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Abstract

This paper is a theoretical analysis of the maximum likelihood (ML) channel estimator for orthogonal
frequency-division multiplexing (OFDM) systems in the presence of unknown interference. The following theoretical
results are presented. Firstly, the uniqueness of the ML solution for practical applications, i.e., when thermal noise is
present, is analytically demonstrated when the number of transmitted OFDM symbols is strictly greater than one. The
ML solution is then derived from the iterative conditional ML (CML) algorithm. Secondly, it is shown that the channel
estimate can be described as an algebraic function whose inputs are the initial value and the means and variances of
the received samples. Thirdly, it is theoretically demonstrated that the channel estimator is not biased. The second
and the third results are obtained by employing oblique projection theory. Furthermore, these results are confirmed
by numerical results.

1 Introduction
Narrow band interference (NBI) arises in orthogonal
frequency-division multiplexing (OFDM) systems in a
number of transmission scenarios, such as Wi-Fi commu-
nications [1, 2] or cognitive radio, where different types
of wireless services can use the same frequency band. The
NBI can affect several subcarriers. It is well known that
it greatly degrades the performance of the receiver if it is
not treated [3, 4]. When the transmission is NBI-free, the
noise consists only of thermal noise, yielding a uniform
noise variance for all subcarriers, resulting in the estima-
tion of a single scalar parameter. However, in the presence
of NBI, the noise originates from both thermal noise and
interference. Due to the nature of NBI, neither the number
of affected subcarriers nor their location in the spectrum
is known. This brings about the need to estimate the noise
variance for each subcarrier, yielding a vector estimation,
denoted σ 2, rather than a scalar. The objective in the pres-
ence of NBI is therefore to estimate the set of parameters{
h, σ 2}, where h is the vector containing the taps of the
channel impulse response.
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Several methods have been proposed to estimate the
channel in the presence of interference. In [5], channel
estimation is investigated for OFDM systems in the pres-
ence of synchronous interference. However, in practical
situations, the interferer’s signals are in general asyn-
chronous. Zhou et al.’s work [6] deals with the estimation
of noise plus interference power together with successive
soft data estimation at each subcarrier. Here, we focus on
channel estimation based on pilots.
In [7], the authors proposed an estimator employing a

specific pilot structure consisting of two types of pilot
symbols with different pilot densities. More recently, in
[8], a channel estimator is proposed based on a robust
least-squares approach. However, the proposed method
requires that the number of pilots be greater than twice
the channel order, defined as the number of taps.
In [9] and [10], the NBI is assumed to be Gaussian dis-

tributed in the frequency domain, with zero mean and
unknown power.
Under the same assumptions, channel estimation with

NBI is investigated in the seminal paper [11]. The authors
also consider the case where any possible correlation
between the interference over adjacent subcarriers is
neglected. This case can be considered as the worst
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case, since correlation is additional information that could
be used to improve the estimation. The authors per-
form pilot-aided channel estimation under the classical
assumption that the number of pilots is greater than the
channel order. Note that this assumption is also supposed
to be verified in this paper. After formulating the maxi-
mum likelihood (ML) algorithm for the joint estimation
of

{
h, σ 2}, it is shown in [11] that the solution is non-

unique when the channel order (denoted by L) is greater
than the number of transmitted OFDM symbols (denoted
by K ), leading to ambiguous channel estimates. This is
a severe limitation since K ≤ L is a common scenario
in practice. For example in Wi-Fi scenarios, short frames
like control frames are sent frequently. For this reason,
the authors suggest resorting to another algorithm, the
expectation maximization (EM) algorithm, with the com-
plete data set

{
X, σ 2}, where X contains the received

signal. This amounts to treating the noise variances as a
nuisance random vector. The drawback of this approach
is that it imposes the selection of a distribution for the
random vector, the inverse gamma, and then the fixing
of the distribution parameter off-line through exhaus-
tive grid-search simulations. This can be a limitation for
practical use.
In this paper, we first demonstrate that the ambiguities

actually appear only when K = 1 unless the signal-to-
noise ratio (SNR) value is extremely high, in which case
ambiguities indeed appear if K ≤ L. Thus, for typical SNR
values corresponding to practical applications and K > 1,
the joint ML technique can be used instead of the EM
technique. This makes it possible to avoid a grid search.
But even the case K = 1 can be handled with a spe-
cific approach briefly outlined in this paper. Thus, these
results open a wider field of application for the joint ML
technique.
For the case K > 1, the likelihood equations can be

solved with the conditional ML (CML) algorithm. Note
that the CML algorithm has been investigated for chan-
nel estimation in code division multiple access (CDMA)
systems [12]. In this paper, we first present the CML
equations for the considered OFDM system. Numerical
simulations indicate that the CML is well defined in the
SNR range corresponding to practical applications.
Then, we use a new formulation of the CML based

on oblique projections to investigate the first moment.
Oblique projections are well known for their applica-
tions in signal processing, especially in channel estimation
[13–16]. With this formulation, it is proved that the chan-
nel estimator is unbiased. This result is of importance,
in particular, for deriving the Cramer-Rao bound of this
channel estimation problem. Moreover, the channel esti-
mate is proved to be an algebraic function whose inputs
are the initial value and the means and variances of the
received samples.

