 
x,k|k

)
D�

k .

challenging applications such as the NLOS propagation
conditions of interest here, the Gaussian assumption does
not hold and noise parameters may be unknown to a cer-
tain extent. In such scenarios, one may have outliers or
impulsive behaviors that produce biased estimates, for
instance, under NLOS conditions the receiver is likely
to estimate distances to the anchors larger than the true
ones [6]; therefore, we must account for more accurate
observation models.
In general, these non-Gaussian behaviors can be

effectively characterized by parametric heavy-tailed and
positive-skewed noise distributions. It has been recently
shown experimentally that TOA-based positioning under
NLOS conditions [7] and multipath ranging error distri-
butions in LTE networks [8] can be well approximated by
a skew t-distribution [9]. Taking into account the problem
at hand, we are interested in measurement models with
independent observation components and measurement
noise models where the noise components are indepen-
dently univariate skew t-distributed

yk =[ yk,1, . . . , yk,ny ]
� , (22)
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yk,i = hk,i(xk) + nk,i, (23)
nk =[ nk,1, . . . , nk,ny ]

� , (24)

nk,i ∼ ST
(
nk,i;μ, σ 2, λ, ν

)
, (25)

with ST
(
nk,i;μ, σ 2, λ, ν

)
defined in Section 1.

A key point on the problem formulation is to take
advantage of the hierarchically (conditionally) Gaussian
formulation of the measurement noise distribution. The
hierarchical Gaussian representation of the skew t-
distribution is written as [41]

nk,i|γk,i, τk,i ∼ N
(
nk,i;μ + λγk,i, τ−1

k,i σ 2
)
, (26)

γk,i|τk,i ∼ N+
(
γk,i; 0, τ−1

k,i

)
, (27)

τk,i ∼ G
(
τk,i;

ν

2
,
ν

2

)
. (28)

While τk,i controls the heavy-tailed behavior, γk,i con-
trols the skewness of the distribution.
We can define the vector with 2 × ny noise distribu-

tion latent variables, φk = {γk,i, τk,i}
∣
∣
i=1,...,ny , where we

omit the dependence with respect to the hyperparameters
(i.e., μ, σ 2, λ, ν) for the sake of clarity.
The measurement noise in (24) can be written as

nk|φk ∼ N
(
nk ;mk(φk),Rk(φk)

)
, (29)

where [mk(φk)]i = μ + λγk,i and [Rk(φk)]i,i = τ−1
k,i σ 2.

The distribution hyperparameters are application
dependent and typically assumed a priori known. The
standard Gaussian filter/smoother in charge of the state
estimation assumes a zero-mean Gaussian measurement
noise with known parameters. In the skew t-distributed
case, at every time step, the filter requires an estimate
of the corresponding mean and covariance, mk(φk) and
Rk(φk), respectively. In the following, we consider the
marginalization of the noise latent variables in the general
filter/smoother formulation.

4 Noise latent variables marginalization
In the problem of interest, the measurement noise is
conditionally Gaussian with unknown noise latent vari-
ables. Therefore, the filtering/smoothing formulation in
Section 2 must be modified to take such uncertainty into
account. We assume known measurement noise distribu-
tion hyperparameters, and thus, we want to marginalize
the state estimation with respect to the noise latent vari-
ables, γk,i and τk,i.We canwrite themarginalized posterior
distribution as

p(xk|y1:k) =
∫

p(xk|φk , y1:k)p(φk|y1:k)dφk .

Notice that the measurement noise parameters only
affect the computation of the innovation in the measure-
ment update of the filter/smoother. Within this context,
the predicted measurement is reformulated as

ŷk|k−1 =
∫

(h(xk) + nk(φk))p(xk|y1:k−1)dxk ,

=
∫

h(xk)p(xk|y1:k−1)dxk

+
∫

nk(φk)p(φk|y1:k−1)dφk , (30)

where the first term corresponds to the standardGaussian
case, and the second is a marginalization of the noise term
over the last available distribution (i.e., we write nk(φk) to
explicitly emphasize the dependency on the noise latent
variables, φk). Using a similar formulation, we can rewrite
the innovation covariance as

�y,k|k−1 =
∫

h2(xk)p(xk|y1:k−1)dxk (31)

−(
ŷk|k−1

)2+
∫

nk(φk)n�
k (φk)p(φk|y1:k−1)dφk .

For the marginalization of the noise latent variables, a
key point is to obtain the posterior distributions of γk,i and
τk,i. The joint posterior is given by

p(γk,i, τk,i|y1:k,i) = p(γk,i, τk,i|yk,i)
∝ p(yk,i|γk,i, τk,i)p(γk,i|τk,i)p(τk,i). (32)

As the observation components are assumed to be inde-
pendent, the likelihood function is

yk,i|γk,i, τk,i ∼ N
(
yk,i;hk,i(xk) + μ + λγk,i, τ−1

k,i σ 2
)
.

