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Abstract

This paper deals with the problem of inferring the signals and parameters that cause neural activity to occur. The
ultimate challenge being to unveil brain’s connectivity, here we focus on a microscopic vision of the problem, where
single neurons (potentially connected to a network of peers) are at the core of our study. The sole observation
available are noisy, sampled voltage traces obtained from intracellular recordings. We design algorithms and inference
methods using the tools provided by stochastic filtering that allow a probabilistic interpretation and treatment of the
problem. Using particle filtering, we are able to reconstruct traces of voltages and estimate the time course of auxiliary
variables. By extending the algorithm, through PMCMC methodology, we are able to estimate hidden physiological
parameters as well, like intrinsic conductances or reversal potentials. Last, but not least, the method is applied to
estimate synaptic conductances arriving at a target cell, thus reconstructing the synaptic excitatory/inhibitory input
traces. Notably, the performance of these estimations achieve the theoretical lower bounds even in spiking regimes.

Keywords: State-space models, Inference and learning, Particle filtering, Synaptic conductance estimation, Spiking
neuron, Conductance-based model, Intracellular recording

1 Introduction
Measurements of membrane potential traces constitute
the main observable quantities to derive a biophysical
neuron model. In particular, the dynamics of auxiliary
variables and themodel parameters are inferred from volt-
age traces, in a costly process that typically entails a vari-
ety of channel blocks and clamping techniques (see, for
instance, [1]), as well as some uncertainty in the param-
eter values due to noise in the signal. Recent works in
the literature deal with the problem of inferring hidden
parameters of the model; see, for instance, [2–4] and, for
an exhaustive review, [5]. In the same line, attempts to
extract connectivity in networks of neurons from calcium
imaging, see [6], are worth mentioning.
Apart from inferring intrinsic parameters of the model,

voltage traces are also useful to obtain valuable informa-
tion about synaptic input, an inverse problem with some
satisfactory (see, for instance, [7–13]) but no complete
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solutions yet. Themain shortcomings are the requirement
of multiple (supposedly identical) trials for some methods
to be applied and the need of avoiding signals obtained
when ionic currents are active. The latter constraint arises
from the fact that many methods rely on the linearity of
the signal and this is not possible to achieve under quite
general situations, like spiking regimes (see [14]) or sub-
threshold regimes when specific currents (e.g., AHP, LTS)
are active (see [15]).
The problem investigated in this paper considers

recordings of noisy voltage traces to infer the hidden
gating variables of the neuron model, as well as filtered
voltage estimates, model parameters, and input synaptic
conductances.
Figure 1 shows the basic setup we are dealing with in

this article. The neuron under observation has its own
dynamics, producing electrical voltage patterns. The gen-
eration of action potentials is regulated by internal drivers
(e.g., the active gating variables of the neuron) as well as
exogenous factors like excitatory and inhibitory synaptic
conductances produced by pools of connected neurons.
This system is unobservable, in the sense that we cannot
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Fig. 1 The experimental setup of interest in this paper

measure it directly. The sole observation from this system
are the noisy membrane potentials yk . In this experimen-
tal scenario, the ultimate goal is to extract the following
quantities:

1. The time-evolving states characterizing the neuron
dynamics, including a filtered membrane potential
and the dynamics of the gating variables

2. The parameters defining the neuron model
3. The dynamics of synaptic conductances and its

parameters, the final goal being to discern the
temporal contributions of global excitation from
those of global inhibition, gE(t) and gI(t), respectively.

An ideal method should be able to sequentially infer
the time course of the membrane potential and its intrin-
sic/extrinsic activity from noisy observations of a voltage
trace. The main features of the envisaged algorithm are
fivefold: (i) Single-trial: the method should be able to esti-
mate the desired signals and parameters from a single
voltage trace, thus avoiding the experimental variability
among trials; (ii) Sequential: the algorithm should provide
estimates each time a new observation is recorded, thus
avoiding re-processing of all data streams each time; (iii)
Spike regime: contrary to most solutions operating only
under the subthreshold assumption, the method should

be able to operate in the presence of spikes as well; (iv)
Robust: if the method is model-dependent, thus implying
knowledge of the model parameters, then the algorithm
should be provided with enhancements to adaptively learn
these parameters; and (v) Statistically efficient: the perfor-
mance of the method should be close to the theoretical
lower bounds, meaning that the estimation error cannot
be substantially reduced. Notice that the focus here is
not on reducing the computational cost of the inference
method, and thus, we allow ourselves to use resource-
consuming algorithms. Indeed, the target application does
not demand (at least as a main requirement) real-time
operation, and thus, we prioritized performance (i.e., esti-
mation accuracy and the rest of features described earlier)
in our developments.
According to the above desired features, in this work,

that substantially extends our previous contributions
[16, 17], we are interested in methods that can provide
estimations from a single trial and avoid the need of repe-
titions that could be contaminated by neuronal variability.
Particularly, we concentrate on methods to extract intrin-
sic activity of ionic channels, namely the probabilities of
opening and closing ionic channels, and the contribution
of synaptic conductances. We built a method based on
Bayesian theory to sequentially infer these quantities from
single-trace, noisy membrane potentials. The material
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therein includes a discussion of the discrete state-space
representation of the problem and the model inaccuracies
due to mismodeling effects. We present two sequential
inference algorithms: (i) a method based on particle filter-
ing (PF) to estimate the time-evolving states of a neuron
under the assumption of perfect model knowledge and (ii)
an enhanced version where model parameters are jointly
estimated, and thus, the rather strong assumption of per-
fect model knowledge is relaxed. We provide exhaustive
computer simulation results to validate the algorithms
and observe that they are attaining the theoretical lower
bounds of accuracy, which are derived in the paper as well.
In this paper, we use the powerful tools of PF to make

inferences in general state-space models. PF are a set of
methods able to sample from the marginal filtering dis-
tribution in situations where analytical solutions are hard
to work out or simply impossible. In the recent years, PFs
played an important role in many research areas such as
signal detection and demodulation, target tracking, posi-
tioning, Bayesian inference, audio processing, financial
modeling, computer vision, robotics, control, or biology
[18–24]. At a glance, PF approximates the filtering distri-
bution of states given measurements by a set of random
points, properly weighted according to Bayes’ rule. The
generation of the random particles can be done through
a variety of distributions, known as importance den-
sity. Particularly, we formulate the problem at hand and
observe that it is possible to use the optimal importance
density [25]. This distribution generates particles close
to the target distribution, and thus, it can be shown to
reduce the variance of the particles. As a consequence,
for a fix number of particles, usage of this approach (not
always possible) leads to better accuracy results than other
choices. To the authors’ knowledge, the utilization of such
sampling distribution is novel in the context of neural
model filtering. Similar works have used PF to track neu-
ral dynamics, but with no optimal importance density
(see [2, 3, 26]), or to estimate synaptic input from sub-
threshold recordings [11], as opposite to our proposed
approach where we aim at providing estimates during
the, highly nonlinear, spike regime. These references use
the expectation-maximization algorithm to estimate the
model parameters. In this paper, we use the Particle
Marginal Markov-ChainMonte-Carlo (PMCMC)method
to estimate the parameters. Lighter filtering methods
based on the Gaussian assumption were considered in the
literature (see [12, 13, 27] for instance), but the assump-
tionmight not hold in general, for instance, due to outliers
in the membrane measurements or if more sophisticated
models for the synaptic conductances are considered. In
these situations, a PF approach seems more appropri-
ate. As mentioned earlier, the focus here is on highly
efficient and reliable filtering methods, rather than on
computationally light inference methods. Summing up,

our method jointly treats the features of handling single-
voltage traces governed by nonlinear models, estimating
both neuron parameters and synaptic conductances, even
in the spiking regimes, and using optimal importance den-
sity for the PF together with a MCMC algorithm. The
above references cope with some of these features, but
to our knowledge, none of the recent methods in the lit-
erature accounts for all of them. It is worth noting that
other simulation-based solutions can be adopted besides
the PMCMC. For instance, the works [28–32] tackle state
estimation and model fitting problems jointly.
The remainder of the article is organized as follows.