This paper is organized as follows. Section 2 describes
the system model. In Section 3, we discuss the joint ML
estimation of

{
h, σ 2} and the question of the unique-

ness of the solution. Then, Section 4 introduces the CML
algorithm to find the solution. A theoretical study of the
CML is provided in Section 5. The Cramer-Rao bound is
derived in Section 6, and simulation results are presented
in Section 7.
Notations: The field of complex numbers is denoted C.

Matrices [vectors] are denoted with upper [lower] case
boldface letters (e.g., A or a). The complex number ai,j
indicates the (i, j)th entry of the matrix A; ai indicates
the ith entry of the vector a. The vector Ai is the ith
row vector of matrix A. The N × N identity matrix is
denoted by IN , and 0M,N is the M × N matrix of zeros.
The matrix D(x) is a diagonal matrix with vector x on
its main diagonal. The superscripts (·)T , (·)H , (·)∗, (·)R,
and (·)I stand, respectively, for the operations of taking
the transpose, Hermitian conjugate, complex conjugate,
real part, and imaginary part. The mathematical expec-
tation is denoted E[ ·]. The multivariate complex normal
distribution of a P-dimensional random vector is denoted
by CN (μ,�) where μ is the P-dimensional mean vector
and � the P × P covariance matrix. The chi-square distri-
bution with k degrees of freedom is denoted by χ2

k . The
notations Range(A) andNull(A) indicate, respectively, the
range space and the null space of A.
Note on the notations in bold .2 and |.|2: let a =

[ a1, · · · , aN ]T be a vector of size N × 1. We use the nota-
tion in bold a2 to denote the vector that is formed by tak-
ing the square of the entries of a, i.e., a2 =[ a21, · · · , a2N ]T .
Similarly, |a|2 =[ |a1|2, · · · , |aN |2]T .

2 Systemmodel
Let us consider an OFDM system with N subcarriers
and a cyclic prefix length Ng . We assume that the chan-
nel between the transmitter and the receiver is modelled
as a frequency-selective fading channel with a chan-
nel impulse response (CIR) vector h of order L, h =
[ h1, . . . , hL]T . The CIR h is assumed to be static over the
transmission of K OFDM symbols. To estimate the chan-
nel, P pilot symbols with constant energy are inserted into
the N subcarriers at the positions P = {np, p = 1, . . . ,P}.
In our paper, we do not consider a particular pilot scheme
P , and all our derivations could be applied to any P . The
only constraint is that L < P. The received frequency-
domain pilot sample of the kth OFDM symbol at the np
subcarrier is

xp,k = cp,kHp + wp,k , (1)

where cp,k is the pilot symbol with normalized power,
i.e., |cp,k|2 = 1, transmitted on the npth subcarrier,
and wp,k is a disturbance term that takes into account
the background noise plus any possible interference. The
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random complex number wp,k is assumed to be Gaus-
sian distributed with zero mean and unknown variance
σ 2
p = σ 2

AWGN + σ 2
NBI,p, where σ 2

AWGN is the additive white
Gaussian noise (AWGN) contribution and σ 2

NBI,p is the
average NBI power, which is assumed constant over the
transmission period. The channel frequency response Hp
at the npth subcarrier is given by

Hp =
L∑

l=1
hl exp

(
−j

2π np(l − 1)
N

)
, p = 1, . . . ,P. (2)

This yields the model for the P pilot subcarriers of the
kth received OFDM block:

xk = CkFh + wk , k = 1, . . . ,K , (3)

with xk =[ x1,k , . . . , xP,k]T , wk =[w1,k , . . . ,wP,k]T , Ck =
D([ c1,k , . . . , cP,k] ), where D(u) is the diagonal matrix
with the entries of vector u on its diagonal and F is
the P × L matrix with the (p, l)th entry defined as
exp

(
−j 2π np(l−1)

N

)
, p = 1, . . . ,P, l = 1, . . . , L.

The ML estimation of the set of unknown parameters
{h, σ 2} is desired, where σ 2 = [

σ 2
1 , . . . , σ

2
P
]T , based on the

set of received samples {yk = C−1
k xk , k = 1, . . . ,K}.