(33)

We can define a normalized observation

ỹk,i �
yk,i − hk,i(x̂k|k−1) − μ

σ
, (34)

and γ̃k,i � λγk,i/σ . Then, we have the normalized likeli-
hood is given by

p(ỹk,i|γk,i, τk,i) = N
(
ỹk,i; γ̃k,i, τ−1

k,i

)
. (35)

Using the conjugate nature of the prior distributions
[42], it is possible to obtain the analytical solution for the
posterior of γk,i and τk,i. In this case, we have from (28)
that the a priori distributions are

p(γ̃k,i|τk,i) = N
(
γ̃k,i; γk−1, (κk−1τk,i)

−1) , (36)
p(τk,i) = G

(
τk,i;αk−1,βk−1

)
, (37)

with γ0 = 0, κ0 = σ 2/λ2, and α0 = β0 = ν/2. We are
interested in updating with the new measurements to get
the posterior distributions
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p(γ̃k,i|τk,i, ỹk,i) = N
(
γ̃k,i; γk , (κkτk,i)−1) , (38)

p(τk,i|ỹk,i) = G
(
τk,i;αk ,βk

)
, (39)

with

γk = κk−1γk−1 + ỹk,i
κk−1 + 1

, (40)

κk = κk−1 + 1, (41)

αk = αk−1 + 1
2
, (42)

βk = βk−1 + κk−1(ỹk,i − γk−1)
2

2(κk−1 + 1)
, (43)

from basic conjugate analysis results. Interestingly, the
posteriors at k in (38) and (39) can be used as the priors
in k + 1 instead of (36) and (37). In this way, the algo-
rithm is learning the environment as it progresses over
time. However, given the assumedmodel, it is moremean-
ingful to reset the prior at each time instant instead of
sequentially using the latest posterior. The reason is that
measurements are assumed independent, so there is no
benefit in carrying out information from one time instant
to the other. Instead, under these conditions, we suggest
to use the values γ0, κ0, α0, and β0 at k−1 before updating
the distribution with ỹk,i. Sequential use of the posterior
will be interesting when the generative model is known to
have some memory.
In [25], we proposed to use a point estimate for γk,i

and τk,i from a single observation using their posterior
marginals. The corresponding modes of these distribu-
tions were used as point estimates γ̂k,i = |ỹk,i|

2
σ
λ
and τ̂k,i =

α−1
β

. where we took into account that γ̂k,i ∈ R
+ by con-

struction. In this contribution, instead of using a point
estimate, we consider a Monte Carlo-based marginaliza-
tion drawing L samples from the joint posterior given by
(38) and (39). Using these distributions, we propose to
compute the two integrals of interest as

m̃k =
∫

nk(φk)p(φk|y1:k−1)dφk

≈ 1
L

L∑

j=1
mk

(
φ

(j)
k

)
,

R̃k =
∫

nk(φk)n�
k (φk)p(φk|y1:k−1)dφk

≈ 1
L

L∑

j=1

(
Rk

(
φ

(j)
k

)
+ mk

(
φ

(j)
k

)
m�

k

(
φ

(j)
k

))
,

with φ
(j)
k being random samples drawn from the joint

posterior distribution of the noise latent variables, φk . In
practice, this can be easily implemented by first drawing a
sample from (39) and then, using that sample, draw from
(38). These expressions can be further expanded as follows

m̃k ≈

⎡

⎢⎢
⎢
⎣

1
L

∑L
j=1

(
μ + λγ

(j)
k,1

)

...
1
L

∑L
j=1

(
μ + λγ

(j)
k,ny

)

⎤

⎥⎥
⎥
⎦
, (44)

where γ
(j)
k,i are random samples drawn from the poste-

rior of γ
(j)
k,i , and R̃k is approximated by a diagonal matrix,

where the p-th element of the diagonal is

1
L

L∑

j=1

((
τ

(j)
k,p

)−1
σ 2 +

(
μ + λγ

(j)
k,p

)2)
(45)

Finally, we have that the marginalized Monte Carlo
sigma-point Gaussian filter and smoother (MSPGF/S)
proposed in this contribution is given by Algorithm 1 with
step 9 modified as

ŷk|k−1 =
LM∑

i=1
ωih(xi,k−1|k−1) + m̃k , (46)


y,k|k−1 =
LM∑

i=1
ωih2(xi,k−1|k−1) − (ŷk|k−1)

2 + R̃k .