In Section 2, we expose the problem and present the
statistical model, essentially a discretization of the well-
known Morris-Lecar model, and we analyze the model
inaccuracies as well. Next, in Section 3, we present the
different inference algorithms we apply depending on the
knowledge of the system. Results are given in Section 4,
where we tackle three inference problems: (i) when the
parameters defining the model are known; (ii) when the
parameters of the model are unknown, and thus, they
need to be estimated; and (iii) estimation of synaptic con-
ductances from voltage traces assuming unknown model
parameters. Finally, Section 5 concludes the paper with
final remarks.

2 Problem statement andmodel
2.1 Measurement modeling
The recording of the membrane potential is a physi-
cal process, including some approximations/inaccuracies
involving:

1. Voltage observations are noisy. This is due, in part, to
the thermal noise at the sensing device, non-ideal
conditions in experimental setups, etc.

2. Recorded observations are discrete. All sensing
devices record data by sampling at discrete
time-instants k, at a sampling frequency fs = 1/Ts,
the continuous-time natural phenomena. This is the
task of an Analog-to-Digital Converter (ADC).
Moreover, these samples are typically digitized, i.e.,
expressed by a finite number of bits. This latter issue
is not tackled in the work as we assume that modern
computer capabilities allow us to sample with
relatively large number of bits per sample.

The problem can thus be posed in the form of a discrete-
time, state-space model, where the observations are

yk ∼ N
(
vk , σ 2

y,k

)
, (1)

with vk representing the nominal membrane potential
and σ 2

y,k modeling the noise variance due to the sensor
or the instrumentation inaccuracies when performing the
experiment. To provide comparable results, we define the
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signal-to-noise ratio (SNR) as SNR = Ps/Pn, with Ps being
the average signal power and Pn = σ 2

y,k the noise power.

2.2 Neural dynamical system
The methods presented in this paper rely on continuous
models for the evolution of the voltage-traces and the
hidden variables of a neuron. Our reference framework
are conductance-based models endowed with a synaptic
input term Isyn and an (steady) applied current Iapp, that
is, equations of type

Cmv̇ = −ḡL (v − EL) −
∑
j∈J

Ij − Isyn + Iapp, (2)

where ḡL (v − EL) is the leakage current and each Ij =
ḡj pj

(
v − Ej

)
is the time-varying ionic current for the

jth ionic species, J = {Na, K, Cl, Ca, . . . }, where ḡj is
the maximal conductance, pj involves the so-called gat-
ing variables, and Ej is the reversal potential of the
ionic channel. The synaptic input is expressed as Isyn =
gE(t)(v(t) − EE) + gI(t)(v(t) − EI). We use the so-called
effective point-conductance model, see [7, 33], where the
excitatory/inhibitory global conductances are treated as
Ornstein-Uhlenbeck (OU) processes

ġu(t) = − 1
τu

(
gu(t) − gu,0

) +
√
2σ 2

u
τu

χ(t) (3)

where u = {E, I} and χ(t) is a zero-mean, white noise,
Gaussian process with unit variance. Then, the OU pro-
cess has mean gu,0, standard deviation σu, and time con-
stant τu. This simple model was shown in [33] to yield a
valid description of the synaptic noise, capturing the prop-
erties of more complex models. Other dynamics could be
considered instead.
Concerning the neuron model, that is, the equation

Cmv̇ = −ḡL (v − EL) − ∑
j∈J Ij, in this work, we focus on

the Morris-Lecar model [34] for the sake of clarity, which
is able to model a wide variety of neural dynamics; see
[35]. Details of the Morris-Lecar model can be found in
Appendix 1. The unknown state vector in this case is com-
posed of the membrane potential, v, and a unique ionic
(K+-)current involving the gating variable n. We write

xk =
(
vk
nk

)
. (4)

Notice that the Morris-Lecar neuron model is defined
by a system of continuous-time, ordinary differential
equations (ODEs) of the form ẋ = f (x). In general, mathe-
matical models for neurons are of this type. However, due
to the sampled recording of measurements, we are inter-
ested in expressing the model in the form of a discrete
state-space,

xk = fk(xk−1) + νk (5)

where νk ∼ N (0,�x,k) is the process noise which includes
the model inaccuracies. The covariance matrix �x,k is
used to quantify our confidence in the model that maps
fk : {vk−1, nk−1} �→ {vk , nk}. In general, obtaining a closed-
form analytical expression for fk without approximations
is not possible. In such a case, we could use the Euler
method:

ẋ .= dx
dt

≈ �x
�t

= x (t + Ts) − x(t)
Ts

= f (x(t)), (6)

where �t = Ts is the sampling period. Thus, we can write
(5) as

xk = xk−1 + Tsf
(
xk−1

)
, (7)

which is of the Markovian type.
If we focus on the Morris-Lecar model, the resulting

discrete version of the ODE system in (40)–(41) is:

vk = vk−1 − Ts
Cm

(
ḡL(vk−1 − EL)

+ ḡCam∞(vk−1)(vk−1 − ECa)

+ ḡKnk−1
(
vk−1 − EK

) − Iapp
)

(8)

nk = nk−1 + Tsφ
n∞(vk−1) − nk−1

τn(vk−1)
, (9)

with m∞ (vk), n∞ (vk) and τn (vk) defined in Appendix 1.
Then, (8) and (9) can be interpreted as xk = fk

(
xk−1

)
.

2.3 State-space formulation
The goal is to express the inference problem in state-space
formulation and apply stochastic filtering tools learned
from signal processing. The final ingredient to do so
is to introduce the so-called process noise in the state
equation. Leveraging on the observation equation in (1),
the state-space can be formulated as

xk = fk
(
xk−1

) +
(

νv,k
νn,k

)
(10)

yk = vk + νy,k , (11)

where the noise terms νv,k and νn,k are assumed jointly
Gaussian with covariance matrix �x,k . Further details of
this matrix are discussed in Section 2.4. The measure-
ment noise νy,k is assumed zero-mean, Gaussian, and with
variance σ 2

y,k . Notice that the system is characterized by
Gaussian distributions and is linear in the observations;
this allows for an optimal design of the proposal density in
the PF as exploited in Section 3.1.
This general form of Markovian type is preserved when

the model is extended with a couple of OU processes
associated to the excitatory and inhibitory synaptic con-
ductances. In this case, the resulting state-space model is
composed by the Morris-Lecar model used so far (with
the peculiarity that the term −Isyn is added to (40)), plus
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the OU stochastic process in (3) describing Isyn. There-
fore, the continuous-time state is x = (v, n, gE, gI)�. The
discrete version of the state-space is used again.