Let us now define the sample means and the sample
variances of the received samples, which will be used in
the rest of the paper. The sample mean vector is denoted
by ȳ =[ ȳ1, . . . , ȳP]T , where for p = 1, . . . ,P,

ȳp = 1
K

K∑

k=1
yp,k . (4)

The sample variance vector is denoted by s2 =
[
s21, . . . , s

2
P
]T , where for p = 1, . . . ,P,

s2p = 1
K

K∑

k=1
|yp,k − ȳp|2. (5)

3 Maximum likelihood estimation
In this section, the ML estimate of {h, σ 2} will be investi-
gated by following the approach presented in [11]. How-
ever, it will be shown that the ambiguities mentioned in
[11] appear only when K = 1, unless the SNR value is
extremely high. Hence, when K ≥ 2 and practical SNR
values are considered, it will be possible to get the ML
solution without ambiguities. The estimates when K ≥
2 will be derived through the conditional ML and their
properties studied in the next section.
Recall that the K independent observations y1, . . . , yK

are drawn from the following p-variate normal regression
model:

CN
(
Fh,D

(
σ 2)) . (6)

Then, the negative log-likelihood function �(h̃, σ̃ 2) is
given by [11]:

�
(
h̃, σ̃ 2

)
= K

P∑

p=1
ln

(
πσ̃ 2

p

)
+

K∑

k=1

P∑

p=1

|yp,k − Fph̃|2
σ̃ 2
p

. (7)

Here, Fp denotes the pth row of the matrix F.
The approach to derive the ML solution is summed up

below. The variances which minimize (7) for a given h̃ are
first calculated:

σ̂ 2
p (h̃) = 1

K

K∑

k=1
|yp,k − Fph̃|2, p = 1, . . . ,P. (8)

Then, substituting σ̂ 2
p (h̃) for σ̃ 2

p in (7) yields

�(h̃) := �(h̃, σ̂ 2
(h̃)) = K

P∑

p=1
ln

(
πσ̂ 2

p (h̃)
)

+ KP. (9)

Finally, the ML estimate of the CIR vector h is the one
that minimizes �(h̃). Special treatment is required due to
the presence of the logarithm function in (9). Indeed, the
values of h̃ for which σ̂ 2

p (h̃) = 0 make �(h̃) tend to −∞.
The consequences for the uniqueness of the solution are
explained in more detail in [11], where it is shown that
the minimization leads to ambiguous channel estimates if
K ≤ L. At this point, it is important to precise the con-
text leading to this result. It was assumed that no prior
knowledge about the noise variances was available, which
implied that theoretically they could be zero. However, in
practice, the noise variance is never zero due to the pres-
ence of thermal noise. We will now revisit this ambiguity
issue by taking into account the fact that the noise vari-
ance is not zero. Let us first observe that the equation
σ̂ 2
p (h̃) = 0 (8) for a given p yields a linear system of K

equations with L unknowns:

Ah̃ = [
yp,1, . . . , yp,K

]T , (10)

where the K × L matrix A is built by stacking the row
vectors Fp. If K = 1, then the system (10) is underdeter-
mined (one equation and L unknowns), yielding an infinite
number of solutions. However, for K > 1, the specific
structure of A has to be taken into account when solv-
ing the system. On the one hand, the rows of A are all
identical. On the other hand, in the presence of AWGN,
the samples yp,1, . . . , yp,K are all different since they are
Gaussian and independent. Consequently, it is found that
(10) has no solution. Then, it becomes obvious that for
K > 1, σ̂ 2

p (h̃) > 0 for all p and for all h̃. Therefore, the ML
estimate of the CIR vector h is well defined forK > 1. This
is true in the presence of AWGN, but at extremely high
values of SNR, the difference between the samples tends
to disappear and the problem of ambiguities still remains.
However, simulation results show that the system is well
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conditioned if the SNR is less than 150 dB, which is the
case of practical applications.
This ambiguity issue appears more clearly with the

formulation of σ̂ 2
p (h̃) based on the sample means and

variances:

σ̂ 2
p (h̃) = s2p + |ȳp − Fph̃|2, (11)

when noticing that if K = 1, the sample variances s2p = 0
for all p. However, if K > 1, s2p �= 0 for all p, making it
impossible to set σ̂ 2

p (h̃) to zero.
This article is concerned with the case K > 1. How-

ever, it is worth mentioning that the case of K = 1 can
still be handled with the following approach. It has been
shown that it is meaningless to search for the ML of σ 2 in
the domain (0,+∞)P. A possible solution is to restrict the
parameter space by imposing a priori lower bounds of the
form [17]

0 < δ2p ≤ σ̂ 2
p (12)

on the variances σ̂ 2
p . Let us define the vector δ2 =

[
δ21, · · · , δ2P

]T . The variances σ̂
2 ∈ ∏P

p=1[ δ2p ,+∞) which
minimize (7) for given h̃ are given by

σ̂ 2
p

(
h̃, δ2p

)
= |yp − Fph̃|2, if |yp − Fph̃|2 ≥ δ2p , (13)