A further improvement of standard SPGF/S schemes
comes from the fact that the filter should preserve the
properties of a covariance matrix, namely, its symmetry
and positive-definiteness. In practice, however, due to lack
of arithmetic precision, numerical errorsmay lead to a loss
of these properties. To circumvent this problem, a square-
root filter can be considered to propagate the square root
of the covariance matrix instead of the covariance itself
[33, 34]. We propose to use square-root cubature and
quadrature Kalman filters/smoothers (named SCKF/S and
SQKF/S, respectively) [38, 43] as the core implementa-
tion of the new square-root MSPGF/S. These methods
resort to cubature [34] and Gauss-Hermite quadrature
rules [15] to approximate the integrals in the optimal solu-
tion. While the SCKF/S uses Lc = 2nx sigma-points, in
the SQKF/S we have Lq = αnx , where α determines the
number of sigma-points per dimension, which is typi-
cally set to α = 3. A straightforward solution to avoid
the exponential computational complexity increase of the
standard QKF in high-dimensional systems is the use of
sparse-grid quadrature rules, which reduce the compu-
tational complexity with negligible penalty in numerical
accuracy [44, 45].

5 Application to indoor localization
5.1 SSM for the TOA-based localization problem
To show the performance of the proposed approach, we
consider a TOA-based localization problem, where a set
of N anchor nodes at known locations, xk,i =[ xk,i, yk,i]�,
provide range information. If we define the state to be
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inferred as position and velocity components of the tar-
get, pk � (xk , yk)� and vk � (ẋk , ẏk)�, respectively, the
observed range from each node i to the target, is modeled
as ρ̂k,i = ρi(xk) + nk,i, i ∈ {1, . . . ,N}, with nk,i denoting
the ranging error and ρi(xk) � ρk,i = ‖xk − xk,i‖ the true
distance from the i-th node to the target node at time k.
The complete measurement equation is given by

ρk = [
ρk,1, · · · , ρk,N

]�

=
⎛

⎜
⎝

‖xk − xk,1‖
...

‖xk − xk,N‖

⎞

⎟
⎠

︸ ︷︷ ︸
hk(xk)

+
⎛

⎜
⎝

nk,1
...

nk,N

⎞

⎟
⎠

︸ ︷︷ ︸
nk

. (47)

In standard localization applications, the measure-
ment noise is nominally distributed according to nt ∼
N

(
nt ; 0, σ 2 · IN

)
, where σ depends on the technology

used to obtain the ranging estimates. In the case of UWB
devices, this is typically on the order of 0.1 to 1 meter.
But the Gaussian distribution does not capture the NLOS
propagation conditions [7]; thus, we must account for
more accurate measurement models such as the skew t-
distribution introduced in the previous sections. Using
the noise nk defined in (29), the measurement equation is
defined as

ρk = hk (xk) + nk , nk,i ∼ ST
(
nk,i;μ, σ 2, λ, ν

)
. (48)

Considering the state xk =[ xk , yk , ẋk , ẏk]�, the process
equation is defined as a linear constant accelerationmodel

xk = Fxk−1 + Guk , uk ∼ N (uk ; 0,Q), (49)

with

F =

⎛

⎜
⎜
⎝

1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ and G =

⎛

⎜
⎜
⎜
⎝

T2

2 0
0 T2

2
T 0
0 T

⎞

⎟
⎟
⎟
⎠
.

The Gaussian process noise uk ∼ N
(
uk ; 0, σ 2

u I2
)
mod-

els an acceleration of σu m/s2.

5.2 Numerical results
For the numerical evaluation of the proposed method, the
root mean square error (RMSE) of position is used as
the measure of performance, which is obtained from 1000
Monte Carlo runs. The new method was validated in a
realistic scenario composed of N = 6 anchor nodes, cir-
cularly deployed in a 40 × 40 m2 area, and considering
σu = 0.03 m/s2. We compare the tracking performance
obtained with four methods:

1. SQKF/S operating under the Gaussian assumption
without accounting for the non-Gaussian nature of
the measurement noise (SQKF/S-G).

2. SQKF/S using point estimates of the noise latent
variables ψk,i as proposed in [25] (SQKF/S-P).

3. New square-root SPGF/S-based solution with
marginalized noise latent variables φk within the
filter/smoother formulation via Monte Carlo
sampling (MSPGF/S).

4. A clairvoyant SQKF/S that knows exactly the
realization of the latent variables φk at each instant k
and thus can usemk(φk) and Rk(φk). This is the
performance benchmark for the new methodology
(SQKF/S-K).