2.4 Model inaccuracies
The proposed estimation method relies on the fact that
the neuron model is known. This is true to some extent,
but most of the parameters in the Morris-Lecar model
discussed are to be estimated. Typically, this model cal-
ibration is done beforehand, but as we will see later in
Section 3.2, this could be done in parallel to the filtering
process. Therefore, the robustness of the method to pos-
sible inaccuracies should be assessed. In this section, we
point out possible causes of mismodeling. Computer sim-
ulations are later used to characterize the performance of
the proposed methods under these impairments.
In the single-neuron model considered, three major

sources of inaccuracies can be identified. First, the applied
current Iapp can be itself noisy, with a variance depend-
ing on the quality of the instrumentation used and the
experiment itself. We model the actual applied current as
a random variable

Iapp = Io + νI,k , νI,k ∼ N
(
0, σ 2

I
)
, (12)

where Io is the nominal current applied and σ 2
I the vari-

ance around this value. Plugging (12) into (8), we obtain
that the contribution of Iapp to the noise term is Ts

Cm
νI,k ∼

N
(
0, (Ts/Cm)2σ 2

I
)
.

Secondly, when the conductance of the leakage term is
estimated beforehand, some inaccuracies might be taken
into account. In general, this term is considered con-
stant in the models although it gathers relatively distinct
phenomena that can potentially be time-varying. The
maximal conductance of the leakage term is therefore
inaccurate and modeled as

ḡL = ḡoL + νg,k , νg,k ∼ N
(
0, σ 2

g

)
, (13)

where ḡoL is the nominal, estimated conductance and σ 2
g

the variance of this estimate. Similarly, inserting (13) into
(8), we see that the contribution of ḡL to the noise term is
Ts
Cm

νg,k ∼ N
(
0, (Ts/Cm)2

(
vk−1 − EL

)
σ 2
g

)
.

Finally, the parameters in m∞(vk), n∞(vk), and τn(vk)
are to be estimated. In general, these parameters can be
properly obtained off-line by standard methods; see [36].
However, as they are estimates, a residual error typically
remains. To account for these inaccuracies, we consider
that the equation governing the evolution of gating vari-
ables is corrupted by a zero-mean additive white Gaussian
process with variance σ 2

n .
This analysis allows us to construct a realistic �x,k , as

the contribution of the aforementioned inaccuracies. In
a practical setup, in order to compute the noise variance
due to leakage, we need to use the approximation v̂k−1 ≈

vk−1, where v̂k−1 is estimated by the filtering method. We
construct the covariance matrix of the model as

�x,k =
(

σ 2
v 0
0 σ 2

n

)
, (14)

where we used that the overall noise in the voltage model
is Ts

Cm

(
νI,k − νg,k

) ∼ N
(
0, σ 2

v
)
and

σ 2
v =

(
Ts
Cm

)2 (
σ 2
I + (

v̂k−1 − EL
)2

σ 2
g

)
(15)

as an estimate of σ 2
v , provided accurate knowledge of σ 2

I
and σ 2

g . Otherwise, the covariance matrix of the process
could be estimated by other means, as the ones presented
in Section 3.2 for mixed state-parameter estimation in
nonlinear filtering problems.
Notice that we are implicitly assuming white processes

due to the diagonal structure of �x,k . It is worth men-
tioning that, should correlated noise be a more realistic
model, the method proposed in this article would be still
valid. The proposed method can cope with colored noise
statistics since �x,k can be used seamlessly if it is not
diagonal.

3 Methods
Two filtering methods are proposed here, depending on
the knowledge regarding the underlying dynamical model.
Section 3.1 presents an algorithm able to estimate the
states in xk by a PF methodology, the particularity being
that an optimal distribution is used to draw the random
samples characterizing the joint filtering distribution of
interest. This method assumes knowledge of the param-
eter values of the system model, although we account for
some inaccuracies as detailed in Section 2.4. An enhanced
version of this method is presented in Section 3.2, where
we relax the assumption of knowing the parameter val-
ues. Leveraging on a PMCMC algorithm and the use of
the optimal importance density as in the first method, we
present a method that is able to filter xk while estimating
the values describing the neuron model.

3.1 Sequential estimation of voltage traces and gating
variables

The type of problems we are interested in involve the
estimation of time-evolving signals that can be expressed
through a state-space formulation. Particularly, estima-
tion of the states in a single-neuron model from noisy
voltage traces can be readily seen as a filtering problem.
Bayesian theory provides the mathematical tools to deal
with such problems in a systematic manner. The focus is
on sequential methods that can incorporate new available
measurements as they are recorded without the need for
reprocessing all past data.
Bayesian filtering involves the recursive estimation of

states xk ∈ R
nx given measurements yk ∈ R at time t
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based on all available measurements, y1:k = {
y1, . . . , yk

}
.

To that aim, we are interested in the filtering distribution
p(xk|y1:k). Assuming the Markovian property in (10) and
(11), the distribution can be recursively expressed as

p (xk|y1:k) = p (yk|xk) p
(
xk|xk−1

)

p
(
yk|y1:k−1

) p
(
xk−1|y1:k−1

)
,

(16)

with p(yk|xk) and p(xk|xk−1) referred to as the likelihood
and the prior distributions, respectively. Unfortunately,
(16) can only be obtained in closed-form in some spe-
cial cases, and in more general setups, we should resort to
more sophisticatedmethods. In this paper, we consider PF
to cope with the nonlinearity of themodel. Although other
lighter approaches might be possible as well [22], we seek
the maximum accuracy regardless the involved computa-
tional cost. Theoretically, for sufficiently large number of
particles, particle filters offer such performances.
Particle filters, see [18, 20, 21, 23], approximate the

filtering distribution by a set of N weighted random sam-
ples, forming the random measure

{
x(i)
k ,w(i)

k

}N
i=1

. These
random samples are drawn from the importance density
distribution, π(·),

x(i)
k ∼ π

(
xk|x(i)

0:k−1, y1:k
)

(17)

and weighted according to the general formulation

w(i)
k ∝ w(i)

k−1

p
(
yk|x(i)

0:k , y1:k−1
)
p
(
x(i)
k |x(i)

k−1

)

π
(
x(i)
k |x(i)

0:k−1, y1:k
) . (18)

The importance density from which particles are drawn
is a key issue in designing efficient PFs. It is well known
that the optimal importance density is

π
(
xk|x(i)

0:k−1, y1:k
)

= p
(
xk|x(i)

k−1, yk
)
,

in the sense that it minimizes the variance of importance
weights. Weights are then computed using (18) as w(i)

k ∝
w(i)
k−1p

(
yk|x(i)

k−1

)
. This choice requires the ability to draw

from p(xk|x(i)
k−1, yk) and to evaluate p

(
yk|x(i)

k−1

)
. In gen-

eral, the two requirements cannot be met, and one needs
to resort to suboptimal choices. However, given the partic-
ular structure of the state-space model, we are able to use
the optimal importance density. The fact that the model
is Gaussian and the observations are related linearly to
states allow to solve for the conditional distribution of
states from the joint Gaussian distribution of states and
observations. The equations are:

p
(
xk|x(i)

k−1, yk
)