σ̂ 2
p

(
h̃, δ2p

)
= δ2p , if |yp − Fph̃|2 < δ2p . (14)

The vector σ̂
2
(h̃, δ2) is substituted for σ̃ 2 in �(h̃, σ̃ 2) to

obtain

�
(
h̃, δ2

)
=

P∑

p=1

(

ln
(
πσ̂ 2

p (h̃, δ2p)
)

+ |yp − Fph̃|2
σ̂ 2
p (h̃, δ2p)

)

,(15)

and then the CIR estimate ĥ is the one that minimizes
�(h̃, δ2) with respect to h̃.
As previously stated, this article will focus on K > 1.

As there is no closed-form solution for the minimiza-
tion of �(h̃), we suggest using the conditional ML in the
next section to find an iterative solution and study the
properties of this solution.

4 Conditional ML
TheCML algorithm is an iterative algorithm for solving theML
problem. The CML is the result of two nested minimiza-
tions. First, (7) is minimized given the channel h̃, yielding
the estimation of σ 2 given by (8) or (11):

σ̂
2
(h̃) = s2 + |ȳ − Fh̃|2, (16)

where |ȳ − Fh̃|2 =
[
|ȳ1 − F1h̃|2, . . . , |ȳP − FPh̃|2

]T
(see

the note on the notation in bold |.|2 in the Notations

section). Conversely, (7) is minimized given σ̃ 2, yielding
the following estimate for h:

ĥ(σ̃ 2) =
(
FHD−1

(
σ̃ 2

)
F
)−1

FHD−1
(
σ̃ 2

)
ȳ. (17)

We obtain the following iterative algorithm, with I the
number of iterations:

1: Initialization: σ̂ 2(0)
p = 1, p = 1, · · · ,P

2: for i = 0 to I − 1 do
3: ĥ(i+1) =

(
FHD−1

(
σ̂
2(i)

)
F
)−1

FHD−1
(
σ̂
2(i)

)
ȳ

4: σ̂
2(i+1) = s2 + |ȳ − Fĥ(i+1)|2

5: end for

We recall that we have used the notations in bold
defined in the notation section. Note that with this ini-
tialization, ĥ(1) is the ordinary least-squares estimate
of h. Note also that the expectation-maximization algo-
rithm of [11, equations (28),(29)] corresponds to the CML
algorithm for λ = 0.
This algorithm is known as the scoring method [18, 19]

or the conditional maximum likelihood (CML) algorithm
[20].
The CML’s important properties include:
1. Given σ̂

2(i), the vector ĥ(i+1) maximizes the likeli-
hood. Given ĥ(i), the vector σ̂

2(i+1) maximizes the likeli-
hood.
2. The logarithmic means 1

P
∑P

p=1 ln(σ̂
2(i)
p ), for i =

0, 1, . . ., are non-increasing. In other words, for all i,
P∑

p=1
ln

(
σ̂ 2(i+1)
p

)
≤

P∑

p=1
ln

(
σ̂ 2(i)
p

)
. (18)

In addition,
∑P

p=1 ln
(
σ̂
2(i)
p

)
converges to some constant

ln(c∗) ≥ ∑P
p=1 ln

(
s2p

)
.

In this section, the CML algorithm has been presented
with some of its well-known properties. However, to
our knowledge, no work has been carried out about the
moments of the CML solution in this particular context.
The next section will address this topic.

5 Theoretical analysis of the CML algorithm
In this section, some properties of the CML algorithm are
studied. In particular, the first moment of the estimators
is investigated. To do so, a formulation of the CML based
on oblique projections is established. It will be shown that
the CML algorithm can be viewed as successive oblique
projections.

5.1 The CML algorithm and oblique projections
First, we briefly present a few preliminaries about projec-
tions. For any invertible matrix 	, observe that the matrix
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(	) := F(FH	F)−1FH	 splits the space CP into two
subspaces: the range space Range(
(	)) = 
(	)

(
CP

)
of


(	) and its null space Null(
(	)) =[ I − 
(	)]
(
CP

)
.

Note that the range of 
(	) is the range of F. The linear
operator defined by 
(	) is known as an oblique projec-
tion onto Range(F). If 	 = I, then 
(I) = F

(
FHF

)−1 FH
is the orthogonal projection on Range(F). For simplicity
of notation, 
(I) is now denoted by 
.
Now, we go back to the CML algorithm defined in the

previous Section.
At the first iteration, the orthogonal projection 
 splits

the sample mean into the following two components (see
Fig. 1 for a geometrical interpretation):

Fĥ(1) = 
ȳ,
b(1) := (I − 
)ȳ. (19)

The vector b(1) is the orthogonal projection of ȳ onto
Null(
).
Given ĥ(1), the ML of the variance vector is given by

σ̂
2(1) = s2 + |b(1)|2,

where the column vector |b(1)|2 =
[
|b(1)

1 |2, . . . , |b(1)
P |2

]T
.