We also considered a sampling importance resampling
PF with 81 particles (i.e., equivalent to the number of
sigma-points in the SQKF/S), but as already shown in [46],
the filter is in general not able to correctly localize the tar-
get (i.e., the filter diverges). Moreover, to obtain the same
performance than the clairvoyant SQKF/S, we must con-
sider a much larger number of particles. This is the reason
why these results are not shown in the figures, since for
the fair comparison in terms of number of particles the PF
does not provide convergent result.
The proposed MSPGF/S can be implemented using

cubature [34] and Gauss-Hermite approximations [15],
then using respectively Lc = 2nx = 8 and Lq = αnx =
81 deterministic samples to approximate the integrals of
the general solution. In the proposed indoor localiza-
tion scenario, we tested both cubature and quadrature
approximations, and the performance obtained was found
strictly equivalent. In practice, the method of choice is the
cubature-based solution, which has the lowest computa-
tional complexity.
Notice that all the methods consider known distribution

hyperparameters, which are application dependent. We
consider an UWBTOA-based indoor localization realistic
scenario, with hyperparameters given in [7] and adjusted
to match real data:μ = −0.1 m, σ = 0.3 m, and λ = 0.6 m
and ν = 4. The corresponding Gaussian approximation is
given by μG = 1.3 and σG = 1.6.

time [s]
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SQKF-K (known skewed-t noise)
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MSPGF (marginalized noise)

Fig. 1 Filtering RMSE of position with ν = 4
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Fig. 2 Smoothing RMSE of position with ν = 4

Figures 1 and 2 show the filtering and smoothing RMSE
of position, respectively, for the different methods and
considering L = 1000 Monte Carlo samples for the
MSPGF/S. In both cases, we obtained similar results.
Although the clairvoyant filter/smoother (SQKF/S-K)
with fully known measurement noise parameters outper-
forms the rest, we have a small performance loss with
the proposed methodology considering unknown noise
latent variables. The new marginalized approach is more
robust and outperforms the SQKF/S-P using point esti-
mates first proposed in the filtering context in [25]. The
SQKF/S-G operating under the full Gaussian assump-
tion, even if the parameters of the underlying Gaussian
noise (i.e.,μG and σG) are correctly obtained to fit the
real data, shows the worst performance. This is because
this filter/smoother does not take into account the NLOS-
induced outliers in the measurement noise. For the sake
of completeness, we assess the impact of the Monte Carlo
sample size in the MSPGF/S performance. The mean
RMSE of position and velocity, for the different meth-
ods and several representative values of L, are given in
Table 1. The performance of the proposed approach is
not degraded when using a sample size as low as L = 50
samples, therefore being possible to keep a low overall
computational complexity.
Notice that the parameter ν of the skew t distribu-

tion controls the tails of the distribution. Lower ν implies

Table 1 Mean RMSE of position and velocity versus Monte Carlo
sample size L in the MSPGS

Smoother RMSE position RMSE velocity

SQKS-K (known noise) 0.0653 0.0362

MSPGS L = 1000 0.1017 0.0421

MSPGS L = 500 0.1020 0.0421

MSPGS L = 100 0.1033 0.0421

MSPGS L = 50 0.1033 0.0421

SQKS-P 0.1338 0.0452

SQKS-G 0.4202 0.0617
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Fig. 3 Filtering RMSE of position with ν = 2

heavier tails, thus more outliers and impulsive behaviors.
To fully characterize the new method, the performance
obtained in the UWB TOA-based localization scenario
but now with ν = 2, to induce more outliers in the
measurements, is shown in Figs. 3 and 4. The proposed
method correctly deals with the non-Gaussian noise and
approaches the optimal solution. In this case, the perfor-
mance given by the filter/smoother under the Gaussian
assumption (SQKF/S-G) is really poor. This is because the
underlying noise distribution is more heavy-tailed, then
the Gaussian approximation is no longer valid.

6 Conclusions
This article presented a new Bayesian filtering and
smoothing framework to deal with nonlinear systems
corrupted by parametric heavy-tailed skew t-distributed
measurement noise. The new method takes advantage
of the conditionally Gaussian form of the skew t-
distribution, which allows to use a computationally light
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Fig. 4 Smoothing RMSE of position with ν = 2
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Gaussian filter and smoother to deal with the state estima-
tion. The unknown non-Gaussian noise latent variables
are marginalized from the general filtering/smoothing
solution via Monte Carlo sampling. The performance of
the new solution was evaluated in a representative TOA-
based localization scenario, where the positive skewed
behavior of NLOS propagation conditions is typically
modeled using such non-Gaussian distributions.

Endnote
1We write (x)2, (y)2, f2(·), and h2(·) as the shorthand for

xx�, yy�, f(·)f�(·), and h(·)h�(·), respectively. We omit-
ted the dependence with time of fk−1(·) and hk(·) for the
sake of clarity.
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