= N
(
μ

(i)
π ,k ,�π ,k

)
(19)

with

μ
(i)
π ,k = �π ,k

(
�−1

x,k fk
(
x(i)
k−1

)
+ yk

σ 2
y,k

)
(20)

�π ,k =
(
�−1

x,k + σ−2
y,k I

)−1
, (21)

and the importance weights can be updated using

p
(
yk|x(i)

k−1

)
= N

(
h�fk

(
x(i)
k−1

)
,h��x,kh + σ 2

y,k

)
,

(22)

with h = (1, 0)�. The PF provides a discrete approxima-
tion of the filtering distribution of the form

p(xk|y1:k) ≈
N∑
i=1

w(i)
k δ

(
xk − x(i)

k

)
,

which gathers all information from xk that the measure-
ments up to time k provide. The minimum mean square
error estimator can be obtained as

x̂k =
N∑
i=1

w(i)
k x(i)

k , (23)

where x̂k = (
v̂k , n̂k

)�. Recall that the method discussed
in this section could be easily adapted to other neuron
models by simply substituting the corresponding tran-
sition function fk and constructing the state vector xk
accordingly.
As a final step, PFs incorporate a resampling strat-

egy to avoid the collapse of particles into a single state
point. Resampling consists in eliminating particles with
low importance weights and replicating those in high-
probability regions [37]. The overall algorithm can be
looked up in Algorithm 1 at instance k. Notice that this
version of the algorithm requires knowledge of noise
statistics and all the model parameters, which for the
Morris-Lecar model are

� = (
ḡL,EL, ḡCa,ECa, ḡK,EK,φ,V1,V2,V3,V4

)� . (24)

When we add the dynamics of the synaptic conduc-
tances, the vector� of model parameters also includes τE ,
τI , gE,0, gI,0, σE , and σI .

3.2 Joint estimation of states andmodel parameters
In practice, the parameters in (24) might not be known.
It is reasonable to assume that �, or a subset of these
parameters θ ⊆ �, are unknown and need to be estimated
at the same time the filtering method in Algorithm 1 is
executed. Therefore, the ultimate goal in this case is to
estimate jointly the time evolving states and the unknown
parameters of the model, x1:k and θ , respectively.
Joint estimation of states and parameters is a longstand-

ing problem in Bayesian filtering and specially hard to
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Algorithm 1 Particle filtering with optimal importance
density

Require: N, �x,k , σ 2
y,k , �,

{
x(i)
k−1,w

(i)
k−1

}N
i=1

and yk

Ensure:
{
x(i)
k ,w(i)

k

}N
i=1

and x̂k

1: Calculate �π ,k =
(
�−1

x,k + σ−2
y,k I

)−1

2: for i = 1 to N do
3: Calculate μ

(i)
π ,k = �π ,k

(
�−1

x,k fk
(
x(i)
k−1

)
+ yk

σ 2
y,k

)

4: Generate x(i)
k ∼ N (μ

(i)
π ,k ,�π ,k)

5: Calculate w̃(i)
k = w(i)

k−1
p
(
yk |x(i)

0:k ,y1:k−1
)
p
(
x(i)
k |x(i)

k−1

)

N (μ
(i)
π ,k ,�π ,k)

6: end for
7: for i = 1 to N do
8: Normalize weights: w(i)

k = w̃(i)
k∑N

j=1 w̃
(j)
k

9: end for
10: MMSE state estimation: x̂k = ∑N

i=1 w
(i)
k x(i)

k

11:
{
x(i)
k , 1/N

}N
i=1

= Resample
({

x(i)
k ,w(i)

k

}N
i=1

)

handle in the context of PFs. Refer to [38–40] and their
references for a complete survey. Here, we follow the
approach in [41] andmake use of the so-called PMCMC to
enhance the presented PF algorithm with parameter esti-
mation capabilities. In the remainder of this section, we
provide the basic ideas to use the algorithm, following a
similar approach as in [24]. Connections to other methods
are discussed in [42].
Following the Bayesian philosophy we adopt here, the

problem fundamentally reduces to assigning an a pri-
ori distribution for the unknown parameter θ ∈ R

nθ

and extending the state-space model (here, we adopt its
probabilistic representation)

θ ∼ p(θ) (25)
xk ∼ p(xk|xk−1, θ) for k ≥ 1 (26)
yk ∼ p(yk|xk , θ) for k ≥ 1 (27)

and initial state distribution x0 ∼ p(x0|θ). Applying Bayes’
rule, the full posterior distribution can be expressed as

p (x0:T , θ |y1:T ) = p(y1:T |x0:T , θ)p (x0:T |θ) p(θ)

p(y1:T )
(28)

with

p (y1:T |x0:T , θ) =
T∏

k=1
p (yk|xk , θ) (29)

p (x0:T |θ) = p (x0|θ)

T∏
k=1

p
(
xk|xk−1, θ

)
. (30)

Notice here that we are dealing with a finite horizon
of observations T. Then, from a Bayesian perspective, the
estimation of θ is equivalent to obtaining its marginal
posterior distribution p(θ |y1:T ) = ∫

p(x0:T , θ |y1:T )dx0:T .
However, this is in general extremely hard to compute
analytically, and one needs to find work-arounds. Eval-
uation of the full posterior turns out to be not only
computationally prohibitive but useless if states cannot be
marginalized out analytically. Alternative methods resort
on the factorization of the parameter marginal distri-
bution as p(θ |y1:T ) ∝ p(y1:T |θ)p(θ) and how Bayesian
filters can be transformed to provide characterizations of
the marginal likelihood distribution p(y1:T |θ) and related
quantities. The marginal likelihood distribution can be
recursively factorized in terms of the predictive distribu-
tions of the observations:

p(y1:T |θ) =
T∏

k=1
p(yk|y1:k−1, θ),

with p(yk|y1:k−1, θ) = ∫
p(yk|xk , θ)p(xk|y1:k−1, θ)dxk

obtained straightforwardly as a byproduct of any of the
Bayesian filtering methods; see [22].
A useful transformation of the marginal likelihood is

the so-called energy function, which is sometimes more
convenient to deal with. The energy function is defined
as ϕT (θ) = − ln p(y1:T |θ) − ln p(θ) or, equivalently,
p(θ |y1:T ) ∝ exp(−ϕT (θ)). The energy function can then
be recursively computed as a function of the predictive
distribution

ϕ0(θ) = − ln p(θ) (31)
ϕk(θ) = ϕk−1(θ) − ln p(yk|y1:k−1, θ) (32)

for k ≥ 1.
Then, the basic problem is to obtain an estimate of the

predictive distribution p(yk|y1:k−1, θ) from the PF we have
designed in Section 3.1 and use it in conjunction with
p(θ) to infer the marginal distribution p(θ |y1:T ) of inter-
est. This latter step can be performed in several ways,
from which we choose to use the Markov-Chain Monte-
Carlo (MCMC) methodology to continue with a fully
Bayesian solution. Besides, it is known to be the solution
that provides the best results when used in a PF. Next, we
detail how ϕk(θ) can be obtained from a PF algorithm, we
present theMCMCmethod for parameter estimation, and
finally we sketch the overall algorithm.