At the i + 1th iteration, we have

ĥ(i+1) =
(
FHD−1

(
s2 + |b(i)|2

)
F
)−1

FHD−1
(
s2 + |b(i)|2

)
ȳ.

The oblique projection 

(
D−1 (

s2 + |b(i)|2)) splits the
sample mean into the following two components (see
Fig. 2):

Fĥ(i+1) = 

(
D−1

(
s2 + |b(i)|2

))
ȳ,

b(i+1) = ȳ − Fĥ(i+1)

=
(
I − 


(
D−1

(
s2 + |b(i)|2

)))
ȳ.

Fig. 1 First iteration of the CML algorithm: orthogonal projection

Fig. 2 Iteration i ≥ 1 of the CML algorithm: oblique projection

Given ĥ(i+1), the ML of the variance vector is given by

σ̂
2(i+1) = s2 + |b(i+1)|2.

From this discussion, it can be concluded that the solu-
tion provided by the CML algorithm can be sought either
in Fĥ(i) or in the variable b(i) = ȳ − Fĥ(i). In the perspec-
tive of investigating the CML properties, it will be seen
that it is more convenient to consider b(i), which yields an
equivalent algorithm for solving the CML:

b(i+1) = (I − 

(
D−1

(
s2 + |b(i)|2

))
ȳ. (20)

Now, let us study the properties of Eq. (20). To do so,
let us first write b(i+1) as a function of the three following
variables b(i+1) = ϕ

(
ȳ, s2,b(i)) where

ϕ
(
ȳ, s2,b(i)

)
:= (I − 


(
D−1

(
s2 + |b(i)|2

))
ȳ, (21)

is a function of size P × 1. From now on, ϕp denotes the
pth entry of ϕ. Now, the following properties are stated in
Proposition 1. They will be used to derive Proposition 2.

Proposition 1 1) For i ≥ 1,

ϕ
(
ȳ, s2,b(i)

)
= ϕ

(
b(1), s2,b(i)

)
, (22)

and

ϕ
(
b(1), s2,b(i)

)
=

(
I − 
D

(
s2 + |b(i)|2

)

× 
D−1
(
s2 + |b(i)|2

))
b(1).

(23)

2) The maps

ϕp
(
b(1), s2,b

)
= (

I − 
D
(
s2 + |b|2) 
D−1 (

s2 + |b|2))p b(1)

(24)

for p = 1, . . . ,P are linear with respect to b(1) and ratio-
nal with respect to the variables s21, . . . , s

2
P, |b1|2, . . . , |bP|2.
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Recall that the subscript p applied to a matrix means
taking the pth row of the matrix. More precisely,

ϕp
(
b(1), s2,b

)
= b(1)

p −
P∑

k1=1

P∑

k2=1

s2k1 + |bk1 |2
s2k2 + |bk2 |2

×
[

D(k1)
D(k2)

]

p
b(1),

(25)

where D(k) = D(0, . . . , 0, 1, 0, . . . , 0) and the kth entry is 1.
3) We have for p = 1, . . . ,P,

b(i+1)
p = ϕp

(
b(1), s2,b(i)

)

= ϕp
(
b(1), s2,ϕ

(
b(1), s2,b(i−1)

))

...
= ϕ(i)

p

(
b(1), s2

)

where the map ϕ
(i)
p (b(1), s2) is odd with respect to the

variable b(1)
k for all k = 1, . . . ,P.

4) Any limit (say) ω(b(1), s2) of the sequence b(i+1) is a
root of the rational map

b − ϕ
(
b(1), s2,b

)
.

Thus, the map (b(1), s2) → ω(b(1), s2) is an algebraic
function, i.e., for p = 1, . . . ,P, there exist polynomial
functions Qp such that Qp(b(1), s2,ω(b(1), s2)) = 0.

The proofs are given in Appendix 1. Note that (22)
is straightforward with the geometrical interpretation of
Fig. 2, where it can be observed that the projections of b(1)

and ȳ onto Null
(



(
D−1(s2 + |b(i)|2))) are the same.