3.2.1 Computing the energy function from particle filters
The modification needed is rather small. Actually, it is
non-invasive in the sense that the algorithm remains the
same and the energy function can be computed adding
some extra formulae. Recall that the predictive distribu-
tion p(yk|y1:k−1, θ) is composed of two distributions and
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that the PF provides characterizations of these two dis-
tributions. Then, one could use a particle approximation
p(yk|y1:k−1, θ) ≈ p̂(yk|y1:k−1, θ) = ∑N

i=1 w
(i)
k−1ζ

(i)
k with

w(i)
k−1 as in the original algorithm and

ζ
(i)
k =

p
(
yk|x(i)

k , θ
)
p
(
x(i)
k |x(i)

k−1, θ
)

π
(
x(i)
k |x(i)

0:k−1, y1:k , θ
) . (33)

Then, it is straightforward to identify the energy func-
tion approximation as

ϕT (θ) ≈ − ln p(θ) −
T∑

k=1
ln p̂(yk|y1:k−1, θ) (34)

= − ln p(θ) −
T∑

k=1
ln

N∑
i=1

w(i)
k−1ζ

(i)
k (35)

which can be computed recursively in the PF algorithm
and becomes an approximation ϕ̂T (θ) of the energy func-
tion.

3.2.2 The Particle Markov-ChainMonte-Carlo algorithm
Once an approximation of the energy function is available,
we can apply MCMC to infer the marginal distribution
of the parameters. MCMC methods constitute a gen-
eral methodology to generate samples recursively from a
given distribution by randomly simulating from a Markov
chain [43–47]. There are many algorithms implementing
the MCMC concept, the Metropolis-Hastings (MH) algo-
rithm being one of the most popular. At the jth iteration,
the MH algorithm samples a candidate point θ∗ from a
proposal distribution q(θ∗|θ (j−1)) based on the previous
sample θ (j−1). Starting from an arbitrary value θ (0), the
MH algorithm accepts the new candidate point (mean-
ing that it was generated from the target distribution,
p(θ |y1:T )) using the rule

θ (j) =
{

θ∗, ifu ≤ α(j)

θ (j), otherwise (36)

where u is drawn randomly from a uniform distribution,
u ∼ U(0, 1), and

α(j) = min

⎧
⎨
⎩1, exp

(
ϕT (θ (j−1)) − ϕT

(
θ∗)) q

(
θ (j−1)|θ∗)

q
(
θ∗|θ (j−1)

)
⎫
⎬
⎭

is referred to as the acceptance probability.
It is critical for the performance of the algorithm the

choice of the proposal density. A common choice is
q(θ |θ (j−1)) = N (θ ; θ (j−1),�(j−1)) with the selection of
the transitional covariance remaining as the tuning �(j−1)

parameter. This covariance can be adapted as iterations
of the MCMC method progress. In this work, we have
adopted the Robust Adaptive Metropolis (RAM) algo-
rithm [48], although other methods could be considered

for the same purpose [49, 50]. The RAM algorithm is
provided in Algorithm 2. We use the notation that S =
Chol (A) denotes the Cholesky factorization of an Her-
mitian positive-definite matrix A such that A = SS�,
and S is a lower triangular matrix [51]. The RAM algo-
rithm outputs a set of samples

{
θ (j)

}M
j=1

, where M is
the number of iterations of th e MCMC procedure.
These samples are originated from the target distribution{
θ (j) ∼ p(θ |y1:T )

}M
j=1

, which can be used to approximate
(after neglecting the first samples corresponding to the
transient phase of the algorithm) it as

p (θ |y1:T ) ≈ 1
M

M∑
j=1

δ
(
θ − θ (j)

)
, (37)

and one can obtain the desired statistics from the charac-
terization of the marginal distribution. For instance, point
estimates of the parameter like

θ̂
MMSE = 1

M

M∑
j=1

θ (j) or θ̂ = θ (M) . (38)

The main assumption in Algorithm 2 is the ability of
evaluating the energy function, ϕT (·). We have seen ear-
lier how this can be done in a PF. Roughly speaking, the
PMCMC algorithm consists of putting together these two
algorithms [41]. We refer to Algorithm 3 for the resulting
PMCMCmethod.

Algorithm 2 Robust Adaptive Metropolis
Require: M, θ (0), �(0), γ ∈ ( 12 , 1], ᾱ∗, and ϕT (·)
Ensure:

{
θ (j)

}M
j=1

1: Initialize: S0 = Chol
(
�(0)) and ϕT

(
θ (0)

)
= 0

2: for j = 1 toM do
3: Draw a ∼ N (0, I)
4: Compute θ∗ = θ (j−1) + Sj−1a
5: Compute α(j) = min

{
1, exp

(
ϕT

(
θ (j−1)

)
− ϕT (θ∗)

)}

6: Draw u ∼ U(0, 1)
7: if u ≤ α(j) then
8: θ (j) = θ∗
9: else

10: θ (j) = θ (j−1)

11: end if
12: Compute η(j) = j−γ

13: Compute Dj =
(
I + η(j) (α(j) − ᾱ∗

) aa�
||a||2

)

14: Compute Sj = Chol
(
Sj−1DjS�

j−1

)

15: end for
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Algorithm 3 Joint state-parameter estimation by Particle
Marginal MCMC
Require: y1:T ,M, θ (0), �(0), γ ∈ (1/2, 1], ᾱ∗, and ϕT (·)
Ensure: x̂1:T and θ̂

1: Initialize: S0 = Chol
(
�(0)) and ϕ̂T (θ (0)) = 0

2: for j = 1 toM do
3: Draw a ∼ N (0, I)
4: Compute θ∗ = θ (j−1) + Sj−1a
5: Run the PF in Algorithm 1 with model parameters

set to θ∗.
Required outputs:

State filtering x̂∗
1:T as in (23)

Energy function ϕ̂T (θ∗) as in (35)
6: Computeα(j) = min

{
1, exp

(
ϕ̂T

(
θ (j−1)

)
− ϕ̂T (θ∗)

)}

7: Draw u ∼ U(0, 1)
8: if u ≤ α(j) then
9: θ (j) = θ∗

10: x̂1:T = x̂∗
1:T

11: else
12: θ (j) = θ (j−1)

13: end if
14: Compute η(j) = j−γ

15: Compute Dj =
(
I + η(j) (α(j) − ᾱ∗

) aa�
||a||2

)

16: Compute Sj = Chol
(
Sj−1DjS�

j−1

)

17: end for
18: State filtering ⇒ x̂1:T
19: Parameter estimation with

{
θ (j)

}M
j=1

as in (38) ⇒ θ̂

4 Computer simulation results
We simulated the data of a neuron following the Morris-
Lecar model. Particularly, we generated data sampled at
fs = 4 kHz. Notice that typical sampling rates are on the
order of kilohertz, therefore ensuring that we are operat-
ing in the regime where the Nyquist rate is well satisfied
(that is, fs > 2 · BW, with BW the bandwidth of the
recorded signal) [1, Chapter 3]. The model parameters
were set to Cm = 20 μF/cm2, φ = 0.04, V1 = −1.2 mV,
V2 = 18 mV, V3 = 2 mV, and V4 = 30 mV; the
reverse potentials were EL = −60 mV, ECa = 120 mV,
and EK = −84 mV; and the maximal conductances were
ḡCa = 4.4 mS/cm2 and ḡK = 8.0 mS/cm2. We consid-
ered a measurement noise with a standard deviation of
1 mV, which corresponds to an SNR of 32 dB. This value
is considered a reasonable value in nowadays intracellular
sensing devices. Model inaccuracies were generated as in
Section 2.4.
Three sets of simulations are discussed. First, we vali-

dated the filtering method considering perfect knowledge

of the model. In this case, the method in Algorithm 1 was
used. Secondly, themodel assumptions were relaxed in the
sense that the parameters of the model were not known
by the method. We analyzed the capabilities of the pro-
posed method to infer both the time-evolving states of the
system and some of the parameters defining the model.
In this case, the method in Algorithm 3 was used. Finally,
we validated the performance of the proposed methods
in inferring the synaptic conductances. We tested both
PF and PMCMC methods, that is, with and without full
knowledge of the model, respectively.

4.1 Model parameters are known
In the simulations, we considered the model inaccuracies
described in Section 2.4. To excite the neuron into spik-
ing activity, a nominal applied current was injected with
Io = 110 μA/cm2 and two values for σI were considered,
namely 1 and 10% of Io. The nominal conductance used
in the model was ḡL = 2 mS/cm2 , whereas the underly-
ing neuron had a zero-mean Gaussian error with standard
deviation σḡL . Two variance values were considered as
well, 1 and 10% of ḡL. Finally, we considered σn = 10−3 in
the dynamics of the gating variable.
To give some intuition on the operation and perfor-

mance of the PF method in Algorithm 1, we show the
results for a single realization in Fig. 2. The results are for
500 particles and two different values of σ 2

y,k , correspond-
ing to 0 and 32 dB, respectively. Even in very low SNR
regimes, themethod is able to operate and provide reliable
filtering results.
In order to evaluate the efficiency of the proposed esti-

mation method, we computed the Posterior Cramér-Rao
Bound (PCRB) [52] in Appendix 2. We plot the PCRB as a
benchmark for the root mean square error (RMSE) curves
obtained by computer simulations, obtained after aver-
aging 200 independent Monte-Carlo trials. For a generic
time series wk , the RMSE of an estimator ŵk is defined as

RMSE(wk) =
√
E

{(
wk − ŵk

)2}

≈
√√√√ 1

M

M∑
j=1

(
wk − ŵj,k

)2 , (39)

where ŵj,k denotes the estimate of wk at the jth realiza-
tion andM the number of independentMonte-Carlo trials
used to approximate the mathematical expectation.
Figures 3 and 4 show the time course of the RMSE

using N = {500, 1000} particles. We see that in both
scenarios, our method efficiently attains the PCRB. We
measure the efficiency (η ≥ 1) of the method as the quo-
tient between the RMSE and the PCRB, averaged over the
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a

b

Fig. 2 A single realization of the PF method for a SNR = 0 dB and b SNR = 32 dB

entire simulation time. The worst efficiency on estimat-
ing vk was 1.43 corresponding to 500 particles and 10% of
inaccuracies (see Fig. 4), and the best was 1.11 for 1000

particles and 1% of errors (see Fig. 3). In estimating nk , the
discrepancy was even lower, 1.06 and 1.03 for maxi-
mum and minimum η, respectively. Notice that, for larger
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Fig. 3 Evolution of the RMSE and the PCRB over time. Model inaccuracies where σI = 0.01 · Io and σgL = 0.01 · ḡoL

Fig. 4 Evolution of the RMSE and the PCRB over time. Model inaccuracies where σI = 0.1 · Io and σgL = 0.1 · ḡoL
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inaccuracies, the method seems more reactive. This is
because the covariance associated with the state-space
has larger values, resulting in a more nervous filter and,
consequently, with smaller convergence rates. As a con-
clusion, the PF tends to the PCRB with the number of
particles. Also, the performance (both theoretical and
empirical) could be improved if model inaccuracies are
reduced, i.e., if the model parameters are better estimated
at a previous stage. For the sake of completeness, we sum-
marize the results in Table 1, where the average RMSE
and PCRB along the 500-ms simulation are provided. It
is apparent that increasing the number of particles from
N = 500 to N = 1000 does not improve significantly the
performance of the method.

4.2 Model parameters are unknown
In this section, we validate the algorithm presented in
Section 3.2. According to the previous analysis, we deem
that 500 particles are enough for the filter to provide reli-
able results. The parameters of the PMCMC algorithm
were set to γ = 0.9 and ᾱ∗ = 0.234.
Figure 5 shows the results for a single realization

when a number of parameters in the nominal model are
unknown. We considered one, two, and four unknown
parameters. Each of the plots include M = 100 iterations
of the MCMC showing the evolution of the parameter
estimation (top) and the superimposed recorded voltage
in black and the filtered voltage trace in red (bottom).
Model inaccuracies are of 1%, similarly as in Fig. 3. In
these plots, we omitted the results for the gating vari-
able for the sake of clarity. The true and initial values
used in the experiments, as well as the initial covariances
assumed, are detailed in Table 2. From the plots, we can
observe that the method performs reasonably well even
in the case of estimating the model parameters at the
same time it is filtering out the noise in the membrane
voltage traces.
A biologically meaningful signal is the leakage cur-

rent. In general, the leakage gathers those ionic channels
that are not explicitly modeled and other non-modeled
sources of activity. The parameters driving the leak cur-
rent are ḡL and EL. We tested and validated the proposed

Table 1 Averaged results over simulation time

σI = 0.01 · Io , σI = 0.1 · Io ,
σgL = 0.01 · ḡoL σgL = 0.1 · ḡoL

N = 500 N = 1000 N = 500 N = 1000

〈RMSE(vk)〉 0.3344 0.3211 0.4269 0.4203

〈PCRB(vk)〉 0.2325 0.2325 0.3777 0.3777

〈RMSE(nk)〉 0.0046 0.0045 0.0056 0.0055

〈PCRB(nk)〉 0.0043 0.0043 0.0053 0.0053

PMCMC in an experiment where the leak parameters
were estimated at the same time the filtering solution
was computed. Moreover, the statistics of the process
noise were estimated as well, �x,k . In this case, we
iterated the PMCMC method 1000 times and average
the results over 100 Monte-Carlo independent trials. The
results are shown in Fig. 6, where the RMSE perfor-
mance of the PMCMC method is compared to the per-
formance of the original PF with perfect knowledge of
the model.
It can be observed that the filtering performances with

perfect knowledge of the model and with estimation
of parameters by PMCMC are similar. Moreover, both
approaches attain the theoretical lower bound of accuracy
given by the PCRB, which is derived from the true model;
see Appendix 2.
In Fig. 7, validation results for the parameter estima-

tion capabilities of the PMCMC are shown. Particularly,
we plotted a number of independent realizations of the
sample trajectories

{
θ (j)

}M
j=1

. We observe that all of them
converge to the true values of the parameter. Recall that
these true values were θ = (ḡL,EL)� = (2,−60)�. The
average of these realizations is given in Fig. 7, where
the aforementioned convergence to the true parameter is
highlighted.