5.2 The mean of the CML estimator
The distributions of the sample mean and the sample vari-
ance are derived in Appendix 2. Upon the convergence of
the algorithm (20), we obtain ĥ, b̂, and σ̂

2. From Fĥ =
ȳ − b̂ and (38) in Appendix 2, we obtain

E

[
ĥ
]

= h − (FHF)−1FHE[ b̂] . (26)

From σ̂
2 = s2 + |b̂|2 and (39) in Appendix 2, we obtain

E

[
σ̂
2
]

= K − 1
K

σ 2 + E

[
|b̂|2

]
, (27)

using the property that the mean of a chi-square random
variable of n degrees of freedom is n. Now, from Proposi-
tion 1, the following can be shown (see Appendix 3 for the
proof).

Proposition 2 The vector b̂ is zero mean, i.e.,

E

[
b̂p

]
= 0, p = 1, . . . ,P. (28)

Therefore, from (26), ĥ is an unbiased estimator.

5.3 Complexity of the CML algorithm
In this Section, the complexity of the CML algorithm
(20) is investigated. First, it is noteworthy that it is more
interesting in terms of complexity to use the formulation
(23) instead of (20). Indeed, in (20), the matrix inversion(
FH(D−1 (

s2 + |b(i)|2)F)−1 is required at each iteration,
whereas in (23), the computation of matrix 
 can be done
off-line and stored in a memory. In this way, the opera-
tions for computing (23) only consist in matrix products,
which is less demanding. Moreover, the calculation of s2
is carried out just once at the beginning of the algorithm.
Therefore, the algorithm requires O(P3) floating point
operations in total for each iteration i.

6 The Cramer-Rao bound
Let us define the 2L + P × 1 vector of the real parameters
to be estimated:

θ = [
hR1 , . . . , h

R
L , hI1, . . . , h

I
L, σ 2

1 , . . . , σ
2
P
]T , (29)

where hRl , h
I
l are, respectively, the real and imaginary parts

of hl.
The Cramer-Rao bound (CRB) for this estimation prob-

lem states that the covariance matrix of θ̂ satisfies

cov(θ̂) ≥ ∂ψ(θ)

∂θ
J−1 ∂ψ(θ)

∂θ

T
, (30)

where

ψ(θ) = E

[
θ̂
]

(31)

and ∂ψ(θ)
∂θ

is the Jacobian matrix, whose (n,m)th element
is given by ∂ψn(θ)

∂θm
. Note that in [11], the CRB is calcu-

lated by assuming perfect knowledge of the variance. In
this Section, both channel and variance parameters are
being considered. The matrix J is the 2L + P × 2L + P
Fisher information matrix. Its (m, n)th entry is defined
as E

[
∂2

∂θn∂θm
�
(
h, σ 2)

]
, where �(h, σ 2) is the negative log-

likelihood defined in (7).
Therefore, it can be seen from (31) that knowing the

moments of the estimator is required in order to calculate
the CRB. The results of Section 5.2 will be exploited to
do so.
The results of the calculation of J are given below,

and the details are in Appendix 4. The matrix J can be
written as

J =
[

Jh 02L,P
0P,2L Jσ 2

]
(32)

where Jσ 2 = KD
(

1
σ 4
1
, . . . , 1

σ 4
P

)
and where the entries of

Jh are defined by (41), (42), and (43) in Appendix 4. To
compute the CRB, the calculation of the inverse of J is
required. Since the inverse of a block diagonal matrix is
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the block diagonal matrix of the inverses of the blocks, as
long as the submatrices are invertible, we have

J−1 =
[

J−1
h 02L,P

0P,2L J−1
σ 2

]
. (33)

From (26), (27), and Proposition 2, we can express ψ(θ)

as a function of h and σ 2 and calculate the derivative:

∂ψ(θ)

∂θ
=

[
I2L 02L×P

0P×2L M

]
(34)

where the (p1, p2)th entry of M is defined as K−1
K δ

p2
p1 +

E

[
∂|b̂p1 |2
∂σ 2

p2

]
. Therefore, we have

∂ψ(θ)

∂θ
J−1 ∂ψ(θ)

∂θ

T
=

[
J−1
h 02L×P

0P×2L MJ−1
σ 2 MT

]
. (35)

Note that the calculation of E
[

∂|b̂p1 |2
∂σ 2

p2

]
is not feasible

since there is no analytical expression for b̂. Therefore, the
bound for the variance estimation cannot be found. How-
ever, the bound for the channel estimation is given from
(29) and (35) by

cov
([

ĥR1 , . . . , ĥ
R
L , ĥI1, . . . , ĥ

I
L

]T)
≥ J−1

h . (36)

Recall that this bound has been derived by using the
result of Proposition 2 showing that ĥ was unbiased.