4.3 Estimation of synaptic conductances
Finally, once the methods to estimate state variables and
unknown parameters were consolidated, we proceeded to
test the methods to our ultimate goal: estimating jointly
the intrinsic states of the neuron and the extrinsic inputs
(i.e., the synaptic conductances).
First, the method with perfect knowledge of the model

was validated in Fig. 8. It can be observed that the intrin-
sic signals can be effectively recovered as before where
synaptic inputs were not accounted for. The estimation
of gE(t) and gI(t) is quite accurate, and the presence of
spikes does not degrade the estimation capabilities of
the method.
The PMCMC algorithm was tested similarly. In this

case, we assumed that the model parameters related to vk
and nk were accurately estimated, for instance, using an
off-line procedure or that analyzed in Section 4.2. There-
fore, we focused on the estimation of those parameters
that describe theOUprocess of each of the synaptic terms.
Particularly, we considered the values in Table 3. The
results can be consulted in Fig. 9 and compared to those
in Fig. 8.
In Fig. 10, we compare the estimated excitatory and

inhibitory synaptic conductances with the actual ones.
We show both the performance of the PF method (round
circles) and the PMCMC method (red dots). We appreci-
ate a slightly better performance of the PF method, which
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a

c d

b

e f

Fig. 5 Realizations of the PMCMC algorithm for joint state-parameter estimation. Each panel corresponds to different unknown parameters, see
Table 2. Particularly, we show the results when estimating (a) Calcium maximal conductance, (b) Potassium maximal conductance, (c) both Calcium
and Potassium maximal conductances, (d) process noise variance, (e) measurement noise variance, and (f) Calcium and Potassium maximal
conductances plus process noise variance. Each panel features the MCMC iterations (top) that converge to the true value of the parameter and the
filtered voltage trace (bottom)
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Table 2 True value, initial value, and covariance of the
parameters in Fig. 5

Parameter True value Initial value Init. covariance

ḡCa 4.4 8 1

ḡK 8 5 1

σv 0.0307 0.05 0.01

σn 0.001 0.01 0.001

σy,k 1 10 0.5

is normal since in this case a perfect knowledge of the
model is assumed while the PMCMC needs to estimate
both model parameters and synaptic conductances.
More precisely, we have computed the normalized error

√∑
k

(
gu(tk) − ĝu(tk)

)2
√∑

k
gu(tk)2

in both cases and obtained values of 0.2957 and 0.1939 for
the excitatory and inhibitory conductances, respectively,
with the PF method, and 0.3313 and 0.2095 (excitatory
and inhibitory, respectively) with the PMCMC method.
Compared to previous results in the literature, see, for
instance, Figs. 2, 3, 4, 5, 6, and 8 in [4], where the authors
performed an exhaustive comparison with different meth-
ods, our estimations provide excellent agreement with the
prescribed conductances. Moreover, our statistics include
data obtained in the spiking regime while the methods
compared in [4] are applied only to subthreshold voltage
traces. We also observe that the errors for the PMCMC
method are, in average, only 12% (excitatory) and 8%
(inhibitory) worse than the errors for the PF method.
Given the complexity of the PMCMCmethod, these find-
ings encourage future applications of themethod to exper-
imental data even when the model is not well defined.
We refer to the Additional file 1 to visualize a dynamic

simulation showing how the estimations evolve as the
PMCMC algorithm was applied in a case where the values
of ḡL and EL were unknown.

5 Conclusions
In this paper, we propose a filtering method that is able
to sequentially infer the time course of the membrane
potential, the intrinsic activity of ionic channels, and the
input synaptic conductances from noisy observations of
voltage traces. The method works both for subthreshold
and spiking regimes. It is based on the PF methodology

and features an optimal importance density, providing
enhanced use of the particles that characterize the fil-
tering distribution. In addition, we tackle the problem of
joint parameter estimation and state filtering by extend-
ing the designed PF with an MCMC procedure in an
iterative method known as PMCMC. Another distinctive
contribution with respect to the other works in the lit-
erature is that here, we provide accuracy bounds for the
problem at hand, given by the PCRB. The RMSEs of our
methods are then compared to the bound, and therefore,
we can assess the efficiency of the proposed inference
methods.
Filtering methods of different types (e.g., PF or sigma-

point Kalman filtering) have been used in other recent
contributions to similar problems; see [7–13]. From a
methodological perspective, the novelty of this paper is in
the use of an optimal importance density to generate par-
ticles, a fact that increases the estimation accuracy for a
given budget of particles. This technical detail only applies
to PF methods. Although Gaussian methods (e.g., the
family of sigma-point Kalman filters) have a lower com-
putational cost in general, they require Gaussianity of the
measures, whereas PFs do not. This is an advantage that
we think can be crucial in estimating synaptic conduc-
tances, since the assumption of Gaussianity is generally
assumed in the literature [4, 33], but there are no conclu-
sive evidences to assert this assumption. In this paper, we
have still applied the PF to anOrnstein-Uhlenbeck process
in order to check that basic results can be attained, but
further research will go in the direction of assuming other
types of distributions for the synaptic conductances. The
use of more complex distributions nicely fits within the
framework of our PF-based method. Another advantage
of PFs versus Gaussian filters is their enhanced robustness
to outliers [53]; for instance, due to recording artifacts,
future applications shall also incorporate this feature.
We have found excellent estimations of the synaptic

conductances, even in spiking regimes. Estimating synap-
tic conductances in spiking regimes is a challenge which
is far to be solved. It is well known that linear esti-
mations of synaptic conductances are not trustable in
this situation when data is extracted intracellularly from
the spiking activity of neurons; see [14]. In experiments,
thus, caution has to be taken in eliminating part of the
voltage traces, thus losing also part of the temporal infor-
mation of both excitatory and inhibitory conductances.
Our method is able to perform well in this regime.
This information is highly valuable in problems (epilepsy,
schizophrenia, Alzheimer’s disease, etc.) where a debate
on the balance of excitation and inhibition is open; see
the introduction of [12] for a rather complete overview on
this feature.
The results show the validity of the approach when

applied to a Morris-Lecar type of neuron. However, the
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a

b

Fig. 6 Evolution of a RMSE(vk) and b RMSE(nk) over time for the PMCMC method estimating the leakage parameters. Model inaccuracies where
σI = 0.1 · Io and σgL = 0.1 · ḡoL
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a

b

Fig. 7 Parameter estimation performance of the proposed PMCMC algorithm. a Top plot shows results for ḡL = 2 estimation and (b) bottom plot
for EL = −60. Both plots show superimposed independent realizations together the average estimate of the parameter (thicker line)
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a

b

Fig. 8 A single realization of the PF method with perfect model knowledge, estimating voltage, and gating variables (a) and synaptic conductances
in nS (b). See Table 3 for the true value, initial value, and covariance of the parameters used here