7 Simulation results
In order to validate the results, computer simulations were
carried out in accordance with the IEEE 802.11g standard,
with a carrier frequency equal to 2.4 GHz. The system
parameters used for the simulation are as follows: N = 64
subcarriers, a bandwidth of 20 MHz, and a cyclic prefix of
length 16. The discrete-time channel is assumed to have
L = 6 channel taps modelled with a Rayleigh channel
with an exponentially decaying power such thatE[ |hl|2]=
σ 2
h · exp(−l) with l = 1, 2, · · · , L = 6. The constant σ 2

h
is chosen to normalize the channel power to one. For the
simulation, the pilots are evenly inserted every eight sub-
carriers, yielding P = 8. A frame ofK = 4 OFDM symbols
is assumed. Note that K < Lwith these considered values.
It is also assumed that two contiguous pilot subcarri-

ers are affected by NBI, by adding a Gaussian disturbance
of variance σ 2

NBI to both subcarriers. The signal-to-noise
ratio (SNR) is defined as 10 log 1

σ 2
AWGN

where the power
of the signal is normalized to one, and the signal-to-
interference ratio (SIR) is defined as 10 log 1

σ 2
NBI

. The
accuracy of the channel estimates is measured in terms
of the mean square error (MSE), which is defined as
1
LE

[
(ĥ − h)H(ĥ − h)

]
, where the expectation is esti-

mated via Monte Carlo simulations.
Figure 3 shows the MSE as a function of the SNR when

the SIR is fixed to − 5 dB. Four iterations are employed.
Let us recall that the first iteration is the ordinary least-
squares estimate (OLSE). For reference, the CRB calcu-
lated in Section 6 is added. It is seen that the algorithm
converges after four iterations for the SNR ranging from 0
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l M
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E
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iteration #3
iteration #4
CRB

Fig. 3 Performance of the CML estimator as a function of the SNR for SIR = − 5 dB, K = 4
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to 30 dB and nearly attains the CRB, whereas the MSE for
the OLSE has a floor at 2.5 × 10−2. This shows that the
ML algorithm is well conditioned for the considered SNR
range [ 0, 50] dB.
Next, the SIR is fixed to 0 dB in Fig. 4 and to 5 dB in

Fig. 5. In these two cases, the algorithm converges after
only three iterations.Moreover, it can be observed that the
performance of the OLSE approaches that of the second
iteration when the SIR increases. This makes sense, as the
OLSE is designed to perform well without NBI.
To investigate the impact of the number of OFDM sym-

bols on the performance, K is now fixed to 8 and the other
parameters are the same. The results are shown in Fig. 6
for an SIR = − 5 dB. Compared to K = 4, it can be
observed that the convergence is faster, since only three
iterations are needed to converge. This is understood
since it is a more favorable scenario (Fig. 6).
Finally, the bias of ĥ is studied. We plot the histogram

of the real part and imaginary part of b̂p, p = 1, . . . ,P in
Figs. 7 and 8, respectively. The SNR is fixed to 10 dB and
the SIR to 0 dB. It can be observed that the mean is zero
for all p, which leads to an unbiased estimator for ĥ. This
confirms Proposition 2).

8 Conclusions
This article has addressed the problem of maximum like-
lihood channel estimation for OFDM systems in the pres-
ence of unknown interference. First, it was proved that
the solution is without ambiguities as long as the num-
ber of transmitted OFDM symbols is strictly greater than
one. For this case, we proposed using the conditional

maximum likelihood (CML) algorithm to obtain the esti-
mates. New theoretical developments of the CML algo-
rithm in this context have been presented. It was proved
that the solution provided by the CML is an algebraic
function of the data. Furthermore, it was also proved that
the channel estimator is unbiased.

Appendix 1: Proof of Proposition 1
The proof of Proposition 1 1) is a consequence of the fol-
lowing general results. We have for any invertible matrix
	 that

(I − 
(	)) = (I − 
(	))(I − 
).

The latter equality is equivalent to


 = 
(	)
.

Now, it can be easily shown that


(	)
 = F
(
FH	F

)−1 FH	F
(
FHF

)−1 FH = 
.

The proof of 2) is a consequence of the following general
result:

(
FH	−1F

)−1 = F+	
(
FH

)+

where F+ = (
FHF

)−1 FH and
(
FH

)+ = F
(
FHF

)−1. From
this, we have



(
	−1) = FF+	

(
FH

)+ FH	−1 = 
	
	−1. (37)

The proof of the remaining assertions is straightforward.
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Fig. 4 Performance of the CML estimator as a function of the SNR for SIR = 0 dB, K = 4
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Fig. 5 Performance of the CML estimator as a function of the SNR for SIR = 5 dB, K = 4

Appendix 2: Probability distribution function of
the samplemean and the sample variance
Cochran’s theorem [21] states that the sample mean and
variance are two independent random variables. More-
over, it is also stated that the sample variance of K
independent normally distributed real random variables
with mean 0 and standard deviation 1 has a chi-square
distribution with K −1 degrees of freedom. Therefore, we

can write down the distribution for s2p. The distribution
for ȳp is straightforward:

ȳp ∼ CN
(

Fph,
σ 2
p
K

)

, (38)

s2p ∼ σ 2
p

2K
χ2
2(K−1). (39)
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Fig. 6 Performance of the CML estimator as a function of the SNR for SIR = − 5 dB, K = 8



Dermoune and Simon EURASIP Journal on Advances in Signal Processing  (2017) 2017:69 Page 10 of 11

Fig. 7 Histogram of b̂Rp , p = 1, . . . , P, SNR = 10 dB, SIR = 0 dB

Here we find 2(K − 1) degrees of freedom since the
considered random variables are complex.