Table 3 True value, initial value, and covariance of the
parameters in Fig. 9

Parameter True value Initial value Init. covariance

τE 2.73 1.5 1

gE,0 12.1 10 1

σE 12 25 5

τI 10.49 15 10

gI,0 57.3 45 10

σI 26.4 35 5

procedure is general and could be applied to any neuron
model exhibiting more complex dynamics like bursting
and mixed-mode oscillations. Nevertheless, a clear draw-
back is the need for specifying a model although its
parameters are estimated by the method. This is an ubiq-
uitous problem in other model-based methods. Future
research includes the enhancement of the proposed
method to account for model variability, for instance,
the use of Interacting Multiple Model (IMM) approaches.
Other forthcoming applications could be validating the
method using real data recordings, both for inferring
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a

b

Fig. 9 A single realization of the PMCMC method, estimating voltage and gating variables (a) and synaptic conductances in nS (b) as well as model
parameters. See Table 3 for the true value, initial value, and covariance of the parameters used here

parameters of the model and synaptic conductances. The
latter problem is a challenging hot topic in the neuro-
science literature, which is recently focusing on methods
to extract the conductances from single-trace measure-
ments. We think that our PF method would give useful
and interesting results to physiologists that aim at infer-
ring the brain’s activation rules from neurons’ activities.
Actually, knowing the excitatory-inhibitory time-course
separation can help in getting important conclusions
about the brain’s functional connectivity (see [54–56]).
We have not tried to obtain estimations when sub-

threshold ionic currents are active, where the presence

of nonlinearities could also contaminate the estima-
tions; see [15]. According to the excellent performance
in spiking regimes, where nonlinearities are stronger, we
expect also a good agreement between the estimated
data and the prescribed synaptic conductances. Other
extensions of the model can be devoted to incorpo-
rate the dendro-somatic interaction (see, for instance,
[57]), by considering multi-compartmental neuron mod-
els, thus taking into account the morphology and the
functional properties of the cell. This is another big
challenge for which we think that our method can
account for.
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a

b

Fig. 10 Comparison of estimated excitatory (a) and inhibitory (b) synaptic conductances versus the actual ones. We show both the performance of
the PF method (round circles), which assumes a perfect knowledge of the model, and the PMCMC method (red dots)

Appendix 1: Morris-Lecar neuronmodel
From the myriad of existing single-neuron models, we
consider without loss of generality the Morris-Lecar
model proposed in [34]. The model can be related (see
[36]) to the INa,p + IK model (persistent sodium plus
potassium model). The dynamics of the neuron is mod-
eled by a continuous-time dynamical system composed of
the current-balance equation for the membrane potential,
v = v(t), and the K+ gating variable 0 ≤ n = n(t) ≤ 1,

which represents the probability of the K+ ionic channel
to be active. Then, the system of differential equations is

Cmv̇ = −IL − ICa − IK + Iapp (40)

ṅ = φ
n∞(v) − n

τn(v)
, (41)

where Cm is the membrane capacitance and φ a non-
dimensional constant. Iapp represents the (externally)
applied current. For the time being, we have neglected Isyn
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in (40). The leakage, calcium, and potassium currents are
of the form

IL = ḡL(v − EL) (42)
ICa = ḡCam∞(v)(v − ECa) (43)
IK = ḡKn(v − EK) , (44)

respectively. ḡL, ḡCa, and ḡK are the maximal conductances
of each current. EL, ECa, and EK denote the Nernst equi-
librium potentials, for which the corresponding current is
zero, a.k.a. reverse potentials.
The dynamics of the activation variable m is consid-

ered at the steady state, and thus, we write m = m∞(v).
On the other hand, the time constant τn(v) for the gating
variable n cannot be considered that fast and the cor-
responding differential equation needs to be considered.
The formulae for these functions are

m∞(v) = 1
2

·
(
1 + tanh

[
v − V1
V2

])
(45)

n∞(v) = 1
2

·
(
1 + tanh

[
v − V3
V4

])
(46)

τn(v) = 1/
(
cosh

[
v − V3
2V4

])
, (47)

which parameters V1, V2, V3, and V4 can be measured
experimentally [36].
The knowledgeable reader would have noticed that the

Morris-Lecar model is a Hodgin-Huxley-type model with
the usual considerations, where the following two extra
assumptions were made: the depolarizing current is gen-
erated by Ca2+ ionic channels (or Na+ depending on the
type of neuron modeled), whereas hyperpolarization is
carried by K+ ions, and that m = m∞(v). The Morris-
Lecar model is very popular in computational neuro-
science as it models a large variety of neural dynamics
while its phase-plane analysis is more manageable as it
involves only two states [35].
The Morris-Lecar, although simple to formulate, results

in a very interesting model as it can produce a number
of different dynamics. For instance, for given values of its
parameters, we encounter a subcritical Hopf bifurcation
for Iapp = 93.86 μA/cm2. On the other hand, for another
set of parameter values, the system of equations has a
Saddle-Node on an Invariant Circle (SNIC) bifurcation at
Iapp = 39.96 μA/cm2.

Appendix 2: PCRB inMorris-Lecar models
This appendix is devoted to the derivation of the PCRB
estimation bound for the Morris-Lecar model used to
benchmark the proposed methods in the simulations. We
follow the sequential procedure given in [58], accounting
that we have nonlinear functions in the state evolution
and linear measurements, both with additive Gaussian

noise. We are interested in an estimation error bound of
the type of

Eyk ,xk

{(
x̂k(y1:k) − xk

) (
x̂k(y1:k) − xk

)�} ≥ J−1
k , (48)

where x̂k(y1:k) represents an estimator of xk given y1:k .
Recall that the state-space we are dealing with is of

the form

xk = fk−1(xk−1) + νk

yk = hxk + ek , (49)

where h = (1, 0), xk = (vk , nk)�, and fk−1(xk−1) defined
by (8) and (9). The noise terms are of the form

νk ∼ N (0,�x,k) (50)
ek ∼ N (0, σ 2

y,k) . (51)

In this case, the PCRB can be computed recursively by
virtue of the result in [58] by computing the following terms

D11
k = Exk

{
F̃�
k �−1

x,k F̃k
}

(52)

D12
k = D21

k = −Exk

{
F̃�
k

}
�−1

x,k (53)

D22
k = �−1

x,k + H�
k+1�

−1
y,k+1Hk+1 (54)

and plugging them into

Jk+1 = D22
k − D21

k
(
Jk + D11

k
)−1D12

k , (55)

for some initial J0. Notice that, in our case, D22
k becomes

deterministic, but the rest of the terms involving expec-
tations should be computed by Monte-Carlo integration
over independent state trajectories.
Since the state function is nonlinear, we use the Jacobian

evaluated at the true value of xk instead, that is,

F̃k =
[
∇xk f

�
k (xk)

]� =
(

∂ f1
∂vt

∂ f1
∂nt

∂ f2
∂vt

∂ f2
∂nt

)
, (56)

where functions f1 and f2 are as in (8) and (9), respectively.
Therefore, to evaluate the bound, we need to compute the
derivatives in the Jacobian. These are

∂f1(xk)
∂vk

=

1 − Ts
Cm

(
ḡL + ḡKnk + ḡCa

∂m∞(vk)
∂vk

vk + ḡCam∞(vk)
)

∂f2(xk)
∂vk

=

Tsφ

∂n∞(vk)
∂vk τn(vk) − (n∞(vk−1) − nk−1)

∂τn(vk)
∂vk

τ 2n (vk)

∂f1(xk)
∂nk

= − Ts
Cm

ḡK(vk − EK)

∂f2(xk)
∂nk

= 1 − Tsφ

τn(vk)
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with
∂m∞(vk)

∂vk
= 1

2V2
sech2

(
vk − V1

V2

)
(57)

∂n∞(vk)
∂vk

= 1
2V4

sech2
(
vk − V3

V4

)
(58)

∂τn(vk)
∂vk

= − 1
2V4

sinh
(
vk−V3
2V4

)

cosh2
(
vk−V3
2V4

) . (59)
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