Appendix 3: Proof of Proposition 2
The Gaussian vector b(1), defined in (19), is zero mean
with the covariance matrix K−1(I − 
)D(σ 2), i.e., (I −

)ȳ ∼ (I − 
)K−1/2D(σ )N (0, I).
The components of the vector 2Ks2 are independent

with the distribution
(
σ 2
1 χ2

2(K−1)(1), . . . , σ
2
Pχ2

2(K−1)(P)
)
.

Here χ2
2(K−1)(1), . . . ,χ

2
2(K−1)(P) are i.i.d. with the com-

mon distribution χ2
2(K−1). From Cochran’s theorem, s2

and ȳ are independent. From Proposition 1, the random
vector b(i+1) = ϕ(i) (

b(1), s2
)
is a rational function having

a positive denominator. Therefore,

E

(
b(i+1)|s2

)
= E

(
ϕ(i)

(
b(1), s2

)
|s2

)

=
∫

ϕ(i) (
b, s2

)
fb(1) (b)db = 0

Fig. 8 Histogram of b̂Ip , p = 1, . . . , P, SNR = 10 dB, SIR = 0 dB

because b(1) is zero mean which implies that its prob-
ability density function b → fb(1) (b) is even and
b → ϕ(i)(b, s2) is odd. Then, using the basic property
E(E(X|Y )) = E(X), where X and Y are random variables,
we obtain (28).

Appendix 4: The Fisher informationmatrix
To facilitate the calculations, the negative log-likelihood is
rewritten using real numbers:

�
(
h, σ 2) = K

P∑

p=1
ln

(
σ 2
p

)
+

K∑

k=1

P∑

p=1

×
(
yRp,k − HR

p

)2 +
(
yIp,k − HI

p

)2

σ 2
p

.

First, we define the 2P × 2Lmatrix G:

G =
[
FR −FI
FI FR

]
, (40)

and we write HR
p and HI

p as functions of
[
hR1 , . . . , h

R
L , hI1, . . . , h

I
L
]
:

HR
p = Gp · [

hR1 , . . . , h
R
L , hI1, . . . , h

I
L
]T ,

HI
p = GP+p · [

hR1 , . . . , h
R
L , hI1, . . . , h

I
L
]T .

where Gp means the pth row of G. Let gp,q be the (p, q)th
entry of G. The derivatives of �(h, σ 2) with respect to
hR,hI , and σ 2 are

∂hRl
�
(
h, σ 2) = −2K

P∑

p=1

gp,lbRp + gP+p,lbIp
σ 2
p

,

∂hIl
�
(
h, σ 2) = −2K

P∑

p=1

gp,L+lbRp + gP+p,L+lbIp
σ 2
p

,

∂σ 2
p
�
(
h, σ 2) = K

σ 2
p

− K
s2p + |bRp |2 + |bIp|2

σ 4
p

,

which yields

∂2hRl1h
R
l2
�
(
h, σ 2) = 2K

P∑

p=1

gp,l1gp,l2 + gP+p,l1gP+p,l2
σ 2
p

(41)

∂2hRl1h
I
l2
�
(
h, σ 2) = 2K

P∑

p=1

gp,l1gp,L+l2 + gP+p,l1gP+p,L+l2
σ 2
p

(42)
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∂2hIl1h
I
l2
�
(
h, σ 2) = 2K

P∑

p=1

× gp,L+l1gp,L+l2 + gP+p,L+l1gP+p,L+l2
σ 2
p

(43)

∂2hRl σ 2
p
�
(
h, σ 2) = 2K

gp,lbRp + gP+p,lbIp
σ 4
p

(44)

∂2
σ 2
p1σ 2

p2
�
(
h, σ 2) =

(

− K
σ 4
p1

+ 2K
s2p1 + |bRp1 |2 + |bIp1 |2

σ 6
p1

)

δ
p2
p1 .

(45)

Now, the expectation needs to be taken to find J. The
expectations of (41), (42), and (43) are unchanged. From
the definition of bp = ȳp −Hp and (38), the expectation of
(44) is 0, and from (39), the expectation of (45) is K

σ 4
p1

δ
p2
p1 .
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